Loading content, please wait..
loading..
Logo
Version 3.20
or
Publication Type J
Authors De Deurwaerder, H; Okello, JA; Koedam, N; Schmitz, N; Steppe, K
Author Full Name De Deurwaerder, Hannes; Okello, J. A.; Koedam, N.; Schmitz, N.; Steppe, K.
Title How are anatomical and hydraulic features of the mangroves Avicennia marina and Rhizophora mucronata influenced by siltation?
Source TREES-STRUCTURE AND FUNCTION
Language English
Document Type Article
Author Keywords Hydraulic conductivity; Wood anatomy; Stomata; Leaf area; Phloem band/growth layer ratio
Keywords Plus LEAF GAS-EXCHANGE; VESSEL CHARACTERS; PHOTOSYNTHETIC CAPACITY; STOMATAL CONDUCTANCE; SALINITY GRADIENT; RICINUS-COMMUNIS; WATER RELATIONS; DROUGHT STRESS; ABSCISIC-ACID; GAZI BAY
Abstract Elevated sediment addition, or siltation, within mangrove ecosystems is considered as being negative for trees and saplings, resulting in stress and higher mortality rates. However, little is known about how siltation influences the hydraulic functioning of mangrove trees. Comparing two mangrove tree species (Avicennia marina Vierh. Forsk. and Rhizophora mucronata Lam.) from low and high-siltation plots led to the detection of anatomical and morphological differences and tendencies. Adaptations to high siltation were found to be either mutual among both species, e.g., significant smaller single leaf area (p(A.marina) = 0.058, F1.38 = 3.8; p(R.mucronata) = 0.005, F1.38 = 8.7; n = 20 x 20) and a tendency towards smaller stomatal areas (p(A.marina) = 0.131, F1.8 = 2.8; p(R.mucronata) = 0.185, F1.8 = 2.1, n = 5 x 60), or species-specific trends for A. marina, such as higher phloem band/growth layer ratios (p = 0.101, F1.8 = 3.4, n = 5 x 3) and stomatal density (p = 0.052, F1.8 = 5.2, n = 5 x 4). All adaptations seemingly contributed to a comparable hydraulic conductivity independent of the degree of siltation. These findings indicate that silted trees level off fluctuations in their hydraulic performance as a survival mechanism to cope with this less favourable environment. Most of the trees' structural adaptations to cope with siltation are similar to known drought stressimposed adaptations.
Author Address [De Deurwaerder, Hannes; Steppe, K.] Ghent Univ UGent, Fac Biosci Engn, Plant Ecol Lab, Coupure Links 653, B-9000 Ghent, Belgium; [Okello, J. A.] KMFRI, Headquarter & Mombasa Stn, POB 81651, Mombasa 080100, Kenya; [Okello, J. A.; Koedam, N.; Schmitz, N.] VUB, Lab Plant Biol & Nat Management APNA, Pl Laan 2, B-1050 Brussels, Belgium; [Schmitz, N.] Univ Bodenkultur Wien BOKU, Gregor Mendel Str 33, A-1180 Vienna, Austria
Reprint Address De Deurwaerder, H (reprint author), Ghent Univ UGent, Fac Biosci Engn, Plant Ecol Lab, Coupure Links 653, B-9000 Ghent, Belgium.
E-mail Address hannes.dedeurwaerder@ugent.be; kathy.steppe@UGent.be
Cited References Abuodha PAW, 2001, HYDROBIOLOGIA, V458, P255, DOI 10.1023/A:1013130916811; Alongi DM, 2008, ESTUAR COAST SHELF S, V76, P1, DOI 10.1016/j.ecss.2007.08.024; Angeles G, 2002, TREES-STRUCT FUNCT, V16, P338, DOI 10.1007/s00468-002-0171-9; Anyia AO, 2004, EUR J AGRON, V20, P327, DOI 10.1016/S1161-0301(03)00038-8; American Public Health Association (APHA), 1998, STAND METH EX WAT WA; BAAS P, 1983, IAWA BULL, V4, P141; Ball MC, 1988, TREES-STRUCT FUNCT, V2, P129; Brakel W, P S COAST MAR EVN RE, P403; BRUGNOLI E, 1991, PLANT PHYSIOL, V95, P628, DOI 10.1104/pp.95.2.628; Burghardt M, 2008, FLORA, V203, P3, DOI 10.1016/j.flora.2007.11.003; Carr DJ, 2000, ANN BOT-LONDON, V86, P911, DOI 10.1006/anbo.2000.1258; Castaneda-Moya E, 2010, ESTUAR COAST, V33, P45, DOI 10.1007/s12237-009-9242-0; Choat B, 2011, NEW PHYTOL, V191, P996, DOI 10.1111/j.1469-8137.2011.03772.x; Ellison JC, 1998, MAR POLLUT BULL, V37, P420; Franks PJ, 2009, P NATL ACAD SCI USA, V106, P10343, DOI 10.1073/pnas.0904209106; Franks PJ, 2009, PLANT CELL ENVIRON, V32, P1737, DOI [10.1111/j.1365-3040.2009.02031.x, 10.1111/j.1365-3040.2009.002031.x]; Franks PJ, 2001, PLANT PHYSIOL, V125, P935, DOI 10.1104/pp.125.2.935; Furukawa K, 1997, ESTUAR COAST SHELF S, V44, P301, DOI 10.1006/ecss.1996.0120; Gartner H, 2010, DENDROCHRONOLOGIA, V28, P85, DOI 10.1016/j.dendro.2009.09.002; Gordon DM, 1987, DISTURBANCE MANGROVE, V12; Gu MM, 2007, HORTSCIENCE, V42, P1383; Hameed M, 2008, FLORA, V203, P683, DOI 10.1016/j.flora.2007.11.005; Hao GY, 2009, TREE PHYSIOL, V29, P697, DOI 10.1093/treephys/tpp005; Heckenberger U, 1998, J EXP BOT, V49, P181, DOI 10.1093/jexbot/49.319.181; Kathiresan K, 2001, ADV MAR BIOL, V40, P81, DOI 10.1016/S0065-2881(01)40003-4; Krauss KW, 2008, AQUAT BOT, V89, P105, DOI 10.1016/j.aquabot.2007.12.014; Lieth H, 1999, CLIMATE DIAGRAMS WOR; Lopez-Portillo J, 2005, PLANT CELL ENVIRON, V28, P1285, DOI 10.1111/j.1365-3040.2005.01366.x; Lovelock CE, 2006, PLANT CELL ENVIRON, V29, P793, DOI 10.1111/j.1365-3040.2005.01446.x; Lugo AE, 1975, P INT S BIOL MAN MAN; Mauseth JD, 1997, AM J BOT, V84, P815, DOI 10.2307/2445817; Mauseth JD, 2004, INT J PLANT SCI, V165, P359, DOI 10.1086/382808; McClenahan K, 2004, AUST J BOT, V52, P509, DOI 10.1071/BT03123; McKee KL, 1996, TREE PHYSIOL, V16, P883; Mohamed MOS, 2009, WETL ECOL MANAG, V17, P243, DOI 10.1007/s11273-008-9104-8; Naz N, 2010, PHOTOSYNTHETICA, V48, P446, DOI 10.1007/s11099-010-0059-7; Okello JA, 2014, ECOL EVOL, V4, P3187, DOI 10.1002/ece3.1154; Ounis A., 2005, IMAGE J; Parson T.R., 1984, MANUAL CHEM BIOL MET; Pi N, 2009, AQUAT BOT, V90, P222, DOI 10.1016/j.aquabot.2008.10.002; QUARRIE SA, 1977, J EXP BOT, V28, P192, DOI 10.1093/jxb/28.1.192; Quisthoudt K, 2013, BIODIVERS CONSERV, V22, P1369, DOI 10.1007/s10531-013-0478-4; Robert EMR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016558; Robert EMR, 2009, FUNCT ECOL, V23, P649, DOI 10.1111/j.1365-2435.2009.01551.x; Salleo S, 2004, PLANT CELL ENVIRON, V27, P1065, DOI 10.1111/j.1365-3040.2004.01211.x; Salleo S, 2006, FUNCT PLANT BIOL, V33, P1063, DOI 10.1071/FP06149; Schmitz N, 2007, ANN BOT-LONDON, V100, P271, DOI 10.1093/aob/mcm103; Schmitz N, 2008, ANN BOT-LONDON, V101, P49, DOI 10.1093/aob/mcm280; Schmitz N, 2006, ANN BOT-LONDON, V98, P1321, DOI 10.1093/aob/mcl224; SCHOLANDER PF, 1964, P NATL ACAD SCI USA, V52, P119, DOI 10.1073/pnas.52.1.119; Schurr U, 2000, J EXP BOT, V51, P1515, DOI 10.1093/jexbot/51.350.1515; SPERRY JS, 1988, PLANT CELL ENVIRON, V11, P35, DOI 10.1111/j.1365-3040.1988.tb01774.x; Stuart SA, 2007, NEW PHYTOL, V173, P576, DOI 10.1111/j.1469-8137.2006.01938.x; Terrados J, 1997, ESTUAR COAST SHELF S, V45, P697; Thomas L, 1997, CONSERV BIOL, V11, P276, DOI 10.1046/j.1523-1739.1997.96102.x; Tomlinson P.B., 1986, BOT MANGROVES; Vaiphasa C, 2007, HYDROBIOLOGIA, V591, P47, DOI 10.1007/s10750-007-0783-6; van Mensvoort T, 1998, COMMUNICATION; Villar-Salvador P, 1997, TREES-STRUCT FUNCT, V12, P90, DOI 10.1007/s004680050126; Zwieniecki MA, 2000, PLANT CELL ENVIRON, V23, P407, DOI 10.1046/j.1365-3040.2000.00554.x
Cited Reference Count 60
Times Cited 1
Total Times Cited Count (WoS, BCI, and CSCD) 1
Publisher SPRINGER HEIDELBERG
Publisher City HEIDELBERG
Publisher Address TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
ISSN 0931-1890
29-Character Source Abbreviation TREES-STRUCT FUNCT
ISO Source Abbreviation Trees-Struct. Funct.
Publication Date FEB
Year Published 2016
Volume 30
Issue 1
Beginning Page 35
Ending Page 45
Digital Object Identifier (DOI) 10.1007/s00468-016-1357-x
Page Count 11
Web of Science Category Forestry
Subject Category Forestry
Document Delivery Number DI6YI
Unique Article Identifier WOS:000373645700004
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020. This database is based on an earlier work by James Aronson.
THIS WEBSITE AND THIS DATABASE ARE PROVIDED ON AN "AS IS" BASIS, AND YOU USE THEM AND RELY ON THEM AT YOUR OWN RISK.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed