Loading content, please wait..
loading..
Logo
Version 3.22
or
Publication Type J
Authors Zeng, J., F. Zeng, S. K. Arndt, H. Guo, H. Yan, W. Xing and B. Liu
Title Growth, physiological characteristics and ion distribution of NaCl stressed Alhagi sparsifolia seedlings
Source Chinese Science Bulletin
Abstract Alhagi sparsifolia is a leguminous perennial desert species that is plays an important role in dune stabilization and revegetation of degraded desert ecosystems. We investigated the effects of three different levels of salinity (50, 150, 250 mmol/L NaCl) on the growth, shoot photosynthetic parameters and salt distribution amongst different plant organs in one-year-old A. sparsifolia seedlings in a pot experiment over a 50 d period. The minimum (predawn) and maximum (midday) water potentials of A. sparsifolia seedlings decreased with the increase of external NaCl concentrations as a consequence of the osmotic or water deficit effect of saline solutions outside the roots. Salinity also reduced gas exchange parameters in A. sparsifolia, with seedlings subjected to salinity having lower photosynthesis rates and reduced stomatal conductances compared to the control. The reductions in photosynthetic rates in high salinity treatments of the A. sparsifolia seedlings were mainly caused by stomatal limitation. Consequently plants growing at greater external NaCl concentrations had significantly lower biomass accumulation compared to the control grown at 50 mmol/L. However, plants exposed to higher salinity were able to maintain growth throughout the experiment but allocated a greater proportion of biomass belowground. Plants exposed to higher external salinity levels had increased concentrations of Na(+) and Cl(-) ions in shoots and roots, suggesting that A. sparsifolia seedlings were utilizing Na+ and Cl(-) as osmolytes to increase the cellular osmolality and decrease their water potential. We observed the greatest NaCl concentrations in the plants treated with 150 mmol/L NaCl indicating that there may be a threshold level of NaCl that can be tolerated by the plants. In conclusion our results indicate that A. sparsifolia seedlings are moderately salt tolerant. Photosynthetic gas exchange parameters were reduced by greater external salinity but the seedlings maintained substantial photosynthetic rates even under high salinity stress, were able to maintain growth over the 50 d experimental period and showed no signs of salinity toxicity or damage.
ISSN 1001-6538
ISBN 1001-6538
Publication Date December
Year Published 2008
Volume 53
Issue Supp !!
Beginning Page 169-176
Digital Object Identifier (DOI) 10.1007/s11434-008-6020-5
Unique Article Identifier WOS:000266556800021
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. This database is based on an earlier work by James Aronson.
THIS WEBSITE AND THIS DATABASE ARE PROVIDED ON AN "AS IS" BASIS, AND YOU USE THEM AND RELY ON THEM AT YOUR OWN RISK.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed