Loading content, please wait..
loading..
Logo
Version 3.24
or
Publication Type J
Authors Yildiztugay, E., C. Ozfidan-Konakci and M. Kucukoduk
Title The role of antioxidant responses on the tolerance range of extreme halophyte Salsola crassa grown under toxic salt concentrations
Source Ecotoxicology and Environmental Safety
Author Keywords Antioxidant enzyme system Halopyhte Salsola crassa Salt stress Reactive oxygen species bean phaseolus-vulgaris seed-germination oxidative stress water-stress spinach-chloroplasts ascorbate peroxidase superoxide-dismutase lipid-peroxidation osmotic adjustment hydrogen-peroxide
Abstract Salsola crassa (Amaranthaceae) is an annual halophytic species and naturally grows in arid soils that are toxic to most plants. In order to study the effects of salinity on their antioxidant system and to determine the tolerance range against salt stress, S. crassa seeds were grown with different concentrations of NaCl (0, 250, 500, 750, 1000, 1250 and 1500 mM) for short (15 d) and long-term (30 d). Results showed that growth (RGR), water content (RWC) and osmotic potential (Psi(Pi)) decreased and, proline content (Pro) increased at prolonged salt treatment. Unlike K+ and Ca2+ contents, S. crassa highly accumulated Na+ and Cl- contents. Chlorophyll fluorescence (F-v/F-m) only decreased in response to 1500 mM NaCl at 30 d. No salt stimulation of superoxide anion radical (O-2(center dot-)) content was observed in plants treated with the range of 0-500 mM NaCl during the experimental period. NaCl increased superoxide dismutase (SOD) activity depending on intensities of Mn-SOD and Fe-SOD isozymes except in 1500 mM NaCl-treated plants at 30 d. In contrast to catalase (CAT), peroxidase (POX) activity increased throughout the experiment. Also, salinity caused an increase in glutathione reductase (GR) and glutathione peroxidase (GPX) and decreased in ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) at 15 d. Both total ascorbate (tAsA) and glutathione (tGlut) contents significantly increased in treated plants with 1000-1500 mM NaCl at 15 d. After 0-1000 mM NaCl stress, H2O2 and TBARS contents were similar to control groups at 15 d, which were consistent with the increased antioxidant activity (PDX, GR and GPX). However, H2O2 content was more pronounced at 30 d. Therefore, S. crassa exhibited inductions in lipid peroxidation (TBARS content) in response to extreme salt concentrations. These results suggest that S. crassa is tolerant to salt-induced damage at short-term treatments as well as extreme salt concentrations. (C) 2014 Elsevier Inc. All rights reserved.
ISSN 0147-6513
ISBN 0147-6513
29-Character Source Abbreviation Ecotox. Environ. Safe.
Publication Date Dec
Year Published 2014
Volume 110
Beginning Page 21-30
Digital Object Identifier (DOI) 10.1016/j.ecoenv.2014.08.013
Unique Article Identifier WOS:000344309500004
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022. This database is based on an earlier work by James Aronson.
THIS WEBSITE AND THIS DATABASE ARE PROVIDED ON AN "AS IS" BASIS, AND YOU USE THEM AND RELY ON THEM AT YOUR OWN RISK.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed