Loading content, please wait..
loading..
Logo
Version 3.20
or
Publication Type J
Authors Van Hinsberg, A.
Title Maternal and ambient environmental effects of light on germination in Plantago lanceolata: correlated responses to selection on leaf length
Source Functional Ecology
Author Keywords competition individual differences resource partitioning variability relevant morphological variability 3 contrasting habitats arabidopsis-thaliana l genetic-analysis phytochrome-b red ratio seed populations differentiation induction
Abstract 1. Seeds from artificial selection lines were exposed to different maternal and ambient conditions, simulating sunlight and vegetation shade. 2. Lines selected for longer leaves also produced larger seeds, indicating a positive genetic correlation between leaf length and seed size. 3. Light conditions during maturation had no large effect on seed size. 4. Seed germination was reduced by a low ratio of red to far-red light (R/FR ratio) in the ambient environment. 5. Seeds maturated under simulated vegetation shade germinated less readily and were more inhibited by a low ambient R/FR ratio than seeds maturated under full sunlight or R/FR-neutral shade. Thus, low R/FR-ratios in the maternal and ambient environment operated synergistically. 6. Large genotypic variation in the germination responses to both maternal and ambient light conditions was found among and within selection lines, indicating that such responses might have the potential to evolve in response to natural selection. 7. Artificial selection for leaf length had affected seed germination characteristics but correlated responses and thus genetic correlations largely depended on light conditions in the selective environment. Selection for longer leaves under a low R/FR ratio increased seed dormancy and plasticity of germination in response to the R/FR ratio. However, in the opposite selective environment selection for longer leaves reduced seed dormancy and plasticity to the R/FR ratio. It is argued that leaf length and seed germination characteristics are somehow linked by shared physiological mechanisms, which may facilitate concerted changes in shade avoidance responses.
Author Address Netherlands Inst Ecol, NL-6666 ZG Heteren, Netherlands. Van Hinsberg, A, Netherlands Inst Ecol, POB 40, NL-6666 ZG Heteren, Netherlands.
Publication Date Oct
Year Published 1998
Volume 12
Issue 5
Beginning Page 825-833
Unique Article Identifier ISI:000077864400014
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020. This database is based on an earlier work by James Aronson.
THIS WEBSITE AND THIS DATABASE ARE PROVIDED ON AN "AS IS" BASIS, AND YOU USE THEM AND RELY ON THEM AT YOUR OWN RISK.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed