Loading content, please wait..
loading..
Logo
Version 3.21
or
Publication Type J
Authors Radyukina, N. L., A. V. Kartashov, Y. V. Ivanov, N. I. Shevyakova and V. V. Kuznetsov
Title Functioning of defense systems in halophytes and glycophytes under progressing salinity
Source Russian Journal of Plant Physiology
Author Keywords thellungiella halophila; plantago major; salinity; proline; polyamines; superoxide disimutase; guaiacol peroxidases salt stress; thellungiella-halophila; arabidopsis-thaliana; proline; polyamines; metabolism; mechanisms; tolerance; plants
Abstract Six-week-old Plantago major L. and Thellungiella halophila Mey. plants were subjected to progressing salinity by a daily increase in the NaCl concentration by 100 mM until the final concentration of 400 mM. A dynamics of stress-dependent accumulation of Na+ and Cl- ions, proline, and free polyamines and also activities of antioxidant enzymes, superoxide oxidase (SOD) and free, ion-bound, and covalently bound guaiacol-dependent peroxidases was studied. We also examined the intensity of gene expression encoding enzymes of proline metabolism and polyamine biosynthesis. It was shown that the high salt-resistance of the halophyte T. halophila was determined by plant capability of ion accumulation and stress-dependent proline accumulation. An important role in the maintenance of this plant homeostasis under salinity plays a high constitutive levels of activities of three types of peroxidases tested and also of proline manifesting a polyfunctional protective action. In contrast, P. major plants characterized by a lower tolerance to salt excess did not display a high constitutive level of proline or the activity of guaiacol-dependent peroxidases; they also were not capable Of stress-induced accumulation of compatible osmolytes and did not accumulate the salt. However, this glycophyte contained relatively much spermidine and active SOD, which provided for a decrease in the damaging effects of reactive oxygen species under salt shock. In both plant species, it was established that salinity changed the intracellular content of polyamines, which was not dependent on the activity of gene transcription encoding the enzymes of their biosynthesis. The results obtained support a hypothesis that halophytes and glycophytes have some common mechanisms of tolerance to salinity, but the control of these mechanisms differs substantially.
Author Address Russian Acad Sci, KA Timiryazev Plant Physiol Inst, Moscow 127276, Russia. Belinskii State Pedag Univ, Penza, Russia. Patrice Lumumba Peoples Friendship Univ, Moscow, Russia. Radyukina, NL, Russian Acad Sci, KA Timiryazev Plant Physiol Inst, Bot Skaya Ul 35, Moscow 127276, Russia. nayrad@yandex.ru
29-Character Source Abbreviation Russ. J. Plant Physiol.
Publication Date Nov-Dec
Year Published 2007
Volume 54
Issue 6
Beginning Page 806-815
Unique Article Identifier ISI:000250783500013
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. This database is based on an earlier work by James Aronson.
THIS WEBSITE AND THIS DATABASE ARE PROVIDED ON AN "AS IS" BASIS, AND YOU USE THEM AND RELY ON THEM AT YOUR OWN RISK.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed