Loading content, please wait..
loading..
Logo
Version 3.21
or
Publication Type J
Authors Matinzadeh, Z., S. W. Breckle, M. Mirmassoumi and H. Akhani
Title y Ionic relationships in some halophytic Iranian Chenopodiaceae and their rhizospheres
Source Plant and Soil
Author Keywords Atriplex C-3-C-4 plants Halophytes of Iran NaCl Physiotype Recreto-halophytes Salicornia Salsoleae Saline soils Succulent halophytes salt tolerance photosynthetic pathways salinity tolerance bienertia-cycloptera vesiculated hairs sodium-transport leaf anatomy k+ plants aralkum
Abstract Previous studies on the identification of ion relations in halophytes have revealed that many members of Chenopodiaceae accumulate high amounts of sodium and chloride even in soils with low salinity, indicating a typical pattern which is genetically fixed. In this study, we followed up with the question of ion relations in different halophyte species with different photosynthetic pathways and different salt tolerance strategies over a complete growing season. Soil and plant samples from five species Climacoptera turcomanica (Litv.) Botsch. (leaf succulent-C-4), Salicornia persica Akhani subsp. rudshurensis Akhani (stem succulent-C-3), Halimocnemis pilifera Moq. (leaf succulent-C-4), Petrosimonia glauca (Pall.) Bunge (leaf succulent-C-4) and Atriplex verrucifera M. Bieb. (recreto-halophyte-C-3) were collected over a complete growing season from a salt flat 60 km W of Tehran. The contents of main cations (Na+, K+, Ca2+, and Mg2+) and chloride were determined in plant and soil samples. Na+ and Cl- concentration in the shoots of two hygro-halophytes Climacoptera turcomanica and Salicornia persica subsp. rudshurensis were constant over the period of the growing season. In contrast, sodium and chloride in the shoots of Halimocnemis pilifera and Petrosimonia glauca showed respectively an increasing and, in the shoots of Atriplex verrucifera, a decreasing, trend. We did not notice any decreasing trend of K+ together with increasing trend of Na+ in the shoots of the studied species; however K+ in the shoots of all examined species was considerably lower than Na+ and Cl-. It was observed that Climacoptera and Salicornia could absorb and retain calcium even in high salinity conditions, while Halimocnemis and Petrosimonia could not. Na+, K+, Cl-, Ca2+, and Mg2+ contents in the shoots of different types of halophytes (stem-succulent, leaf-succulent and excreting halophyte) or different type of photosynthesis (C-3, C-4) are independent of those in their rhizosphere. We concluded that it is controlled by the genetic characteristic of the specific taxon rather than by the environment.
Author Address [Matinzadeh, Zeinab; Mirmassoumi, Massoud; Akhani, Hossein] Univ Tehran, Dept Plant Sci, Sch Biol, Ctr Excellence Phylogeny Living Organisms, Tehran, Iran. [Breckle, Siegmar-W.] Univ Bielefeld, Dept Ecol, D-33619 Bielefeld, Germany. Akhani, H (reprint author), Univ Tehran, Dept Plant Sci, Sch Biol, Ctr Excellence Phylogeny Living Organisms, POB 14155-6455, Tehran, Iran. akhani@khayam.ut.ac.ir
ISSN 0032-079X
ISBN 0032-079X
29-Character Source Abbreviation Plant Soil
Publication Date Nov
Year Published 2013
Volume 372
Issue 1-2
Beginning Page 523-539
Digital Object Identifier (DOI) 10.1007/s11104-013-1744-7
Unique Article Identifier WOS:000326093300037
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. This database is based on an earlier work by James Aronson.
THIS WEBSITE AND THIS DATABASE ARE PROVIDED ON AN "AS IS" BASIS, AND YOU USE THEM AND RELY ON THEM AT YOUR OWN RISK.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed