Loading content, please wait..
loading..
Logo
Version 3.21
or
Publication Type J
Authors Jenkins, S., E. G. Barrett-Lennard and Z. Rengel
Title Impacts of waterlogging and salinity on puccinellia (Puccinellia ciliata) and tall wheatgrass (Thinopyrum ponticum): zonation on saltland with a shallow water-table, plant growth, and Na+ and K+ concentrations in the leaves
Source Plant and Soil
Author Keywords Flooding Growth Halophyte Hypoxia Ion relations Land capability FLOODING TOLERANCE HALOPHYTES ROOT AUSTRALIA RESPONSES HYPOXIA MARSH TRANSPORT AERATION PEISONIS
Abstract This paper focuses on the causes of zonation on agricultural land affected by secondary salinity between two halophytic grasses, puccinellia (Puccinellia ciliata Bor. cv. Menemen) and tall wheatgrass (Thinopyrum ponticum (Podp.) Z.-W. Liu & R.R.-C. Wang cv. Tyrrell). We hypothesized that the differences in zonation of puccinellia and tall wheatgrass were caused primarily by differences in the tolerance of these two species to waterlogging under saline conditions. This hypothesis was tested by conducting experiments in the field and in the glasshouse in irrigated sand cultures. At a saltland field site, locations dominated by puccinellia had ECe values that were consistently higher (11-12 dS/m in early spring, and 5-9 dS/m in late summer) than locations dominated by tall wheatgrass. However locations dominated by puccinellia also had a watertable that was shallower (0.07-0.09 m in the high rainfall season; 0.11-0.13 m in the low rainfall season) than locations dominated by tall wheatgrass. In the glasshouse both species had similar growth responses to salinity under drained conditions, with a 50% decrease in shoot dry mass (DM) at similar to 300 mM NaCl. However, the combination of salinity (250 mM NaCl) and waterlogging increased puccinellia shoot DM by 150% but decreased shoot DM of tall wheatgrass by 90% (compared with salinity alone). Under saline/waterlogged conditions, puccinellia showed better exclusion of Na+ and maintenance of K+/Na+ in the shoots than tall wheatgrass. We conclude that the zonation of puccinellia and tall wheatgrass is associated with differences in their ion regulation which leads to substantial differences in their growth under saline/waterlogged conditions.
ISSN 0032-079X
ISBN 0032-079X
29-Character Source Abbreviation Plant Soil
Publication Date Apr
Year Published 2010
Volume 329
Issue 1-2
Beginning Page 91-104
Digital Object Identifier (DOI) 10.1007/s11104-009-0137-4
Unique Article Identifier ISI:000275543300007
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. This database is based on an earlier work by James Aronson.
THIS WEBSITE AND THIS DATABASE ARE PROVIDED ON AN "AS IS" BASIS, AND YOU USE THEM AND RELY ON THEM AT YOUR OWN RISK.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed