Loading content, please wait..
Version 3.22
Publication Type J
Authors Estrada, Y., A. Fernandez-Ojeda, B. Morales, J. M. Egea-Fernandez, F. B. Flores, M. C. Bolarin and I. Egea
Title Unraveling the Strategies Used by the Underexploited Amaranth Species to Confront Salt Stress: Similarities and Differences With Quinoa Species
Source Frontiers in Plant Science
Author Keywords osmotic stress ionic stress Na+ homeostasis K+ homeostasis Na+ transporter genes seed yield
Abstract Yield losses due to cultivation in saline soils is a common problem all over the world as most crop plants are glycophytes and, hence, susceptible to salt stress. The use of halophytic crops could be an interesting alternative to cope with this issue. The Amaranthaceae family comprises by far the highest proportion of salt-tolerant halophytic species. Amaranth and quinoa belong to this family, and their seeds used as pseudo-cereal grains have received much attention in recent years because of their exceptional nutritional value. While advances in the knowledge of salt tolerance mechanisms of quinoa have been remarkable in recent years, much less attention was received by amaranth, despite evidences pointing to amaranth as a promising species to be grown under salinity. In order to advance in the understanding of strategies used by amaranth to confront salt stress, we studied the comparative responses of amaranth and quinoa to salinity (100 mM NaCl) at the physiological, anatomical, and molecular levels. Amaranth was able to exhibit salt tolerance throughout its life cycle, since grain production was not affected by the saline conditions applied. The high salt tolerance of amaranth is associated with a low basal stomatal conductance due to a low number of stomata (stomatal density) and degree of stomata aperture (in adaxial surface) of leaves, which contributes to avoid leaf water loss under salt stress in a more efficient way than in quinoa. With respect to Na+ homeostasis, amaranth showed a pattern of Na+ distribution throughout the plant similar to glycophytes, with the highest accumulation found in the roots, followed by the stem and the lowest one detected in the leaves. Contrarily, quinoa exhibited a Na+ includer character with the highest accumulation detected in the shoots. Expression levels of main genes involved in Na+ homeostasis (SOS1, HKT1s, and NHX1) showed different patterns between amaranth and quinoa, with a marked higher basal expression in amaranth roots. These results highlight the important differences in the physiological and molecular responses of amaranth and quinoa when confronted with salinity.
ISSN 1664-462X
ISBN 1664-462X
29-Character Source Abbreviation Front. Plant Sci.
Publication Date Feb
Year Published 2021
Volume 12
Beginning Page 18
Digital Object Identifier (DOI) 10.3389/fpls.2021.604481
Unique Article Identifier WOS:000620988800001

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022. This database is based on an earlier work by James Aronson.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed