Loading content, please wait..
loading..
Logo
Version 3.20
or

Report for Mesembryanthemum crystallinum L.

updated: May 17th 2020, 8:50 am see all updates
Changed fields since previous approved record are highlighted


Family Aizoaceae
Genus Mesembryanthemum
Species crystallinum
Author L.
Infraspecific subsp.
Infraspecfic Author
Pictures
Plant type
  • chasmophyte
Life form
  • Annual
Ecotypes unknown
Max. salinity
800 mMAgarie, S., T. Shimoda, Y. Shimizu, K. Baumann, H. Sunagawa, A. Kondo, O. Ueno, T. Nakahara, A. Nose and J. C. Cushman (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum
Germination unknown
Salt glands and bladders YesAdams, P., J. C. Thomas, D. M. Vernon, H. J. Bohnert and R. G. Jensen (1992) Distinct Cellular and Organismic Responses to Salt StressBarkla, B. J. and R. Vera-Estrella (2015) Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinumBarkla, B. J., R. Vera-Estrella and C. Raymond (2016) Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteinsBarkla, B. J., Rhodes, T., Tran, K. N. T., Wijesinghege, C., Larkin, J. C., and Dassanayake, M. (2018) Making epidermal bladder cells bigger: developmental-and salinity-induced endopolyploidy in a model halophyte.Barkla, B. J., Rhodes, T., Tran, K. N. T., Wijesinghege, C., Larkin, J. C., and Dassanayake, M. (2018) Making epidermal bladder cells bigger: developmental-and salinity-induced endopolyploidy in a model halophyteMarius-Nicuşor Grigore, Constantin Toma (2010) Salt-secreting structures of Halophytes. An integrative approach (in Romanian)
Photosynthesis Pathway CAMGuan, Q., Tan, B., Kelley, T. M., Tian, J., and Chen, S. () Physiological Changes in Mesembryanthemum crystallinum During the C3 to CAM Transition Induced by Salt StressHe, J., Chua, E. L., and Qin, L. (2020) Drought does not induce crassulacean acid metabolism (CAM) but regulates photosynthesis and enhances nutritional quality of Mesembryanthemum crystallinum.He, J., Qin, L., Chong, E. L., Choong, T. W., and Lee, S. K. (2017) Plant growth and photosynthetic characteristics of Mesembryanthemum crystallinum grown aeroponically under different blue-and red-LEDs.Matsuoka, T., A. Onozawa, K. Sonoike and S. Kore-Eda (2018) Crassulacean Acid Metabolism Induction in Mesembryanthemum crystallinum Can Be Estimated by Non-Photochemical Quenching upon Actinic Illumination During the Dark PeriodNosek, M., Kaczmarczyk, A., Śliwa, M., Jędrzejczyk, R., Kornaś, A., Supel, P., Kaszycki, P. and Miszalski, Z. (2019) The response of a model C3/CAM intermediate semi-halophyte Mesembryanthemum crystallinum L. to elevated cadmium concentrationsPeckmann, K., C. E. Martin, D. J. von Willert and W. B. Herppich (2019) Biochemical changes in intact leaf mitochondria throughout the NaCl-induced transition from C-3 to CAM in the facultatively halophytic CAM plant Mesembryanthemum crystallinumTaybi, T., Cushman, J. C., and Borland, A. M. (2017) Leaf carbohydrates influence transcriptional and post-transcriptional regulation of nocturnal carboxylation and starch degradation in the facultative CAM plant, Mesembryanthemum crystallinum.Winter, K. and J. A. M. Holtum (2007) Environment or development? Lifetime net CO(2) exchange and control of the expression of crassulacean acid metabolism in Mesembryanthemum crystallinumYu, K., Carr, D., Anderegg, W., Tully, K., and D’Odorico, P. (2018) Response of a facultative CAM plant and its competitive relationship with a grass to changes in rainfall regime.Yu, K., D'Odorico, P., Carr, D. E., Personius, A., and Collins, S. L. (2017) The effect of nitrogen availability and water conditions on competition between a facultative CAM plant and an invasive grass.Yu, K., D’Odorico, P., Li, W., and He, Y. (2017) Effects of competition on induction of crassulacean acid metabolism in a facultative CAM plant
Molecular data
  • Gene expressionAgarie, S,, Umemoto, M,, Sunagawa, H., Anai, T., and Cushman, JC (2020) An Agrobacterium-mediated transformation via organogenesis regeneration of a facultative CAM plant, the common ice plant Mesembryanthemum crystallinum LHwang, H. H., C. H. Wang, H. H. Chen, J. F. Ho, S. F. Chi, F. C. Huang and H. E. Yen (2019) Effective Agrobacterium-mediated transformation protocols for callus and roots of halophyte ice plant (Mesembryanthemum crystallinum)Kluge, C., P. Lamkemeyer, N. Tavakoli, D. Golldack, A. Kandlbinder and K. J. Dietz (2003) cDNA cloning of 12 subunits of the V-type ATPase from Mesembryanthemum crystallinum and their expression under stressNishijima, T., M. Furuhashi, S. Sakaoka, A. Morikami and H. Tsukagoshi (2017) Ectopic expression of Mesembryanthemum crystallinum sodium transporter McHKT2 provides salt stress tolerance in Arabidopsis thalianaTran, D. Q., Konishi, A., Cushman, J. C., Morokuma, M., Toyota, M., and Agarie, S. (2020) on accumulation and expression of ion homeostasis-related genes associated with halophilism, NaCl-promoted growth in a halophyte Mesembryanthemum crystallinum L.Tsukagoshi, H., T. Suzuki, K. Nishikawa, S. Agarie, S. Ishiguro and T. Higashiyama (2015) RNA-Seq Analysis of the Response of the Halophyte, Mesembryanthemum crystallinum (Ice Plant) to High Salinity
  • TranscriptomicsBarkla, B. J., R. Vera-Estrella and C. Raymond (2016) Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteinsTsukagoshi, H., T. Suzuki, K. Nishikawa, S. Agarie, S. Ishiguro and T. Higashiyama (2015) RNA-Seq Analysis of the Response of the Halophyte, Mesembryanthemum crystallinum (Ice Plant) to High SalinityZhang, J., Wang, P., Tian, H., Tao, Z., and Guo, T. (2020) Transcriptome analysis of ice plant growth-promoting endophytic bacterium Halomonas sp. strain MC1 to identify the genes involved in salt tolerance.
  • RNAChiang, C. P., W. C. Yim, Y. H. Sun, M. Ohnishi, T. Mimura, J. C. Cushman and H. E. Yen (2016) Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings
  • MetabolomicsBarkla, B. J. and R. Vera-Estrella (2015) Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinumTran, D. Q., Konishi, A., Morokuma, M., Toyota, M., & Agarie, S. (2020) NaCl-stimulated ATP synthesis in mitochondria of a halophyte Mesembryanthemum crystallinum L.
Microbial interactions and mycorrhizal status YesMahmood, A., R. Amaya, O. C. Turgay, A. E. Yaprak, T. Taniguchi and R. Kataoka (2019) High salt tolerant plant growth promoting rhizobacteria from the common ice-plant Mesembryanthemum crystallinum LZhang, J., Wang, P., Tian, H., Jiang, H., Wang, Y., and Yan, C. (2018) Identification of interior salt-tolerant bacteria from ice plant Mesembryanthemum crystallinum and evaluation of their promoting effects
Previously was: unknown
Bioremediation YesVan Oosten, M. J. and A. Maggio (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils
antioxidants
  • DPPH scavenging activityBuhmann, A. and J. Papenbrock (2013) Biofiltering of aquaculture effluents by halophytic plants: Basic principles, current uses and future perspectivesKsouri, R., W. Megdiche, H. Falleh, N. Trabelsi, M. Boulaaba, A. Smaoui and C. Abdelly (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes
  • PolyphenolsKsouri, R., W. Megdiche, H. Falleh, N. Trabelsi, M. Boulaaba, A. Smaoui and C. Abdelly (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytesWeeplian, T., T. B. Yen and Y. S. Ho (2018) Growth, Development, and Chemical Constituents of Edible Ice Plant (Mesembryanthemum crystallinum L.) Produced under Combinations of Light-emitting Diode Lights
  • Antioxidants activity enzymesAmari, T., Souid, A., Ghabriche, R., Porrini, M., Lutts, S., Sacchi, G. A., Abdelly, C., and Ghnaya, T. (2020) Why Does the Halophyte Mesembryanthemum crystallinum Better Tolerate Ni Toxicity than Brassica juncea: Implication of Antioxidant Defense SystemsGajewska, E., Surówka, E., Kornas, A., and Kuźniak, E.  (2018) Nitrogen metabolism-related enzymes in Mesembryanthemum crystallinum after Botrytis cinerea infectionKim, Y. J., Kim, H. M., Kim, H. M., Jeong, B. R., Lee, H. J., Kim, H. J., and Hwang, S. J. (2018) Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light-emitting diodes.Libik-Konieczny, M., Kozieradzka-Kiszkurno, M., Michalec-Warzecha, Ż., Miszalski, Z., Bizan, J., and Konieczny, R. (2017) Influence of anti-and prooxidants on rhizogenesis from hypocotyls of Mesembryanthemum crystallinum L. cultured in vitroVisscher, A. M., Yeo, M., Barreiro, P. G., Stuppy, W., Frances, A. L., Di Sacco, A., Seal, C.E., and Pritchard, H. W. (2018) Dry heat exposure increases hydrogen peroxide levels and breaks physiological seed coat-imposed dormancy in Mesembryanthemum crystallinum (Aizoaceae) seeds.
Secondary Metabolites
  • FlavanolsIbdah, M., A. Krins, H. K. Seidlitz, W. Heller, D. Strack and T. Vogt (2002) Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation
  • BetacyaninIbdah, M., A. Krins, H. K. Seidlitz, W. Heller, D. Strack and T. Vogt (2002) Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation
  • PolyaminesBueno, M. and M. P. Cordovilla (2019) Polyamines in Halophytes
  • BetalainsLoconsole, D., Murillo-Amador, B., Cristiano, G., and De Lucia, B. (2019) Halophyte common ice plants: A future solution to arable land salinization
  • PhenolsAtzori, G., A. C. de Vos, M. van Rijsselberghe, P. Vignolini, J. Rozema, S. Mancuso and P. M. van Bodegom (2017) Effects of increased seawater salinity irrigation on growth and quality of the edible halophyte Mesembryanthemum crystallinum L. under field conditions
Previously was:
  • FlavanolsIbdah, M., A. Krins, H. K. Seidlitz, W. Heller, D. Strack and T. Vogt (2002) Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation
  • BetacyaninIbdah, M., A. Krins, H. K. Seidlitz, W. Heller, D. Strack and T. Vogt (2002) Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation
  • PolyaminesBueno, M. and M. P. Cordovilla (2019) Polyamines in Halophytes
  • BetalainsLoconsole, D., Murillo-Amador, B., Cristiano, G., and De Lucia, B. (2019) Halophyte common ice plants: A future solution to arable land salinization
  • Compatible Solutes
    • PinitolBarkla, B. J. and R. Vera-Estrella (2015) Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinumGil, R., M. Boscaiu, C. Lull, I. Bautista, A. Lidon and O. Vicente (2013) Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes?Ishitani, M., A. L. Majumder, A. Bornhouser, C. B. Michalowski, R. G. Jensen and H. J. Bohnert (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stressVernon, D. M. and H. J. Bohnert (1992) Increased Expression of a Myoinositol Methyl Transferase in Mesembryanthemum-Crystallinum Is Part of a Stress Response Distinct From Crassulacean Acid Metabolism Induction
    • Proline Barkla, B. J. and R. Vera-Estrella (2015) Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinumIshitani, M., A. L. Majumder, A. Bornhouser, C. B. Michalowski, R. G. Jensen and H. J. Bohnert (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stressSanada, Y., H. Ueda, K. Kuribayashi, T. Andoh, F. Hayashi, N. Tamai and K. Wada (1995) Novel light-dark change of proline levels in halophyte (Mesembryanthemum crystallinum L) and glycophytes (Hordeum vulgare L and Triticum aestivum L) leaves and roots under salt stress
    • InositolIshitani, M., A. L. Majumder, A. Bornhouser, C. B. Michalowski, R. G. Jensen and H. J. Bohnert (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stress
    Habitat
    • B3.3 Rock cliffs, ledges and shores, with angiosperms
    Economic use
    • 4850.0 Salt-tolerant ornamental
    • 4850.0 Salt-tolerant ornamental
    • 7100.0 GeneralChoi, J. H., Jo, S. G., Jung, S. K., Park, W. T., Kim, K. Y., Park, Y. W., and Park, J. H. (2017) Immunomodulatory effects of ethanol extract of germinated ice plant (Mesembryanthemum crystallinum)Nam, S., Kang, S., Kim, S., and Ko, K. (2017) Effect of fermented ice plant (Mesembryanthemum crystallinum L.) extracts against antioxidant, antidiabetic and liver protectionSeo, J. A., and Ju, J. (2019) Antioxidant and growth inhibitory activities of Mesembryanthemum crystallinum L. in HCT116 human colon cancer cells.
    Previously was:
  • 4850.0 Salt-tolerant ornamental
  • 4850.0 Salt-tolerant ornamental
  • Distribution
    Distribution (text)
    • South Africa
    • Mediterranean region [introduced]
    Miscellaneous notes Salt bladders rather than salt glands Dense salt bladders on leaves epidermis.
    References

    Last Records approved
    Submitted by T J Flowers
    Aug 3rd 2020, 5:53 am

    Approved by T J Flowers
    Aug 3rd 2020, 5:53 am
    Submitted by T J Flowers
    Aug 3rd 2020, 5:27 am

    Approved by T J Flowers
    Aug 3rd 2020, 5:34 am
    Submitted by T J Flowers
    Aug 1st 2020, 6:37 am

    Approved by T J Flowers
    Aug 1st 2020, 6:38 am
    Submitted by T J Flowers
    Aug 1st 2020, 6:17 am

    Approved by T J Flowers
    Aug 1st 2020, 6:18 am
    Submitted by T J Flowers
    Aug 1st 2020, 5:42 am

    Approved by T J Flowers
    Aug 1st 2020, 5:43 am
    LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020. This database is based on an earlier work by James Aronson.
    THIS WEBSITE AND THIS DATABASE ARE PROVIDED ON AN "AS IS" BASIS, AND YOU USE THEM AND RELY ON THEM AT YOUR OWN RISK.

    Contact email: halophytes@sussex.ac.uk
    Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed