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Abstract

We present the rags (Reference Architecture for Generation Systems) framework: a specific-

ation of an abstract Natural Language Generation (NLG) system architecture to support

sharing, re-use, comparison and evaluation of NLG technologies. We argue that the evidence

from a survey of actual NLG systems calls for a different emphasis in a reference proposal

from that seen in similar initiatives in information extraction and multimedia interfaces.

We introduce the framework itself, in particular the two-level data model that allows us to

support the complex data requirements of NLG systems in a flexible and coherent fashion,

and describe our efforts to validate the framework through a range of implementations.

1 Motivation

This paper describes an attempt to specify a reference architecture for natural

language generation systems. The field of Natural Language Generation (NLG)

is characterised by a variety of theoretical approaches, which has the effect of

fragmenting the community and reducing the bandwidth of communication. The

technology is mature enough for commercial applications to be close, and yet it is

relatively rare for NLG software and data to be reused between different researchers.

∗ This is a revised and updated version of the paper “A Reference Architecture for
Generation Systems” which appeared (in error) in Natural Language Engineering 10(3/4)
the Special Issue on Software Architectures for Language Engineering. This version should
be cited in preference to the earlier one.
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The rags (Reference Architecture for Generation Systems) project set out to exploit

the implicit agreement that does exist in the field and focus discussion on the

genuine points of theoretical disagreement with the aid of a “standard” vocabulary

and reference point. Thus rags aimed to make it easier to:

• create reusable data resources (e.g., representative inputs to algorithms,

corpora of generated texts together with their underlying representations);

• communicate data between NLG program modules written at different times

and with different assumptions, and hence allow reuse of such modules;

• allow modules (or at least their inputs and outputs) to be defined in a

relatively formal way, so that their scope and limitations may be better

understood.

In this way, applications-oriented systems development should be facilitated, stand-

ard interfaces and datasets can emerge, ideas and software can be more easily

reused, researchers can realistically specialise in particular areas and comparative

evaluation of systems and components may become possible.

For natural language understanding, there has been considerable progress in

the development of “architectures” and “infrastructures” to support application

development, standardisation and evaluation. For instance, the gate architecture

(Cunningham, Wilks and Gaizauskas 1996; Bontcheva, Tablan, Maynard and

Cunningham 2004) provides a suite of usable software modules, facilities to interface

new modules whose input and output fit the underlying model and services to aid

corpus management, statistical analysis and visualisation of results. rags attempts

to start the process for natural language generation by defining an “architecture”

for generation systems. We see below that there are interesting reasons why this has

turned out to be rather different from gate. However, we do not believe that the

current state of the art puts anyone in the position to say what the “right” NLG

architecture is: there is simply too little knowledge of the NLG process and too

much variation in the goals of creating NLG systems. Premature standardisation

would be damaging to the field and stifle theoretical diversity. And yet rags does

define an architecture. We resolve this apparent contradiction in the following ways:

• We target specifically application-oriented end-to-end generation systems,

primarily because systems like these must address all aspects of the generation

process. Additionally, a study by Reiter (1994), discussed further below,

suggested that there is some commonality to be found in such systems. We

make no claims about other types of system, although it seems likely that

many aspects of the discussion here would be relevant to a wider range of

systems.

• We define the architecture in a particularly flexible way (as described in

section 3). This means that people can “buy into” rags to varying extents.

Naturally the prospect of sharing is increased as one buys more, but it is not

an “all or nothing” decision (see section 5).

• We use the term reference architecture to refer to rags in order to emphasise

the fact that it is not a proposed standard. The existence of a considered,

well-specified reference point may be valuable not only to designers of new
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Fig. 1. Reiter and Dale’s “consensus” architecture.

systems, but also as a point of comparison for existing systems, and even as

a focus of discussion of its own deficiencies.

In the next section we discuss existing ideas about architectures for NLG and

how our proposed framework compares with similar initiatives in other areas. We

then proceed to discuss the key features of the framework itself, followed by some

of the concrete implementations that have been developed within it. We summarise

by discussing how one can use rags as it is now. Finally, we discuss the key

contributions that this work has made, look at some of the areas it does not yet

address and indicate possible future directions for the rags initiative. Further details

of the rags specification, and the software that we distribute, can be obtained from

our web site at http://mcs.open.ac.uk/rags.

2 Generic architectures for NLG

2.1 Reiter and Dale’s “consensus” architecture

Many different overall architectures have been proposed for NLG systems (De

Smedt, Horacek and Zock 1996), reflecting the range of different applications and

the different motivations for constructing systems. Hope that there could be a single,

well-specified architecture that would be adequate for many systems was raised

when Reiter (1994) suggested that many end-to-end applications-oriented NLG

systems followed the same architectural model: a simple three-stage pipeline which

could therefore be viewed as a de facto standard or “consensus” architecture. Reiter

and Dale (2000) updated and added further detail to this proposal in their NLG

textbook. The overall structure of their model is shown in Figure 1.

The first major task for the rags project, undertaken in 1998, was a comprehensive

survey of applied NLG systems in order to validate this “consensus” architecture

proposal1. We identified 19 systems2 which met the criteria of being end-to-end

1 This survey drew on Reiter’s original (Reiter 1994) formulation of the model. The later
(Reiter and Dale 2000) formulation uses slightly different terminology, which we also use
here, but for our purposes is otherwise not significantly different.

2 The systems surveyed were: Alethgen (Coch and David 1994); Ana (Kukich 1988); Caption
Generation System (Mittal, Moore, Carenini and Roth 1998); Drafter (Paris, Vander Linden,
Fischer, Hartley, Pemberton, Power and Scott 1995); Drafter2 (Scott, Power and Evans
1998); Exclass (Caldwell and Korelsky 1994); FoG (Goldberg, Driedger and Kittregde
1994); GhostWriter (Marchant, Cerbah and Mellish 1996); GIST (Power and Cavallotto
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application-oriented NLG systems, and sought to correlate their published descrip-

tions with the proposed consensus model. Initial conclusions were encouraging:

although these systems had anything from two to seven named modules, virtually all

the systems could be viewed as a pipeline architecture in which all of the modules

corresponded to one, part of one or more than one of the three “consensus” modules

(the principal exception to this model was Komet—for more details, see Cahill and

Reape (1998)). In other words, no system cut across the notion of Document Plan

and Text specification as the principal stepping stones of the generation process.

This was apparent strong confirmation of Reiter’s original insight.

However, the “consensus” model is actually more constraining than it may seem at

first sight. The intermediate data structures (Document Plan and Text Specification)

are not clearly formalised in Reiter and Dale (2000), but they are exemplified in

some detail, and effectively prescribed to be complete and of specific types (although

some variation is allowed in the contents of a Text Specification). This means that

there is almost no flexibility over the assignment of lower level generation tasks

(e.g., rhetorical structuring, lexical choice) to modules—if this is proposed as a

“consensus” architecture, then one would expect to see all systems undertaking each

of these tasks within the same module. The second step of the rags survey attempted

to validate this aspect of the model also, a more difficult task because not all systems

are described in sufficient detail to make clear judgements.

The low level generation tasks considered for this analysis were:

Lexicalisation: The choice of content words to appear in the final output text.

Aggregation: The combination of several structures (e.g., sentences) into a single,

more complex, structure.

Rhetorical structuring: The determination of rhetorical relations and their scope.

Referring expression generation: The planning of the material to be incorporated

within referring expressions (including the pronominalisation decision).

Ordering: The choice of linear ordering of the elements of the text.

Segmentation: The dividing up of information into sentences and paragraphs.

Centering/salience/theme: The tracking of salience-related properties of the text

within a discourse.

This set does not constitute an exhaustive breakdown of NLG into components,

but represents the tasks most commonly identified as independent functions within

NLG systems. In order to validate the “consensus model” at this level, we assigned

each of these tasks to the module of the consensus model in which it occurred.

Figure 2 is a graphical representation of the results of this exercise3. For each

1996); Gossip (Kittredge and Polguére 1991); HealthDoc (Hirst, DiMarco, Hovy and
Parsons 1997); Joyce (Rambow 1990); Komet (Teich and Bateman 1994); LFS (Iordanskaja,
Kittredge, Lavoie and Polguère 1992); ModelExplainer (Lavoie, Rambow and Reiter 1996);
Patent Claim Expert (Sheremetyeva, Nirenburg and Niren burg 1996); PlanDoc (McKeown,
Kukich and Shaw 1994); PostGraphe (Fasciano and Lapalme 1996); Proverb (Huang 1994).
Full details and discussion of the survey and results obtained can be found in Paiva (1998)
and Cahill and Reape (1999).

3 This figure is a re-presentation of the two tables in Cahill and Reape (1998). Where a
task was performed by user intervention, not performed at all or where its placement was
unclear, we have omitted it; however we have included placements marked as uncertain in
the original tables.
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Fig. 2. Timing of tasks in systems surveyed.

system and task, there are three positions that can be shaded, indicating that the

task is (partly or completely) performed within the corresponding module (with

the ordering Document Planner, Microplanner and Surface Realiser). For instance, in

GhostWriter, aggregation is performed in the Microplanner and salience is considered

in both the Document Planner and the Microplanner. For reference, we have included

the Reiter and Dale model as the last line of the table, even although it was not

specified in detail at the time of the survey.

For the model to be validated at this level of granularity, we would expect most

of the systems to follow the same pattern as this last line. It is quite clear from

the diagram that they do not. There is good agreement that Rhetorical Structuring

occurs in the Document Planner, but almost as strong disagreement that Segmentation

occurs in the Microplanner—most systems do it in the Document Planner. Most tasks

seem capable of appearing in any module, or across two modules, and Lexicalisation

seems to occur quite often in two disjoint phases.

Although such an exercise is always only an approximation, the message of

Figure 2 is not in the particular details but in the significant amount of diversity

that is indicated. This diversity suggests that while the Reiter and Dale model may

have captured some high level intuitions about the organisation of NLG systems, it

is too constrained to act as the basis for a formally defined functional architecture

reflecting the full range of applied NLG systems.

In summary, our conclusions about the validity of the consensus model were:

1. Many of the systems surveyed claimed or appeared to follow the three-stage

model, however, it was not possible to assign detailed functional descriptions

to the three modules that were compatible with all, or even most, systems.

2. Many of the systems had functional submodules in common (such as ‘referring

expression generation’), but the order of execution of those submodules, and

their assignment to the three stages did not form a single overall consistent

pattern.

3. There was no simple definition of the data interfaces between the proposed

consensus modules, or even the lower level functional modules, in the systems
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surveyed—most systems manipulated data at several linguistic levels in fairly

complicated ways, and ‘snapshots’ of the data at the putative interfaces did

not reveal any strong patterns of what was and what was not instantiated in

different systems.

Thus, while their proposed “consensus” model represents an important observa-

tion about the field, Reiter and Dale’s particular position about the definition and

timing of modules, as well as their assumptions about how the types of data come

together in the interfaces, although examples of good NLG system design, are too

restrictive for the general case. To be useful, the rags architecture would need to

take a more flexible position on these issues.

2.2 Requirements for the rags architecture

On reflection, perhaps the conclusions of our survey were not so surprising. Funda-

mentally, the NLG task can be thought of as a simultaneous constraint satisfaction

problem involving knowledge at several linguistic levels (De Smedt et al. 1996).

Researchers proposing novel architectures and search methods for NLG have

maintained that efficient generation of optimal texts cannot be achieved by making

choices in a predetermined order (for instance, Danlos (1984), Wanner and Hovy

(1996), Mellish, Knott, Oberlander and O’Donnell (1998)). This argues against there

being an optimal pipeline or layered approach as found in much current NL

understanding work. Greater complexity in data interaction and more variation in

order of processing might be expected, making the task of developing a reference

architecture more challenging.

Nevertheless the survey did reveal enough commonality to justify a search for

common principles, as long as the requirement for a precise architecture specification

was replaced by the pursuit of a more general framework for developing NLG

systems. Such a framework could still provide a basis for interaction between

researchers who agree on basic assumptions about their system architectures and

data structures—it would not force a particular view (as a full reference architecture

would have), but it would provide a common language for expressing and exploring

an agreed perspective. The resulting rags framework relaxes the ‘architectural’

requirement to a point where it is sufficiently inclusive of actual systems to

be relevant, yet still sufficiently restrictive to be useful. We achieved this by

characterising at a quite abstract level the data types, functional modules and

protocols for manipulating and communicating data that most modular NLG

systems seem to embody. Thus the main components of the rags proposal are:

• a high-level specification of the key (linguistic) data types that NLG systems

manipulate internally. This uses abstract type definitions to give a formal

characterisation independent of any particular implementation strategy;

• a low-level reference implementation specifying the details of a data model

flexible enough to support NLG systems. This implementation (the “Objects

and Arrows Model”) formally characterises the set of legal data representa-

tions as a set of typed directed graphs;
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Fig. 3. Structure of the rags model.

• a precise XML specification for the data types, providing a standard ‘off-line’

representation for storage and communication of data between components;

• a generic view of how processing modules can interact and combine to make

a complete NLG system, using data formats “native” to their particular

programming languages which are faithful to the high- and low-level models

and exploiting agreed instantiations of the high-level data types;

• several sample implementations to show how the development of a range of

concrete architectures can be achieved.

Figure 3 summarises the structure of the rags model and how it is intended to be

used. Different processing modules manipulate rags data using formats native to

their particular programming languages (they can, of course, manipulate other kinds

of data, but rags says nothing about how that might be communicated between

them). These formats provide implementations of the abstract type definitions and

are also in correspondance with the “objects and arrows” model, through which

they inherit a standard XML serialisation. Two communicating modules need to

agree on an instantiation of the abstract data types and can then define their

interfaces and exchange data either in an agreed native format or via the XML

offline representation.

The decoupling of the abstract from the more concrete aspects of the reference

architecture results in a ‘framework’ for developing NLG systems which allows many

possible concrete architectures—to construct an actual NLG architecture, additional

decisions about process and data flow have to be taken. This is one of the ways that

the rags architecture is unusually flexible.

2.3 Comparison with other generic architectures

The resulting model is similar in some ways to the gate architecture for information

extraction systems (Cunningham et al. 1996; Bontcheva et al. 2004). Both provide
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assistance in building an application out of modular components provided from

elsewhere, and are quite uncommitted to actual processing strategies employed

(although both include suggested functional submodules a system might typically

include). There are two key areas of difference, however:

1. In gate, data communication is achieved through incremental annotation of

the texts being analysed, so the implicit data types are strongly grounded

in textual elements; since of course NLG does not start off with a text,

rags needs a more abstract NLG-oriented repertoire of data types and

representations, with less dependence on a single common reference point.

rags thus entails taking a stronger theoretical stance, attempting to make a

substantive statement but not alienate alternative approaches.

2. gate is a concrete generic implementation platform, with specific libraries and

interfaces for application development, concentrating on high-quality support

for low-level operations. rags is a framework for specifying implementations

(plus some sample implementations), more committed functionally, but less

committed implementationally.

Both rags and gate support the building of modular systems and the comparative

evaluation of system components, but their scope is different. rags supports the

specification of a component task and the standardised representation of desired

inputs and outputs. gate does this too (with a simpler model of data), but also

provides much more direct implementation support.

gate has been very successful. In a recent user survey4, around half of those

who replied were using the system actively in research, applications development

or teaching, suggesting a continuing substantial and healthy user base. This success

encourages us to hope that something similar will be possible for NLG. However, the

success of gate relies on an existing underlying data model, the tipster architecture.

Such a model does not yet exist for NLG, so a key contribution of rags is the

attempt to specify one.

A second useful point of comparison is the ‘standard reference model’ for

intelligent multimedia presentation systems (immps) described by Bordegoni and

his colleagues (Bordegoni et al. 1997). This specifies a high level but quite concrete

architecture for an immps, drawing on a widely agreed view of what kinds of

components an immps should have and how they interact. This results in a quite

prescriptive proposal, reflecting the high degree of agreement over principles of

good high level design in this area. In contrast, rags is not prescriptive at the

architectural level, confining its attention to supporting flexible interaction among

modules, rather than specifying which modules interact and how. The model

proposed by Bordegoni and his colleagues is now a well-established reference for

describing and implementing multimedia presentation systems (e.g., see McRoy

and Ali (1999), Rutledge, Hardman, van Ossenbruggen and Bulterman (1999),

4 Approximately 5000 people who have downloaded the current version of the
system, response rate 9%, conducted in Autumn 2003—Hamish Cunningham, personal
communication.
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van Ossenbruggen, Geurts, Cornelissen, Hardman and Rutledge (2001) and Loeber,

Aroyo and Hardman (2002)).

We conclude that all these reference proposals, while similar in intent and structure,

have subtly different balances of emphasis. We can distinguish architectures accord-

ing to a number of dimensions. An architecture can be abstract (supporting design

and specification) or concrete (supporting actual implementation mechanisms). It can

be prescriptive (narrowly specifying what is possible) or flexible (allowing a range

of types of implementation). It can be oriented towards functional specification

(specifying the modules and their interactions) or data specification (specifying the

data exchanged between or held by modules). Finally, it can be task-oriented (focused

on a narrow range of systems with a well-defined task) or generic (open-ended, in

terms of what the systems are for). Figure 4 shows informally how rags, gate and

the immps model relate to these dimensions.

3 The RAGS framework

The core of the rags framework is an account of the data that NLG systems

manipulate: the rags ‘data model’. This model is a two-level description of NLG

data structures: the high level model divides NLG data into six basic types with

different linguistic roles, and specifies how they relate to each other; the low level

model specifies formally what data states can be communicated between NLG

modules in the context of the evolving specification of a text. The low level model

also provides the basis for uniform off-line representation and communication of

data between modules.

A user of the rags framework can “buy into” the framework (and existing work

using it) to varying degrees. They can, for instance, choose whether or not to:

• represent (some of) their data in ways compatible with the rags data model;

• use particular instantiations of the abstract types that are already in use;

• implement modules with functionality as specified in the set of example rags

modules, or compatible with other existing work;

• organise their modules in standard ways that emerge from previous work,

possibly using rags application components.
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The basic rags framework focuses primarily on the first of these, providing a

firm basis for the establishment of agreed approaches to the other aspects as the

framework gets used.

3.1 High level data definitions

The rags framework supports six basic data types: Conceptual, Rhetorical, Docu-

ment, Semantic, Syntactic and Quote. Of these, Syntactic and Quote are dependent

on the target language and Conceptual will often be independent of it. For the other

three, we take no position on language-dependence, although we suspect that only

(parts of) the Semantic level could be language-independent.

NLG systems are built assuming many different theories of syntax, semantics,

discourse, etc. It would be impossible for rags to produce a generally-acceptable

complete definition of representations at any of these levels as there is so much

theoretical diversity. Instead, rags defines the different levels of representation

primarily in terms of abstract type definitions which specify the components out of

which these representations are expected to be made. Here we use standard notation

from set theory to characterise the essential structure of the data, independent

of any particular implementation (a common approach in theoretical Computer

Science, although not used extensively in Computational Linguistics). The notation

used in our definitions is fully explained in the rags Reference Manual (Cahill,

Evans, Mellish, Paiva, Reape and Scott 2001b), and briefly introduced here. Thus,

for instance:

RhetRep = RhetRel × RhetRepSeq

RhetRepSeq = (RhetLeaf ∪ RhetRep)+

(from section 3.1.2, below) defines a Rhetorical Representation (RhetRep) as con-

sisting of a RhetRel (rhetorical relation) and a RhetRepSeq (sequence of RhetReps)

for the children. The latter is itself defined in terms of a sequence of one or more

elements, each of which is a RhetLeaf or a RhetRep.

The abstract type definitions “bottom out” in primitive types, which are indicated

as follows:

RhetRel ∈ Primitives

rags has nothing further to say about the type RhetRel, which is the set of rhetorical

relations. Researchers are invited to instantiate this set as they see fit according to

any theoretical position they wish to adopt. That is, rags does not specify the

subtypes of primitive types, apart from acknowledging that they may exist. Different

implementations may make different assumptions about the subtypes of primitive

types, although most effective reusability of code or data will be possible between

researchers that do agree.

All the definitions of rags datatypes are thus parameterised via these primitive

types—they define the overall format of a set of structures but do not stipulate the

exact set of values that can appear at the leaves of these structures. Users of rags
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datasets or modules need to indicate how the primitive types are instantiated as well

as how they are using the abstract types.

In addition to the abstract type definitions, we also give informal examples of the

representations in notations which suggest actual implementation possibilities5.

It is important to realise that in a sense there is nothing very novel in the following

proposals. They are intentionally anchored in existing practice, and based on detailed

study of existing theories. The significance of the rags model comes from the explicit

articulation of the distinct levels of representation and their form. We do not believe

that NLG systems are always explicit about the nature of their representations (e.g.,

whether something is semantic or syntactic), and problems arise if this is done badly

(Mellish 2000).

3.1.1 Conceptual representations

Conceptual representations encapsulate references to data ‘outside’ the NLG

system—typically information provided as the generator’s input. These are not

semantic representations: they may have no simple relation to linguistic decisions

and they are assumed not to be created or altered by the NLG system.

For conceptual representations, there is a single primitive type KBId (“knowledge

base identifier”). rags specifies how an NLG system can interrogate such data to

find out about the outside world, using functions such as:

kb subsumed by : KBId × SemPred → Bool ∪ {Unknown}
kb role values : SemRole × KBId → 2KBId ∪ {Unknown}

kb types : KBId → 2SemPred

kb roles with values : KBId → 2SemRole

where SemPred and SemRole are the predicates and roles used in semantic repres-

entations. The functions shown here are for telling whether a KBId is subsumed by

a given semantic type, what the values of a given semantic role for a KBId are, what

semantic types a KBId has, and what semantic roles it has values for.

Although conceptual entities may have no simple linguistic interpretation, they

nevertheless have to be related to linguistic concepts in order that an NLG system

can handle them. This is why the above functions are expressed in terms of semantic

predicates, roles, etc., rather than a separate conceptual vocabulary. The rags API

for KBIds is very close to the abstract interface between the penman system (Mann

1983) and its knowledge base, and it could be implemented via an Upper Model

(Bateman 1990). The specification of this API is also compatible with the view that

an NLG system’s interaction with an external knowledge source should be through a

controlled interface that provides some protection from deficiencies and irregularities

in the underlying data (Reiter and Robertson 1999). Reiter and Dale (2000) discuss

the elements of a domain model in terms of entities, attributes, relationships and

5
rags endorses no specific notations apart from the XML interchange format described in
section 3.4.



12 C. Mellish et al.  
  

Blow your nose so that it is clear. 

Wash your hands

Unscrew the top. Then draw the liquid into the dropper. 

Tilt your head back

Hold the dropper above your nose. Then put the drops into your nostril.

The dropper must not touch the inside.

Keep your head tilted back for two to three minutes so that the drops run to the back.

Replace the top on the bottle

Generated by RICHES version 1.0 (9/5/2001) on 9/5/2001 
©2001, ITRI, University of Brighton 

Fig. 5. Sample instructions from the riches system (Cahill, Carroll, Evans, Paiva, Power,

Scott and van Deemter 2001a).

classes (in a hierarchical taxonomy). The above API permits easy querying of such

a domain (assuming that relationships are reified). However, Reiter and Dale differ

from rags in asserting that the predicates, roles etc. are actually part of the domain,

rather than part of a language-oriented view of the domain.

In general, principles of content determination in NLG may be very domain-

dependent, and so a framework like rags can say little about them. Some aspects

of content determination are, however, involved in the implementation of KBIds.

3.1.2 Rhetorical representations

Rhetorical representations define how propositions (in rags, SemReps—see section

3.1.4) within a text are related. For example, the first sentence of the text in Figure 5,

“Blow your nose, so that it is clear”, generated by the riches system (Cahill et al.

2001a), can be considered to consist of two propositions: blow your nose and your

nose is clear, connected by a relation like MOTIVATION.

Following Scott and Souza (1990) and Power, Scott and Bouayad-Agha (2003),

rhetorical representations differ from document representations (section 3.1.3) in that

they define the underlying rhetorical relations between parts of a discourse, without

specifying anything about how the relations may be realised. Whereas document

representations define features such as linear ordering and page layout, rhetorical

representations define what may be termed the pragmatic relations.

The type definitions for rhetorical representations are as follows:

RhetRep = RhetRel × RhetRepSeq

RhetRepSeq = (RhetLeaf ∪ RhetRep)+

RhetRel, RhetLeaf ∈ Primitives
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Thus a rhetorical representation (RhetRep) is a tree whose internal nodes are labelled

with relations (RhetRel), and whose leaves are atomic rhetorical nodes (RhetLeaf,

which, as we will see in section 3.2, can, for instance, be thought of as pointers to

conceptual or semantic content).

An example of a simple rhetorical representation is shown informally in Figure 6.

Here there is a single RhetRep containing a sequence of two RhetLeaf s (associated

with semantic content, which is not strictly part of the RhetRep itself). The RhetRel

for the RhetRep has the subtype MOTIVATION, a theory-specific relation.

The significance of the positions of the subtrees is not specified for the rags

representation in general, because it is theory-specific. Theory-specific definitions

of relations therefore specify the role of their daughters. For example, an imple-

mentation of Rhetorical Structure Theory (Mann and Thompson 1988) would need

to specify that, for example, the first daughter of the MOTIVATION relation is the

“nucleus” and the second the “satellite”; were the relation instead CONTRAST, it

would specify that the second was another “nucleus”. Similarly, an implementation

based on the discourse theory of Moser and Moore (1996) would need to specify

that, for example, the first daughter of MOTIVATION is the “core” and the second the

“contributor”, but that the daughters of a CAUSE relation carried no such designation.

Following the prevailing computational theories of discourse structure (e.g., Grosz

and Sidner (1986), Mann and Thompson (1988) and Hobbs (1985)) the rags

architecture assumes that the rhetorical structure of a discourse is hierarchical.

Our data-specification presupposes the use of trees with relations at the nodes and

content at the leaves. The trees are defined in a very general way, with the subtypes

of RhetRel open to definition in potentially different ways.

Reiter and Dale’s document plans are equivalent to rags RhetReps, except that

the former also convey information about surface order. In rags, surface ordering

is specified in the document structure, following the tenets of Document Structure

Theory (Power et al., 2003).

3.1.3 Document representations

Document representations encode information about the graphical presentation

of a document, such as its organisation into abstract textual units (paragraph,

orthographic sentence, etc.), their relative positions, and layout (indentation, bullet

lists etc.). It is likely that a notion of document representation also makes sense for

spoken language, although this remains to be established.
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MARKER: "so that"

TEXT−LEVEL: text−sentence
INDENTATON: 0
POSITION:  1

MARKER:  nil

POSITION: ?
MARKER: nil

MARKER:  nil

MARKER: nil

TEXT−LEVEL:  paragraph
INDENTATION: 0

TEXT−LEVEL: quote

POSITION: 2
INDENTATION:  0

Sem: "figs/noseblow.eps"

INDENTATION:  0
TEXT−LEVEL: text−clause

Sem: "patient’s nose is clear"

POSITION:  2
INDENTATION:  0
POSITION: 1

TEXT−LEVEL: text−clause

Sem: "patient blow patient’s nose"

Fig. 7. Example document representation (informal).

The type definitions for document representations are as follows:

DocRep = DocAttr × DocRepSeq

DocRepSeq = (DocLeaf ∪ DocRep)++

DocLeaf = DocAttr1

DocAttr = (DocFeat → DocAtom)

DocFeat, DocAtom,DocLeaf ∈ Primitives

A document representation (DocRep) can thus be thought of as a tree with no

unary branches and feature structures at its nodes (both internal and leaf nodes).

A feature structure (DocAttr) consists of features with atomic values. There are no

constraints on the features or the sets of values which may be defined. In a way that

parallels rhetorical and semantic representations, document leaf representations are

often associated with syntactic representations (section 3.2).

An example simple document representation is shown in Figure 7, which represents

the first paragraph of Figure 5. Here there is a single DocRep containing a sequence

of two structures at the top level, representing the text and picture; the text is further

decomposed into another sequence (mirroring the example RhetRep in Figure 6).

Each of these has an associated DocAttr which provides a mapping from DocFeats

to DocAtoms. The DocFeats used are text-level, indentation, position and

marker, with appropriate values. Different theories might use a different repertoire

here.



Reference Architecture for NLG Systems 15

Following Power et al. (2003), rags distinguishes between abstract and concrete

document structure. Abstract structural properties (e.g., paragraph, text-sentence,

text-clause) may be realised concretely in different ways according to different

conventions. For example, a paragraph may be expressed by a number of devices,

including a new line with a tab, or two new lines (or some other vertical space)

with no tab. Similarly, text-clauses may be realised with a semi-colon, a full-stop

(if it were text-sentence final), or with no distinguishing punctuation (if it were an

item in a bulleted list). None of these choices affect wording, as could the choice

of a different abstract document category. We thus consider the specification of

paragraph, text-sentence and text-clause to be part of abstract DocRep and the

specification of the style of paragraph break to be part of concrete DocRep. We do

not cover the concrete level of representation in rags.

There is relatively little previous work that addresses these issues in the context of

language generation, although Reiter and Dale’s Text Specifications can be loosely

thought of as document structures with various kinds of leaves. Our proposals

for this level are largely based on our own experiences of representing document

structure in the generation process. The theoretical foundations of this level of

representation are described in detail in Power et al. (2003).

3.1.4 Semantic representations

Semantic representations specify information about the meaning of individual pro-

positions. By “semantic information” we mean propositional content, or “ideational

meaning” in the terminology of systemic grammar (e.g., see Halliday (1994)).

Semantic representations are representations of linguistic meaning structured in

terms of lexical semantic predicates and semantic (i.e., thematic) roles. They contrast

with syntactic representations, which are structured in terms of lexical heads and

grammatical functions or relations. Lexical semantic predicates are intended to be

sufficiently abstracted from surface forms that the mapping from configurations of

them to actual lexical items of a language could be non-trivial. Indeed, it might be

possible to create semantic representations that are language-independent, although

we do not take a position on this.

The type definitions for semantic representations are as follows:

SemRep = DR × SemType × SemAttr

ScopedSemRep = DR × SemType × SemAttr × Scoping

SemType = 2SemPred − φ

SemAttr = SemRole →
(SemRep ∪ ScopedSemRep ∪ DR ∪ SemConstant)

Scoping = ScopeConstr∗

ScopeConstr = ScopeRel × DR × DR

DR, SemConstant ∈ Primitives

SemPred, ScopeRel ∈ Primitives

SemRole ∈ Primitives
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(h1 / sneeze

:actor (h2 / person :quant (h3 / every))

:time past

:polarity (h4 / negative)

)

Fig. 8. Example semantic representation (informal).

A semantic representation (SemRep) thus consists of a DR (discourse referent), a

non-empty set of predicates (interpreted as a conjunction) and values for semantic

roles (SemRole)6. Semantic roles can be filled by discourse referents, constants

or other semantic representations (scoped or unscoped). Constants (SemConstant)

logically correspond to names of individuals whereas DRs are logical variables.

That leaves only ScopedSemReps to explain and describe. (Complex) semantic

representations (at every level) can include scoping information or not. The extra

Scoping component of a scoped semantic representation is intended to express

constraints on how subparts of that representation relate to others in terms of

scope. Quantifier scope can be arbitrarily specified or left unspecified altogether in

which case the fourth component of the ScopedSemRep is empty.

An example simple semantic representation of ‘everybody didn’t sneeze’ is shown

informally in an SPL-like notation in Figure 8. The notation here shows a SemRep as

a list consisting of the DR, a fixed separator “/”, the SemPreds and then alternating

SemRoles and their values. Here the main SemRep has a DR "h1" and a single

predicate (rags allows a set) sneeze. Its SemAttr is a mapping from two semantic

roles (SemRole) to values. The value associated with the SemRole actor has its own

non-trivial SemAttr with a value for the SemRole quant. In the example, the relative

scope of the every and negative is left unspecified. One possible ScopedSemRep

would combine the above with something like:

{h3 < h4}

indicating that the negative is intended to outscope the every (it is not the

case that every person sneezed). Here the ScopeRel < indicates inclusion of scope.

The representation of the quantifiers as complete SemReps above (unlike the time

information) enables such constraints to be stated.

Approaches to “flat” semantic representations for NLG (e.g., Kay (1996), Copes-

take, Flickinger, Sag and Pollard (1999) and Stone, Doran, Webber, Bleam and

Palmer (2001)) would probably choose to represent the above content as a set of

SemReps. An MRS7 representation of the above (without scope being specified)

might, for instance look like:

< h0, {h4 : not(X), h3 : every(x, h2, Y ), h2 : person(x),

h1 : sneeze(x), h5 : past(h1)}, {} >

6 We intend “discourse referent” here in the sense of Discourse Representation Theory
(Kamp and Reyle 1993), that is, as a variable which denotes an individual (entity) or a set,
group or collection of individuals (entities). Such variables are used in a range of semantic
formalisms, e.g., SPL, the Sentence Planning Language (Kasper 1989). Theories that do
not use such variables can simply omit the DRs in rags SemReps.

7 Minimal Recursion Semantics, as introduced in Copestake et al. (1999).
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In this case, each of the “elementary predications” can be thought of as a SemRep,

with a DR (the “handle”, indicated by the name before the “:”), a predicate and

semantic roles given by SemRoles 1, 2 and 3. Here we have indicated the handles

whose relation to others is ambiguous by X and Y. To indicate the scoping relations

precisely or partially, these ambiguous handles could be replaced by specific other

handles (e.g., replacing X and Y by h3 and h5 would give the same scoped reading

as above). Alternatively, MRS allows explicit statement of constraints on scope

relations (e.g., h0 =q h5) in a way that corresponds directly to the rags approach.

The subtypes used for discourse referents, predicates and roles in such examples

are, of course, theory-dependent. This means (as with any other uses of rags

primitives) that two modules exchanging SemReps need to have an agreement on

(the relevant parts of) their respective semantic vocabularies, or at least a way of

translating between them.

Semantic representations used in NLG tend to use complex term representations

for proposition arguments instead of having explicit quantifiers (Creaney 1996), (akin

to the “quasi logical forms” of Alshawi (Alshawi 1982) or the wffs discussed by

Hobbs and Shieber (1987)). This permits, for instance, referring expression generation

to produce a single complex formula suitable for substituting into a proposition. On

the other hand, it is a weakness of such representations that quantifier scope cannot

be indicated or respected. The rags semantic representations are based primarily

on SPL, ESPL (Vander Linden 1994) and Zeevat’s Indexed Language (InL) (Zeevat

1991). However, we allow quantifier scope (optionally) to be specified using ideas

from Underspecification Discourse Representation Theory (UDRT) (Reyle 1995;

Frank and Reyle 1995)8.

Reiter and Dale use what rags would call SemReps in two places. Firstly, the

leaves of their Document Plans (“messages”) are flat predicate-argument structures

with links to conceptual objects (see section 3.3.2). However, in these, Reiter and

Dale think of the predicates, roles etc. as elements of the domain, rather than

true semantic representations. Secondly, the leaves of their Text Specifications can

be skeletal propositions or meaning specifications, which are flat (incomplete) and

nested (including representations for referring expressions) SemReps respectively. If

one wished to distinguish between two such uses in rags, this could be done by

partitioning the sets of SemPreds etc. into those that are specific to the domain

and those that are more general. One might, for instance, claim that the former are

language independent but not the latter.

3.1.5 Syntactic representations

Syntactic representations are mainly for specifying the input to realisers which are

based on some notion of abstract syntactic structure which does not encode surface

constituency or word order.

8 UDRT allows an unscoped representation to consist of a set of components, together with
a partial order that determines how components may nest inside one another.
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blow [class:verb mode:imperative]

(I you [class:pronoun]

II nose [class:common-noun number:sing]

(ATTR you [class:pronoun case:genitive]))

Fig. 9. Example syntactic representation (informal).

The type definitions for syntactic representations are as follows:

SynRep = FVM × (SynRep ∪ Nil) × SynArg × Adj

FVM = SynFeat → (SynAtom ∪ FVM)

SynArg = SynFun → SynRep

Adj = SynRep∗

Nil, SynFun, SynFeat, SynAtom ∈ Primitives

A (non-atomic) SynRep is thus a tuple 〈Head, Spec,Args,Adjs〉 where Head is a

feature-value matrix, Spec is the SynRep of the specifier of Head, Args is a function

from grammatical functions to argument SynReps and Adjs is a tuple of adjunct

SynReps. It is a tuple and not a set to accomodate those theories in which order of

adjunction or modification is significant9.

The atomic unit of abstract syntactic representations is simply a feature-value

matrix, FVM, of the usual kind in syntactic models (Cf. Shieber (Shieber 1986))10.

We envisage that such FVMs might contain four main types of information:

(a) morpholexical class (part of speech and other “syntactic” information usually

described as head features, see Gazdar, Klein, Pullum and and Sag (1985), and Pollard

and Sag (1987, 1994)), (b) morphological markup suitable for input to inflectional

morphology (e.g., “third person”, “plural”), (c) root, stem and orthography and

(d) other information for controlling realisation (e.g., “active”, “passive”). Although

these FVMs basically fulfil the role of lexemes in Meaning Text Theory (MTT)

(Mel’c̆uk 1988), we nonetheless recognise that practical systems will include extra

realisation control information in these FVMs to choose amongst multiple possible

realisations.

An example of a simple syntactic representation (for “blow your nose”) is shown

informally in Figure 9, using a syntax similar to that used for the DSyntS input

to realpro (Lavoie and Rambow 1997). Here a SynRep is indicated by a sequence

of two or three items. The first two items indicate the FVM by giving the value

of a special SynFeat (perhaps named root or lex) followed by the other features

and values. The final (optional) element of the sequence gives the values of the

syntactic functions, adjuncts and specifiers (in any order, distinguished by their role

9 All of the terms “head”, “specifier”, “argument” and “adjunct” are, of course, subject
to theory-dependent interpretation. We believe that there is enough structure here to
accommodate most modern syntactic theories. Many theories will decide not to use parts
of this structure, for instance avoiding the use of specifiers or avoiding any distinction
between adjuncts and arguments.

10 Since it is a partial function from SynFeats, the number of elements in a FVM is limited to
the number of SynFeats in the particular instantiation being used.



Reference Architecture for NLG Systems 19

names). Here the MTT relations I and II have been used for SynFuns (subject and

object) and ATTR has been used for general adjuncts (Adj). In the example, there is a

main SynRep (“blow your nose”) and two subsidiary SynReps corresponding to the

subject (unexpressed “you”) and object (“your nose”). The latter has a non-empty

specifier (another SynRep) corresponding to a genitive pronoun. In this case, a

specifier such as “your” has been treated as a kind of adjunct, although one could

have distinguished it specially through the use of a different role name. Note that

this example contains exactly the information in a rags SynRep, even although the

organisation of this material is perhaps different from what one would first think

of, given the abstract type definitions.

SynRep is based on the D-structure of GB (Chomsky 1981), the functional struc-

ture of LFG (Bresnan 1982), the arg(ument)-st(ructure) of HPSG(4) (Manning

and Sag 1999), Meteer’s Text Structure (Meteer 1992) and the D(eep) Synt(actic)

R(epresentation)s of MTT (Mel’c̆uk 1988). They correspond to the “abstract syntax”

used in leaves of Reiter and Dale’s Text Specifications.

3.1.6 Quote representations

Quote representations allow for the referencing of fixed pieces of output (speech,

text, graphics) which are being considered for direct inclusion into the output of

the NLG system. Quote only refers to canned material ready for the “output” stage

of generation. Other kinds of canned material (e.g., canned syntactic or semantic

representations) can be represented by the other levels without any changes—in

general, we understand “canned” to mean simply that a complex representation has

been retrieved as a single item rather than constructed from first-principles.

Since rags has nothing to say about the internal structure of a quote (and the

NLG system will not in general consider it to have any), Quote is a Primitive

type:

Quote ∈ Primitives

It could be argued that when an NLG system uses a piece of fixed output there is

no need to represent this apart from actually producing this output. However, when

output is assembled from a mixture of fixed and generated material, it is useful for a

system to be able to represent where the fixed material is to appear. A template, for

instance, can be viewed as a mixed representation with some fixed parts and some

other parts that will be filled in “from first principles”.

For the case of fixed text, Quotes correspond to the orthographic strings of Reiter

and Dale. That is, they are outputs that will undergo no further processing.

3.2 Low level objects and arrows model

The high level data types characterise data structures which are plausible linguistic

‘objects’. However, the flexible creation and manipulation of data by NLG systems

places extra demands on what should be allowed (Mellish, Evans, Cahill, Doran,

Paiva, Reape, Scott and Tipper 2000):
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• structures may exist at different levels of specificity—an underspecified

structure might still be ‘complete’ enough to be part of a module’s results;

• implementations (particularly in syntactic representations) need to allow

reentrancy—making a distinction between substructures that are type vs

token identical;

• structures may be ‘mixed’—that is a complex consisting of data of more

than one type may be treated as a single ‘object’. For instance, a number of

linguistic theories make use of “signs” which combine information at several

levels (semantic, syntactic, phonological).

To express a position on issues such as these, it is necessary for rags to specify

more than the abstract type definitions. Otherwise attempts to share data may

founder because of differences in assumptions at an implementation level.

The ‘objects and arrows’ model is a “reference implementation” of the abstract

type definitions which defines in a formal way what possible data configurations

are allowed11. It “implements” rags data as typed directed graphs (which need not

be rooted), for instance as used in Computational Linguistics by systems such as

TFS (Emele and Zajac 1990). The purpose of this mathematical characterisation is

to allow a precise recursive definition of the legal information states (Cahill et al.

2001b; Mellish and Evans 2004). The importance of the objects and arrows model

lies not in the raw material used but in its ability formally to define a low-level

model of data that caters for the above NLG requirements. An implementation of

the rags data model is faithful just in case its set of possible data configurations

corresponds exactly to those of the objects and arrows model.

In the objects and arrows model, the typed nodes are called “objects” and the

edges “arrows”. Edges are in fact divided into two types: “local arrows” indicate the

relationship between an object and one of its components and “non-local arrows”

link together objects at different levels to make mixed representations. For local

arrows, the label el is used to indicate components of sets and functions, and

labels of the form n-el (n an integer) are used to indicate components of fixed-size

tuples and sequences. For non-local arrows, there is an extendable repertoire of

labels indicating possible relationships between the linked objects (e.g., realised by

indicates the relation between two objects representing the same linguistic entity but

at different stages in the generation process).

Figure 10 shows how the objects and arrows model would treat the example

rhetorical representation of Figure 6. In this example there are non-local arrows

between the RhetLeaf s and the corresponding SemReps, indicated by dotted lines

with label refers to. The SemReps in this example are underspecified (they could

mark places where another module is expected to add content, for instance).

Although this model can be interpreted as a direct specification of how to

implement rags data (and we have produced implementations of this kind), its

main role in the framework is to characterise the set of legal rags datasets. As

11 The name ‘objects and arrows’ model is perhaps not optimal, as it refers to the syntax of
the model, rather than its role in RAGS. However, we retain the name for compatibility
with our other publications.
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2−el

1−el 2−el

refers_to refers_to

SemRep SemRep

closed
RhetRel − MOTIVATION

1−el

RhetRep

RhetRepSeq

RhetLeaf RhetLeaf

Fig. 10. “Objects and arrows” version of a rhetorical representation.

long as an implementation produces results that are in one-to-one correspondance

with objects and arrows configurations (i.e., it preserves the exact set of distinctions

that the objects and arrows model does) then those results are valid rags data (and

can, for instance, be mapped in an information-preserving way into the rags XML

format).

3.3 Examples of complex rags data

In this section we give an indication of how a variety of complex representations can

be created by mixing the basic elements of the rags representations. For precision,

we show these examples through graphs built according to the objects and arrows

model. Real implementations may, of course, make use of arbitrary native formats

that are in correspondance with the graphs.

3.3.1 Mixed structures

Mixed structures are data objects which include components of more than one

high level data type, for example, semantic and syntactic representations. Such

mixed representations are endemic in NLG systems because the more abstract levels

provide the glue to hold the more concrete representations together, particularly

above the sentence level. In the rags Objects and Arrows Model, ‘local’ structures

(connected networks of local arrows) represent instances of a single high level data

type and non-local arrows link them together into larger, mixed structures.

The most generic non-local arrow is refers to, as used in Figure 10. It allows one

local structure to include a semantically netural reference to another local structure.

In figure 10 each RhetLeaf is associated with a (completely underspecified) SemRep,

but no particular semantic role for the SemRep is implied, beyond being the SemRep

associated with this particular RhetLeaf. A similar relationship holds in document

structures, between DocLeaf objects and their associated SynReps.

A less neutral non-local relationship is provided by the realised by arrow.

realised by also links local structure together into mixed structures, but carries
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1−el
2−el

3−el

closed

closed

SemPred − EAT

el
el

SemRole x ...

1−el 2−el

el

KBId − E76213

KBId − E134912

realised_by

realised_by

SemRep

DR SemType

SemAttr

SemRep

SemRole x ...

1−el 2−el

SemRepSemRole − AGENT
SemRole − PATIENT

Fig. 11. Mixture of conceptual and semantic representations.

with it the implication that the object at the end of the arrow is a ‘realisation’ of

the object at the beginning, that is that it is closer to the concrete output form.

Typically in an NLG system one might expect to find KBId objects realised by

SemRep objects which are realised by SynRep objects which may be realised by

Quote objects. Examples of such links can be seen in Figures 11, 12 and 13.

3.3.2 Partial structures

During NLG processing it is often useful to refer to (high level) data objects which

are not yet completely determined. In RAGS this is achieved through the use of

underspecified high level representations. The mapping from high level data to

objects and arrows defines the granularity of underspecification allowed: objects and

arrows structures are always fully specified, but may represent only part of a high

level structure, simply by leaving out parts of the complete network. This is similar in

effect to underspecification of, say Prolog terms, although the granularity is slightly

different—in RAGS it is possible to underspecify the number of arguments in a

term, for example.

For example, during the top-down development of a semantic representation,

it may be useful to create placeholders for semantic subcomponents so that their

relationship with conceptual structure can be recorded, but before their full semantic

specification has been decided. Figure 11 shows how this can be captured via a mixed,

partial representation.

Here the top level of semantic representation, representing the predicate ‘EAT’ is in

place, complete with a specification of its semantic roles, ‘AGENT’ and ‘PATIENT’.

The fillers for those roles, however, are completely underspecified SemReps, included

so that they can be the target of realised by arrows for their corresponding KBIds—

the conceptual agent and patient of the eating event.

In terms of Reiter and Dale (2000), such mixed conceptual/semantic represent-

ations correspond to the notion of a message, and when combined with the leaves

of rhetorical representations, as shown in figure 10, the result corresponds to a

document plan.
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Quote − EVERY COW Quote − GRASS

1−el
2−el

3−el

closed

closed

SemPred − EAT

el
el

SemRole x ... SemRole x ...

1−el 2−el 1−el 2−el

el

realised_by

SemRep

SemAttr

DR SemType

SynRep SynRep

SemRep

realised_by

realised_by

realised_by

Semrole − AGENT Semrole − PATIENT
SemRep

Fig. 12. Mixture of semantic and quote representations.

3.3.3 Quote representations

Figure 12 shows an example of the use of Quote representations. Quote objects allow

the system to manipulate fragments of output directly, for example pictures, or actual

orthographic words and word strings. The figure shows a semantic representation

where two role fillers are associated with quoted literal strings to realise them. In

this example, the semantic content of the role fillers is probably irrelevant (and not

worth further determining if it is partial), as the existence of the realised by arrows

represents a strong suggestion to use fixed phrases instead of following a more

first-principles approach through syntax.

Quoted material can be directly related to rhetorical structure (e.g., discourse

marker expressions) and document structure (e.g., pictures, bullets) as well as

syntactic and semantics representations. Such mixed representations are similar

to proposals in, for instance, Reiter, Mellish and Levine (1992), Busemann and

Horacek (1998) and Pianta and Tovena (1999).

3.3.4 Specifying the input to a sentence realiser

As a final example we illustrate how the rags framework is flexible enough

to represent structures required by the commonly used fuf/surge realisation

system (Elhadad and Robin 1992). Figure 13 shows a mixed semantic/syntactic

representation akin to the input to fuf/surge for the sentence “this item is made

from chrome”, and similar to the input for a number of other recent sentence

realisers (e.g., yag (Channarukul, McRoy and Ali 2000), halogen (Langkilde-Geary

2002) and amalgam (Corston-OIiver, Gamon, Ringger and Moore 2002)).

Here the overall structure of a clause is described mainly at a semantic level, alth-

though some syntactic information is also provided. The semantic participants, how-

ever, are described only in terms of their syntactic properties—they are completely
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SemType

SemRep
2−el 3−el

SemAttr

el

SemRole − CREATED SemRole − FROM−LOC
SemRep SemRep

1−el
2−el

1−el

2−el

SynRep

el
MATERIAL

AGENTIVE

CAT

CLAUSE

LEX

make

VOICE

PASSIVE

1−el

realised_by

el

FVM

CAT

COMMON

LEX

item

FVM

SynRep

1−el

el
CAT

COMMON

LEX

FVM

SynRep

1−el

el

chrome

realised_by realised_by

el

Fig. 13. FUF/SURGE-style mixed representation.

underspecified semantically (or more precisely, the fuf/surge engine has no interest

in any semantic specification they may have). In an implementation, this might

correspond to a single input structure such as:

((CAT CLAUSE)

(PROCESS

((TYPE MATERIAL) (EVENT-TYPE AGENTIVE)

(LEX "make") (VOICE PASSIVE)))

(PARTIC ((CREATED ((CAT COMMON) (LEX "item")))))

(CIRCUM

((FROM-LOC

((CAT COMMON) (LEX "chrome") (DEFINITE NO) (COUNTABLE NO))))))

3.4 Off-line data representation—the XML interface

An important part of any initiative to support sharing of data resources is a clear

specification of how those resources should be stored off-line. rags uses a plain

text representation using XML markup. As well as supporting easy storage and

distribution of data on any platform, XML supports manual or automatic creation

and editing of resources and provides a universal language for communication

between rags modules via text streams where no more tightly coupled protocols

exist.

The XML representation is described fully in Cahill et al. (2001b). The represent-

ation of a rags dataset echoes directly its objects and arrows form.
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Table 1. Possible modules for operations which frequently arise in NLG systems

Module Description Primary input Output

CON Content selection KBId
RHET Rhetorical structuring KBId RhetRep
DOC Document structuring RhetRep DocRep
AGG Aggregation * *
LEX First stage of lexicalisation KBId SemRep
TLC True lexical choice SemRep SynRep
REG Referring expression generation KBId SemRep/SynRep
REAL Surface realisation SynRep Quote

3.5 Processing issues

The data model introduced above is the most significant and constraining part of

the rags framework. This is because the rags survey revealed insufficient consensus

on processing matters to draw strong conclusions. Nevertheless rags makes two

contributions with respect to processing issues in NLG systems.

Firstly, it is our belief that smaller modules based on linguistic functions are

more likely to be definable in an agreed way within the rags framework than larger

structural components (e.g., text planning). Our survey identified a list of possible

modules for operations which frequently arise in NLG systems, but following the

analysis of these functions within actual systems, and the detailed development of

the data model, the following table gives a refined list of functional modules that

look promising for further definition and sharing/reusability between systems (see

Table 1).

In this list, lexical choice has been divided into two stages (c.f. the discussion

of lexicalisation in Figure 2), the first corresponding to an initial decision about

(possibly language-independent) linguistic content and the second choosing a par-

ticular word/phrase of the target language, taking into account for instance stylistic

features (see Cahill (1998) for further discussion of such distinctions).

The possible scheduling of modules is, of course, constrained by their respective

inputs and outputs. Thus, for instance, “true lexical choice” cannot take place before

SemReps are available (possibly through the action of the first stage of lexicalisation

or referring expression generation).

Secondly, in our own implementations we have actively explored possible pro-

cessing/scheduling regimes for modules. Although rags is deliberately not pre-

scriptive about how communication between modules should be achieved, several

of our own implementations are constructed around an event-driven blackboard

architecture, where modules communicate objects and arrows structures via shared

blackboards, generating and responding to ‘publication’ events12. Such an architec-

ture can be configured to produce almost any desired control strategy (including

pipelining, parallel processing on multiple machines etc.) and has already been

12 This idea is discussed in greater detail in the context of the riches system (Cahill et al.
2001a).
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motivated for NLG work (Nirenburg, Lesser and Nyber 1989; Wanner and Hovy

1996). We have also explored interfacing modules where data is not shared but is

transported directly between modules when it is required.

4 Implementations

Throughout the development of the framework, we also undertook more concrete

implementation projects, to ensure that our ideas remained practically grounded

and to demonstrate the applicability of the framework in both existing and new

NLG application contexts. The later implementations will also serve as the basis for

supporting ongoing development of new rags applications and resources.

4.1 CGS reconstruction

The first implementation project was a reconstruction of the Caption Generation

System (cgs) (Mittal et al. 1998). This reconstruction is described in detail in Cahill

et al. (2001a). Its main purpose was to demonstrate the applicability of the rags

approach to a real, non-trivial and independently developed NLG system. The

overall architecture of cgs, and the way it manipulated and developed data, was

recast in rags terms and small-scale implementations of the modules (sufficient for

just a few examples) were developed.

This experience showed that analysis of an existing NLG system in rags terms was

possible and gave useful insights into the system’s behaviour. It also demonstrated

the value of all aspects of the data model: the division of data into linguistic

layers, the manipulation of partial and mixed structures, and the use of a common

low level framework to support inter-module communication and scheduling in a

uniform fashion. None of the inter-module interfaces of cgs turned out to use a

single level of representation from rags, but all could be modelled appropriately

using the facilities to create partial and mixed structures.

4.2 ILEX and RAGSOCKS

Two further implementation projects were based on the ilex system developed

at Edinburgh (O’Donnell, Knott, Mellish and Oberlander 2001). The first project

concentrated on formalising the major interface within a reimplementation, exprimo,

of the system, that between the text planner and the realiser. In exprimo, it is possible

to produce a file containing an XML version of the input to the realiser and then

to read that file back into the realiser to accomplish realisation. The “ragsification”

of the interface was accomplished by writing two XSL mappings, one from the

Exprimo XML format to rags XML format and other in the reverse direction.

The other ilex-related project involved building a system broadly comparable

to ilex by putting together several new modules implemented in LISP, Prolog and

Java, as well as an existing stochastic text planner and the fuf/Surge realisation

system (Elhadad and Robin 1992). This implementation allowed us to experiment

with scheduling modules with point-to-point communication using sockets and to
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develop general code for translating from native LISP, Java and Prolog data formats

into rags XML (and vice versa). This support code is available as the “ragsocks”

package from our website. The resulting system allows interesting datasets to be

created and provides examples of packaging existing modules for use in a rags-based

system.

4.3 RICHES and OASYS

The final implementation activity involved the implementation of a completely new

NLG system, riches (Cahill et al. 2001a), based on the rags framework. Our goals

here were to develop an architecture unconstrained by a prior implementation and to

further develop our ideas about, and support for, inter-module communication and

scheduling. The modules of riches were in fact not all new—we re-used modules

from the cgs implementation and the iconoclast system (Bouayad-Agha, Scott

and Power 2000; Power et al. 2003 ), as well as the LinGo sentence realiser (Carroll,

Copestake, Flickinger and Poznanski 1999)—but their organisation was, and the

application manager, oasys, was a completely new implementation, extending the

ideas used in the cgs system. In addition, riches included a medium selection

module that selected and inserted pictures into a document as representations of

semantic content.

This implementation demonstrated the rags framework’s ability to support more

complex, non-pipelined architectures in an effective combination of re-used and

new modules. It also showed that it was possible to experiment with different

control regimes between modules and provide diagnostic support during application

development entirely within the scope of the framework. Finally it provided a number

of independently useful modules, notably oasys itself, media selection, lexical choice

and referring expression generation modules, for use in future systems.

5 How to Use RAGS

Developing an NLG system using rags involves the following stages:

1. Deciding which of the six levels of representation will arise in the implementa-

tion and how they will be instantiated. It is to be hoped that various standard

instantiations of the rags primitive types will become popular. Therefore it

is worth trying to adopt an existing instantiation (e.g., a version of rhetorical

representations that is based on the original RST work) or to propose a new

one in a way that others can easily take up.

2. Deciding on the module structure of the system and the module inputs and

outputs. rags provides a very good basis for defining module inputs and

outputs precisely, although of course not all module interfaces can be defined

in a rags-compatible way. Decisions could be influenced by the possibility of

reusing an existing module if one specifies the system appropriately (possibly

mapping between different but similar instantiations of a rags type).

3. Choosing a programming language or languages and an implementation of

the selected rags types in a way that is faithful to the Objects and Arrows
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Model, making use of one of the native formats that we provide code for, or

devising a new format with (if needed) XML input/output.

4. Choosing an approach to scheduling and inter-module communication. This

might use facilities within one programming language and process, or using

XML and files/sockets. Again we provide some example code that could be

adapted.

5. Implementing the modules in a way that makes explicit the rags-compatible

interfaces (so that modules can potentially be separated for reuse and the data

passing across the interfaces can be collected if needed).

6. Documenting and publishing the rags-compatible modules for reuse.

The ilex reimplementation discussed in section 4.2 gives one example of how one

might build a system using rags. In this case, the decision was made to reuse

a Prolog version of the ilex database (“content potential”), a Prolog stochastic

text planner and fuf/Surge in the context of a system with most new code being

written in LISP. In this case, none of these components had previously been given

rags interfaces, and so the first step was to do this, for the different components

independently.

Interfacing the database. The ilex database has a simple format (three kinds of

objects—entities, facts and relations), and it was straightforward to relate this

to the API for KBIds.

Interfacing the text planner. The stochastic text planner takes as input a set of facts

and relations that are to be organised into a text structure. In rags terms,

the relevant information in a fact is the predicate (a partial SemRep) and

the sequence of arguments providing essentially a Centering-theory CF list

(a partial SynRep, with links back to the KBIds of the entities involved).

The relations could be characterised in terms of partial RhetReps with leaves

linked to the SemReps for the relevant facts. The result returned by the text

planner is similar to the input, but with a single RhetRep linking all the facts

together and a DocRep specifying the order of realisation of the elements of

the RhetRep tree.

Interfacing FUF/SURGE. As indicated in section 3.3.4, the input to fuf/Surge

can be regarded as a mixture of syntactic and semantic information. It was

necessary to decide which of the information in fuf/Surge is syntactic and

which semantic. For semantic information, a conversion between fuf/Surge

feature-value pairs and rags SemPreds had to be designed (in fact, some of the

presentations of surge already treated these as essentially unary predicates).

The output of fuf/Surge was treated as a single Quote.

For each of the above modules, a “wrapper” was built using the ragsocks software to

handle input/output of rags structures (via XML), each module acting as a “server”,

receiving valid inputs and returning the appropriate outputs to whoever requested

them. The wrappers also had to convert between the native formats supported

by ragsocks and the native formats that were already used in the programs (of

course, if these modules had been written with rags in mind, they might have used

more similar formats). The result was a set of modules that could potentially be
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reused in other applications compatible with rags. Of these, the text planner has been

documented and is available from our web site; work is underway to release the rags

interface to fuf/Surge as well. Finally, a main controlling program was written in

LISP to call the other modules as required, building the appropriate rags structures

for their inputs and decoding the outputs as necessary. The controlling module also

carried out other tasks, for instance content determination. A further very simple

referring expression generation module was built and interfaced, although the inten-

tion is at some time to replace this with an improved one based on existing work.

6 Conclusions and future directions

We believe that rags has made an important step towards helping the NLG research

community to share both data and processing resources. The key contributions of

this work are:

• a detailed analysis of the three-stage pipeline model and assessment of its

suitability as a generic architecture;

• the development of high level data type specifications firmly based on current

practice in NLG;

• the development of the two-level data model (high level specifications and

objects and arrows representation) as an approach to defining and managing

the complex data interactions found in NLG systems;

• the outline specification of a functional procesisng model for NLG systems;

• the specification of a standard offline data storage and exchange representa-

tion;

• the development of sample implementations of rags technology and complete

implementations of rags systems.

However, rags is only a step towards better understanding what NLG systems

do and supporting software and data reuse. Here are some areas which remain to

be explored:

• rags only defines levels of representation corresponding roughly to descrip-

tions of the linguistic output of NLG, at different levels of abstraction. An

NLG system needs to keep track of representations other than these, for

instance goals, user models and discourse models. We have neglected these

so far because there seems less common agreement about what is required

and what form it should take.

• The definitions so far have also implicitly concentrated on the problems of

producing text output, rather than speech. It is to be hoped that document

representations will be able to handle aspects of the suprasegmental structure

of speech, although this remains to be investigated.

• rags has little to say about content determination, although the definition of

the API for KBIds is at least a start towards specifying some aspects of it

in a domain-independent way. We also do not deal with concrete syntax or

concrete document structure.
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• More fundamentally, where rags does describe data, the definitions stop

at the “primitives”, which have to be defined in a theory-dependent way. A

major part of reusing data involves coming to an agreement on the primitives,

and yet rags has nothing to say about this. It is to be hoped nevertheless

that rags helps focus attention on the places where theoretical discussion is

productive and away from notational differences that have no deep theoretical

significance.

• Finally, the example software and data available from our web-site demon-

strates the basic principles, but now needs to be extended into a library of

reusable modules and support software for rags development.

Although the first stage of the rags project has officially ended, further work is

continuing. The two initial directions in which we intend to make further progress

are the publication of further resources and the development of the framework to

cover speech generation. We are also exploring the application of the framework to

other areas of NLP (such as understanding) and looking at its applicability to other

tasks with complex data manipulation requirements.
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