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Obviously, the title of the talk has a few syntactic and semantic issues. Let’s be a tad
more concise:
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Can we use Bayesian inference to
directly learn — that 1s, simultaneously
build and “sample” — the Lagrangian

of the hypothetical Next Standard

Model (NSM) from heterogeneous

High Energy Physics (HEP) Data?
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A frequentist’s approach to finding
the NSM

In frequentist statistics, we can only look at the “likelihood” of data,
p(dataltheory)

no statements of the type p(theory|data) are known to a frequentist.
Thus, a frequentist recipe for finding the NSM would read:

» Specify your favorite theory Beyond the Standard Model (BSM).
« Compute the likelihood of your observations, p(dataltheory)

* Compute a test statistic T based on your likelihood that quantifies how well
your theory describes the data.

* If Tis “bad”, come up with another theory. Repeat.
* If T is “good”, stop. You won. Fly to Stockholm, claim your Prize. You earned it.



A freqguentist’s approach to finding
the NSM

your BSM theory

(as a Lagrangian) Ao
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Freguentist approach: pros and
cons

Pros:

The statistical aspects of the procedure are well defined and reasonably
simple

We have many great ideas that we want tested (e.g. supersymmetry)
The “right” procedure as long as we know what theory we want to test.

cons:

We are driven by abstract theoretical ideas, not theory agnostic, not
driven by observation. Choice of theories that we consider subject to our
biases and preconceptions.

Our — presumably — best ideas (e.g. natural supersymmetry) predicted
that we find new physics at the TeV scale at the LHC. We did not.

Does not cater to surprise. What if none of our
preconceptions Is correct?



The downsides of theory-driven approaches to
finding the NSM have been fertile grounds for
popular science books ....
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(Independent of whether or not we agree with these authors)

Shall we, can we abandon “pretty” and allow for
“‘ugly”™? If yes, then how?
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A little naming convention

For the remainder of this talk, | wish to distinguish between three types of
models: pretty, simple, and ugly

pretty models: well-defined, complete. Typically solve the Higgs
hierarchy problem and aim at providing answers for many of our
theoretical problems at once. Examples are supersymmetry, universal
extra dimensions, little Higgs.

minimal models: well-defined, simple, only minimal additions to the
standard models. Do not solve the Higgs hierarchy problem. Aim at
answering only individual questions. Examples: dark photons, two Higgs
doublet models

ugly models: ill-defined, possibly incomplete, possibly mathematically
inconsistent (b/c incomplete), but may describe data.
— At least “wrong” — see slide before :) ! And possibly useful?



Bayesian learning

* Let me propose a strategy for how we might be able
to build up a prospective NSM that allows for “ugly”.

* My proposal will be based on the notion of Bayesian
learning (as opposed to frequentist statistics).

* Please note that what | am presenting here is a
rough proposal, not a finished study. (And, actually, |
am actively looking for help on the theory side.
Veronica to the rescue.).
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Bayesian learning

Bayesian learning Is simply an application of
Bayes Theorem (sorry, no neural networks
iInvolved this time):

p(theory|data) ox p(data|theory)p(theory)

A
... IS proportional to ...
(k)ur a| pc? stericori ... times our prior
nowledge o
physics I%eyond the ... the likelihood of k”0W|eﬁ|96f of
Standard Model the observed data, BSM physics.

(BSM) .... given the theory ...
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Bayesian learning

In the past, we have performed such a Bayesian analysis within

CMS, for the phenomenogical Minimal SuperSymmetric Model
(PMSSM):

p(pMSS%VI\CMS) x L(CMS|pMSSM)7(pMSSM)
+

Our knowledge of the pMSSM ... the likelihood of our data,
in light of the CMS search given the pMSSM ...
results ...

... times our prior
knowledge of the
PMSSM

... IS proportional to ...

The Is a “stripped-down” version of the Minimal Supersymmetric Model (MSSM), with

constraints put on all model parameters that have no big effect on LHC “phenomenology”.
It has 18 or 19 free parameters.

Needless to say, many similar frequentist and Bayesian analyses have been performed within

and outside the experimental collaborations. The CMS collaboration, “Phenomenological MSSM

interpretation of CMS searches ... “, JHEP 1610 (2016) 129 12


https://arxiv.org/pdf/hep-ph/9901246.pdf
https://link.springer.com/article/10.1007%2FJHEP10%282016%29129

Bayesian learning

— what'’s our information on the pMSSM prior to looking at
CMS’es search results?

T(pMSSM)

) Observable Constraint Likelihood function
i Des DeS Comment
11:(6) ppon-DCs LIDPCS 1, (9)]
1 B(b — sv) [45] | (3.43 + 0.21°"*" £ 0.24"" £ 0.07%*) x 10~* Gaussian reweight
2 B(Bs — ) [46] (294+0.7+0.29"™) x 1077 Gaussian reweight
3 | R(B — rv) [45, 47] 1.04 + 0.34 Gaussian reweight
4 Aay, [48] | (26.1 £ 6.3%P +4.95M + 10.05V5Y) x 10710 Gaussian
5 as(mz) [49] 0.1184 £+ 0.0007 Gaussian
6 me [50] 173.20 + 0.877"" 4+ 1.3%° GeV Gaussian reweight
7 mp(my) [49] 41975 0% GeV Two-sided Gaussian
lovwe r high 4 X T Lif ﬂ]'ilow i Th é Tn'ﬁigh :
8 mn LHC: my™ =120 GeV, my"®" = 130 GeV lour hieh reweight
0 if g, < ™ or my, > my®
9 fth CMS and ATLAS in LHC Run 1, Tevatron LiviTH 1.01 [51, 52] post-MCMC
_ LEP [53] 1 if allowed
10 sparticle masses .
(via MICROMEGAS [54-56]) 0 if excluded

JHEP 1610 (2016) 129



https://link.springer.com/article/10.1007%2FJHEP10%282016%29129

Bayesian learning

T (pMSSM) ~ what's our information on the pMSSM prior to looking at
CMS’es search results?

; Observable Constraint Likelihood function Comment
1:(6) DpomDes L[D2PCS ()

1 B(b — sv) [45] | (3.43 + 0.21°"*" £ 0.24"" £ 0.07%*) x 10~* Gaussian reweight
2 B(Bs — ) [46] (294+0.7+0.29"™) x 1077 Gaussian reweight
3 | R(B— 7v) [45, 47] 1.04 +0.34 Canssian reweight
4 Aa, (18] | 261+ 6.3 (LHC) fPrecision Gaussian
5 as(mz) [49] measurements” Gaussian
6 my [50] 173.20 = 0.87"" + 1.37° GeV Gaussian reweight
7 mp(my) [49] 41975 0% GeV Two-sided Gaussian

T _ _ T PP 1if m™ < my, < mlieh )
8 M The maSS—“Of\thelng'gS L lour " high reweight

0if my, < Ty, Or iy > My,
9 in CMS and ATLAS in LHC Run 1, Tevatron “The.:siglnal, |st4-engthlof-the Higgs”
LEP [53

0] “Results from the Large. __El_qqt;[on-Plositqur_\, collider (LEP)”

* The argument of “naturalness” did not enter the prior (it is an argument for “pretty”)

 All particle masses were “cut off” at 3 TeV — we did not look into scenarios that are
outside of the LHC's reach!

JHEP 1610 (2016) 129


https://link.springer.com/article/10.1007%2FJHEP10%282016%29129

Bayesian learning
L (CMS ‘ pMSSM) _. what's the likelihood of CMSes search

results, given the pMSSM?

Analysis v's [TeV] | £ [fb~!] | Likelihood
Hadronic Ht + H® search [8] 7 4.98 counts
Hadronic Ht + EJ' + b-jets search [9] 7 4.98 counts
Leptonic search for EW prod. of ¥°, ¥+, 1 [10] 7 4.98 counts
Hadronic Ht + HP* search [11] 8 19.5 counts
Hadronic My search [12] 8 19.5 counts
Hadronic Hy + ER® 4 b-jets search [13] 8 19.4 x2
Monojet searches [14] 8 19.7 binary
Hadronic third generation squark search [15] 8 19.4 counts
OS dilepton (OS 11) search [16]
: 3 19.4 counts
(counting experiment only)
LS dilepton (LS 11) search [17]
8 19.5 counts
(only channels w/o third lepton veto)
Leptonic search for EW prod. of Y, ¥+, 1[18]
i 8 19.5 counts
(only LS, 3 lepton, and 4 lepton channels)
Combination of 7TeV searches T — binary
Combination of 7 and 8 TeV searches 7.8 — binary

JHEP 1610 (2016) 129 15


https://link.springer.com/article/10.1007%2FJHEP10%282016%29129

Bayesian learning
[ (CMS ‘ pMSSM) - what's the likelihood of CMS’es search

results, given the pMSSM?

Analysis v [TeV] | £ [fb~1] | Likelihood
Hadronic Hp + Hi =8 gaarch 8] T 4.98 counts
Hadronic Hy + EX' 4 b-jets search [9] 4.98 counts
Leptonic search for ﬂ b 10 CM S counts
Hadronic Hy 0 ut counts
Hadronic My search [12 Cconnts
n.ssearches fornew :
Monojet searches [14 19.7 binary
Hadronic third g physms b | wm | son
0OS dilepton (OS 11) sea
19.4 counts
{counti xperiment onl
Lb(h]]lll|“‘” arch [17 )
o 19.5 counts
(Ol'l'_'\ channels w /o third |l'|\l-:" veto)
Leptonic search for EW prod. of X", x—, 1 [18]
PLOLIC SCarclh 1ol prod. ob . x [RYs]] 3 195 counts
{only LS, 3 lepton, and 4 lepton channels)
Combination of 7TeV searches T e binary
Combination of 7 and 8 TeV searches 7,8 binary

L(CMS|pMSSM) = Poisson(N\i(pMSSM) + b)p(b)db

s: “Expected number of signal events” — need to simulate around 100,000 events,
for every signal hypothesis! Computationally very expensive!

N: number of observed events in a search
b: number of Standard Model background events
p(b): likelihood for number of Standard Model background events JHEP 1610 (2016) 129 16


https://link.springer.com/article/10.1007%2FJHEP10%282016%29129

Bayesian learning

L(CMS|pMSSM)

— what's the likelihood of CMS’es search

results, given the pMSSM?

Anall\_-’sis v [TeV] | £ [fb~1] | Likelihood
Hadronic Hp + Hi rch [8] T 4.98 counts
Hadronic Hy + EX' 4 b-jets search [9] 4.98 counts
Lept()l ic ch fo Q b 10 CM S counts
Hadron 0 ut counts
Hadron connts
n.ssearches fornew
Monojet searches 19.7 1ary
— p hy3| C s S R
08 dilepton (OS
19.4 mts
(counting experi
LS dilepton (LS 11} search |1
o mts
(()l'l'_'- channels w /o third ||'|\I-:"
Leptonic search for EW prod. of X", x=, 1 [18]
BTG SN SERE R SN oSl 8 195 | coun s
{only LS, 3 lepton, and 4 lepton channels)
Combination of 7TeV searches T binary
Combination of 7 and 8 TeV searches 7,8 binary

L(CMS|pMSSM) =

Poisson(N|s(pMSSM) + b)p(b)db

p(b): our knowledge of the background for the search. Summarizes all the gigantic
experimental effort (person-years!) that went into a specific search. We integrate
out the dependency of the likelihood on such nuisances.

JHEP 1610 (2016) 129
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https://link.springer.com/article/10.1007%2FJHEP10%282016%29129

Bayesian learning

— “proportional to”: what's the normalization
p(pMSSM|CMS) oc L(CMS|pMSSM)7(pMSSM)  constant and why don’t we have to compute it?

L(CMS|pMSSM ) (pMSSM
p(pMSSM|CMS) = (CMS|pMSSM)(pMSSM)

79

[ d(pMSSM) L(CMS|pMSSM) 7 (pMSSM)

complicated 18-dimensional integral! Luckily we do not have to solve it,
because we can sample the posterior, e.g. with Metropolis-Hastings
algorithm, a random walk in the theory parameter space.

18


https://link.springer.com/article/10.1007%2FJHEP10%282016%29129

Bayesian random walk

L(CMS|pMSSM) 7 (pMSSM)
[ d(pMSSM)L(CMS|pMSSM )7 (pMSSM)

p(pMSSM|CMS) =

The posterior is a probability — it is normalized! (That's what the denominator on the
r.h.s. is actually doing). So if | can “sample” the posterior (i.e. draw random samples from
it), | am done!

Metropolis algorithm:

- initialisation: start with a random pMSSM point x. Compute the numerator f(x) of the
posterior (likelihood times prior).

- generation: now take a random step in a random direction in the 18-dimensional

space. Compute the numerator for that point, f(x’).

- acceptance: compute a = f(x')/f(x), i.e. the ratio of the posteriors. Draw a uniformly
distributed random number u on [0,1]. If u > q, reject the last step, go back to

the step before. Else, accept. 19
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Bayesian learning

L(pMSSM|CMS)

prob. dens./ TeV
o
Qo

Our a posteriori

knowledge of the mass

of the gluino, after the 0.2
first LHC “run” (red line),

and the second run

(black line). Op

\

pMSSM CMS
rrrJrrrerprrrrprrrT e T T ]
L Prior from non-DCS data -
- Combined, 7 TeV -
i Combined, 7 + 8 TeV ]
; ¢ Combined, 7 + 8 TeV, LHC Higgs data __
- o---p=05 =—p=1.0 - pu=1.5 -

0.5 1 1.5 2 2.5 3

g mass [TeV]

-~ Wwhat did CMS’es searches teach us about
the pMSSM? Prior versus posterior!

Blue area: Our
prior knowledge
about the mass
of the partner
particle of the
gluon, the gluino

“What have we learned about the supersymmetric partner of the gluon partner, the gluino”?

Qualitative summary of the plot:
“we had a realistic chance of f

inding something, but we didn’t. “

21


https://link.springer.com/article/10.1007%2FJHEP10%282016%29129

Let’s do ugly!

But the pMSSM would still count as a “pretty”
theory. How can we move to “ugly”?

Proposal: we switch from models like the
OMSSM to the space of sensible BSM
_agrangians.

Obvious, difficult question: what’s a sensible
Lagrangian? (Let’s for now put this question
aside, assume that it can be answered. Will
come back to this later)

22



Let’s do ugly!

ldea: we “parametrize” the space of all sensible Lagrangians by
the modifications on the SM that it takes to obtain that particular
Lagrangian.

Mindset very much like that of (e.g. dark matter) model builders.

Examples for modifications:

add a scalar / fermion / vector

add couplings

add a second Higgs doublet mode
add kinetic mixings

23



Let’s do ugly!

What are typical modifications to the SM Lagrangian,
that the algorithm should consider?
A few of the simpler cases:

aY A/
. . ] ] /
* Dark photons, kinetic mixing ffa"d”d Model AN\ Dé;k(Sectér) }
between photon and € :
dark phOton AL = i /**"'”‘”F/W “Kinetic Mixing” »
only two new parameters: the mixing angle and the 2
mass of the dark photon Plot taken from talk by P. Crivelli

* Extra scalar with hypercharge O
can implement a dark matter candidate through a Higgs portal

1. 1, 1 . 1.
Lsup = Lon + Ec)ﬂsc)ﬂs — Emgs2 - 5,\5\}1\252 - 5’}“‘54

 Extra Higgs doublet, with or without a “Z)" symmetry

we could even take out the first Higgs doublet from the SM (ignoring the fact that this becomes a
theory that violates unitarity) feed it the Higgs measurements, and if see the algorithm correctly
reproduces the Standard Model.

24


https://indico.desy.de/indico/event/16884/session/2/material/slides/0?contribId=70

MCMC walk, after 140 steps

25




Let’s do ugly!

Under what circumstances does this proposal not make
sense?

- Iffwhen the pretty models seem to work (though the “usual”
natural ones do not, we know that by now).

- If/when the minimal models seem to work (think e.g. a Z'-like
resonance is found at the LHC, but nothing else. Just add a U(1)’
symmetry to the standard model, then.)

When would this proposal have its maximum benefit?

- when neither “pretty” nor “minimal” works

— when no clear, simple signal shows up in any of the individual
experiments: “dispersed” signals with unclear and not trivial
Interpretation

26



Of the tools and theory calculations
needed for this proposal, what Is
already done?

Task

Predictions, precision

measurements

Generic “global
fitting” framework

Model building
random walk

Fast likelihood for
searches

Fast likelihood for
precision
measurements

Fast likelihood for
astrophysical
observations

Global combination

Description

Calculation of various observables of precision
measurements for arbitrary Lagrangians at high
enough perturbation orders

A generic framework that allows to perform
“global fits” of data to arbitrary models

A “scanner bit” that performs a Metropolis-
Hastings random walk, but includes model
building

A fast method to compute likelihoods for
searches for new physics, for arbitrary
Lagrangians

A fast method to compute likelihoods for
precision measurements, for arbitrary
Lagrangians

Fast likelihoods for astrophysical observations,
for arbitrary Lagrangians

Global combination of all likelihoods involved

Status

Probably only partially?

Exists (e.g. GAMBIT)

Does not exist

Mostly (SModelS)

Contur? Can we exploit effective
field theories? SMEFT?

Micromegas? MadDM? ... ?

Done in GAMBIT

27



What conditions would we require
even of an ugly Lagrangian?

Condition

Lorentz invariance

Renormalizability

Unitarity

Conservation of charges

Vacuum (meta) stability
Perturbativity

Is required?
yes
No (we anyhow don’t pretend to have a
“complete” theory)
Not necessarily (same as above)

yes

Probably not?
Conceptually no, technically yes?

28



Near-term goals

Admittedly, directly learning BSM Lagrangians is not yet feasible in the near future for many types
of measurements. (Think e.g. we will need predictions at good enough perturbation order for
arbitrary Lagrangians. Challenging!)

A trimmed-down version of this idea that | would like to work on that can be implemented in
O(months), is to

restrict the space of models to ones that can be properly described with SLHA files (a.k.a. SUSY-
like models)

start with direct searches, use simplified models and SModelS
for a quick confrontation of the models with O(100) LHC search results.

That way, we can search for “dispersed signals” — signals that become evident
when combining searches — in the existing results.

If now dispersed signals can be identified, we can search for maximally “spectacular”
signatures that should be within reach of the LHC but have nevertheless been missed, at

by the simplified models results. We can encode the notion of “spectacularity” in our prior.
Of course, such an approach could be combined with a likelihood on Wilson coefficients, and thus
LHC precision measurements.



Recap: simplified models

Simplified models are models meant to describe physics Beyond the Standard Model
(BSM). Contrary to a “full” model like supersymmetry, however, they only introduce a small
number (2 or 3) of new particles, allow them to decay only in one specific channel. They are
meant as a tool, or a “abstraction interface” for a theorist to the results of the searches of
CMS and ATLAS.

25mCI\IIS Preliminary 35.9 fb' (13 TeV)

upper limits on
production cross
sections (the heatmap)
are given as a function of
the masses of

these two particles.

> pp—>§3.3200% % - VWG B _ o
O, —ObseMed £ 10, 1 2 A typical simplified
£42000| 227 Expected * 16y imen = models result, as
, E presented by CMS. Two
L ‘ 105 massive particles (g, X)
the simplified 1500 1B were introduced. The
model )

1000

qvq
P, JUPTE hhhhbh 500

------ 1 | 1 1 L -’If‘ll‘ 1 1 Il I L L L I L
/\ 01200 1400 1600 1800 2000
41 q

My [GeV]

\

L.

I T I T | T I T T | T T T T | T T T
L1 | ]K ] L oepeani) I L1 | l || L]
95% CL upper limit on cross section [fb]



http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS-17-012/index.html

Recap: the Idea behind
SModelS

Speed

A

SModelS confronts theories beyond the Standard Model (BSM)
with LHC search results by decomposing full models into their
simplified models topologies, and comparing the cross section

predictions of these individual
topologies with a database
of SMS results. o :

(SLHA OP{IEEE file) » </_' _________ v

3
0 - TS
xll ;,.

\ ~ ,¢'(
* Simplified
model
Full
* simulation ‘ I ‘
Compare
> Decompose ‘ with Experimental Limits
full Model

Match

with Experimental Results

Constraining power



SModelS database

# 1D pretiy name Topologles Type | £ [
1 '||[ \‘1-;‘1["1': HN1I01 2 heJets + Er 1 T2hh ul EF]
2 alngle | stop 1: Tt ul 3.2

single | stop 1 T2t off a2
i 1's + 24 jeis + 2T T2 afl 3.2
Jete + 285 I's o ==4 1% 1: Tlitit ul 3.2
2ESor 31k + Jets + Fy & Tieefeffe, Thonefd].. ul il
2 oppesite slgn I's + B 2: T2LEW Wof], T2tt[off]... ul 6.1
slops to staus 1: TAbumtaubmtan. .. ul Ml
==2¢ jois + ET 1: Tdee ul .1
2O85F I's + Er & THEE, T6EE ul :
multi-l EWHK searelss 1 TORWE ul

11 SOONE-H12- 105 | 2851 + == 4 Jets + K1 1: Tlitii ul

12 SCONF-2012- 166 | 11+ 401 b-jets + Ex 1: T ul

14 SCONF-2013-001 | 0 1's + 2 bjets + Er L Tol W W o] ul

14 SCONF-2 13007 | 25515 + (3 bejets + Fr 10 Tibtht, Tttt . ul

15 LCONE-L021 | 01+ 6 (2 bjets + Er 1 T2t ul

SCONF-2013-024 | 01+ 6 (2 b)jets + Er 21: Tibbbb, Tibbbe... eff
16 SCONF-2013-025 | == 5 (==1 b-)jets + 2, 35F08 I's + Er | 1 T6ZER ul
CCONE-213005 | 3 s (eu) + Er 2 TCWChipmSlepL... ul
SOONF-313-007 | 11+ == 4[1 h-)jeis + Er 1: T3t ul
SCONF-2013-047 | 11+ (1 b-)jets + Er 14 Tibbbl, Tibbbt.. eff
SCONF-2013-04T | 0 1's + 26 jets + Fr 4 T TESWWalf).. ul
SCONE-213-04T | @ 's + 246 jots + Fr 24: T1, T1hbhh, l"lhhhl aff
SCONF-2013-048 | 215 + (beJjets + Fr 20 T2 LW W, THL W Well]... ul
SCONF-2013-0d8 | 215 + (b)jes + B Ll Tibber, Tibabt... eff
LCONE-213049 | 2 s (e.um) + Er 1: TSlepSlep ul
SOONF-213-053 | 01" + 2 bejets + K1 1: T2hh ul
SCONF-2013-053 ets + Kt 17 T1hbbl, T1hbbt... eff
=CON F-20 13051 T-1i) jets + K 2: T1, Tibbbb, Tihbbt... afl
SCONF-2013-061 b-jets + Bt A Tibbbh, Tiktht... ul
SCONF-2013-061 | jets + 3 hejets + B 21: Tlbbhb, T1hbht... eff
SCONE-2)13-062 | 11+ Jets + B 21: T, Tihbbb, Tihbbt... aff
SCONF-2013-065 | 215 + (b Jjets + Er 20 ThE, THLLW W ul
SCONF-2013-089 | 215 (e,mu) + Er L THW W ul
SCONF-2013-03 | 114+ 2 hejets + B I TCRWH ul
SOONF-2013-06 | 11+ 2 hejets + B G Tlhbbt, T2bit, THi... afl
i 1's + 24 Jeis + Fr 5 ul

Jets and met 1: eff

01 + == T-10 jets + By 11 ul

hl's + T-1i) jets + K & Tibbbh, Tihibt... afl

i 1's + 2 h-jeis + K 20 T2bb, THLLWW ofT]... ul

0 1's + 2 b-jets + Er 1: T2hh efl

7+ bejets + Er 1 ToZA ul

28515+ Fr 1: Tlitit ul

21 (e,mu) + Er 40 TORWW, TOWWE... ul

21 (e,mn) + K1 & TOMWWol], TCUpChimSlepSnn.. | eff

#1's (e, tan) + Er 1: TOWChipmSlepL... ul

UL+ 41 bejjets + Fr 1 T2t ul

L1+ 401 F)jets + Ev 1 Tht eff

01+ 6 (2 b)jets + Er 1: Tt ul

01 + 6 [2 be)jets + Fr 1 T2t off

1 1's + d h-jets + K 2 Tlhbbh, Tl ul

=115 + } hejets + K 2 Tlhbbb, Tttt afl

208 I's + (b-)jets + B 2 TELW W, T2 ul

monss et or e jet + Fp A T2, T2HLWWofT]... aff

11+ 2 bejets [or 2 48) + Fr 1: TOLWH ul

12 USY-2014413 | >= He-jets + Fr 1: TSeharm off

We collect the results of the experimental collaborations,
and augment them with recast analyses (MadAnalysis5,

CheckMATE), creating our own efficiency maps. In
addition, fastlim kindly allowed us to also use their
efficiency maps. SModelS v1.2.2 ships with results of
almost 100 different analyses.

# | ID pretty nane Topologles Type o4
1| Chls-PASERO-16= (6 lee p searcl A THRCPAIE, ThHadGRIT. . ul [E]

CME-PAS-EXO-16-(c6 I p searels & THRECPMI1L, THRCPRMZh... aff 13

2 | CME-PASSUS-15-002 == djets + Fp, HT, HTmis 2: T1, Tihbhh ul 13
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Correlations between analyses (green is uncorrelated)
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Summary

* Why don’t we mechanize the task of model building, and treat it as
random steps in a Bayesian random walk!

* We can encode many types of “goals”, (theoretical) constraints and
desirable features in our prior.

* In order to avoid the cost of recasting LHC searches, we can use the
conservative but fast SModelS.

e Constraints from measurements
may be added via likelihoods
on Wilson coeffients.

MCMC walk, after 140 steps







Recap: How SModelS

works
1) Decomposition of a fundamental model

Input: SLHA file (mass
spectrum, BRS) or
LHE file (parton level)

SLHA ar

LHE input Currently the model

must have a Z,
symmetry

The decomposition
produces a set of
simplified model
topologies (dubbed
“elements”)

Decompose



Recap: How SModelS
works

2) Description of the topology In the SI\/IodeIS

formalism
Mo /MS
o = [[I"],|v]]

= [ [[ITLv]], [0 ]
([M71,M3,Ms],[m1,ms]|)

o —[[I,07]]
Each topology is described by: We (currently) ignore spin, color, etc of the
- Topology shape + final states BSM particles

- BSM masses

. o xBR It is model independent, there is no reference
to the original model



Recap: How SModelS

works

3) Comparison of predicted signal strengths
with experimental result:

- Upper Limit Results:
Predicted signal strength = o0 x BR

Experimental result: o

Experimental
Analyses

T, - Efficiency Map Results:

R Predicted signal strength =Y o x BR
X €
Experimental result: 6, =N /L from

expected(BG), error(BG)

......
...............

Nobserved’

- r=predicted / o,

* Model is excluded if most
constraining analysis hasr> 1

Sum Weights Compare

with
Upper Limits
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