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Obviously, the title of the talk has a few syntactic and semantic issues. Let’s be a tad 
more concise:
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Can we use Bayesian inference to 
directly learn – that is, simultaneously 
build and “sample” –  the Lagrangian 

of the hypothetical Next Standard 
Model (NSM) from heterogeneous 
High Energy Physics (HEP) Data?
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A frequentist’s approach to finding 
the NSM

In frequentist statistics, we can only look at the “likelihood” of data, 

no statements of the type p(theory|data) are known to a frequentist.

Thus, a frequentist recipe for finding the NSM would read:

● Specify your favorite theory Beyond the Standard Model (BSM).
● Compute the likelihood of your observations, p(data|theory)
● Compute a test statistic T based on your likelihood that quantifies how well 

your theory describes the data.
● If T is “bad”, come up with another theory. Repeat. 
● If T is “good”, stop. You won. Fly to Stockholm, claim your Prize. You earned it.
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(Jamie Tattersall’s slide) 5

your BSM theory 
(as a Lagrangian)

the predictions 
on observables 
that follow from 
the theory

p(data|theory)

A frequentist’s approach to finding 
the NSM



  

Frequentist approach: pros and 
cons

Pros:
● The statistical aspects of the procedure are well defined and reasonably 

simple

● We have many great ideas that we want tested (e.g. supersymmetry)

● The “right” procedure as long as we know what theory we want to test.

Cons:
● We are driven by abstract theoretical ideas, not theory agnostic, not 

driven by observation. Choice of theories that we consider subject to our 
biases and preconceptions.

● Our – presumably – best ideas (e.g. natural supersymmetry) predicted 
that we find new physics at the TeV scale at the LHC. We did not.

● Does not cater to surprise. What if none of our 
preconceptions is correct?
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The downsides of theory-driven approaches to 
finding the NSM have been fertile grounds for 
popular science books ….
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Shall we, can we abandon “pretty” and allow for 
“ugly”? If yes, then how?

(Independent of whether or not we agree with these authors)
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A little naming convention
For the remainder of this talk, I wish to distinguish between three types of 
models: pretty, simple, and ugly

● pretty models: well-defined, complete. Typically solve the Higgs 
hierarchy problem and aim at providing answers for many of our 
theoretical problems at once. Examples are supersymmetry, universal 
extra dimensions, little Higgs.

● minimal models:minimal models: well-defined, simple, only minimal additions to the 
standard models. Do not solve the Higgs hierarchy problem. Aim at 
answering only individual questions. Examples: dark photons, two Higgs 
doublet models

● ugly models: ill-defined, possibly incomplete, possibly mathematically 
inconsistent (b/c incomplete), but may describe data. 
→ At least “wrong” – see slide before :) ! And possibly useful?
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Bayesian learning

● Let me propose a strategy for how we might be able 
to build up a prospective NSM that allows for “ugly”.

● My proposal will be based on the notion of Bayesian 
learning (as opposed to frequentist statistics).

● Please note that what I am presenting here is a 
rough proposal, not a finished study. (And, actually, I 
am actively looking for help on the theory side. 
Veronica to the rescue.).
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Bayesian learning

Bayesian learning is simply an application of 
Bayes Theorem (sorry, no neural networks 
involved this time):

Our a posteriori 
knowledge of 
physics Beyond the 
Standard Model 
(BSM) ….

… is proportional to ...

… the likelihood of 
the observed data, 
given the theory ...

… times our prior 
knowledge of 
BSM physics.

11



  

In the past, we have performed such a Bayesian analysis within 
CMS, for the phenomenogical Minimal SuperSymmetric Model 
(pMSSM):

Our knowledge of the pMSSM
in light of the CMS search 

results ...
… is proportional to ...

… the likelihood of our data, 
given the pMSSM ...

… times our prior 
knowledge of the 
pMSSM

The pMSSM is a “stripped-down” version of the Minimal Supersymmetric Model (MSSM), with 
constraints put on all model parameters that have no big effect on LHC “phenomenology”.
It has 18 or 19 free parameters.
Needless to say, many similar frequentist and Bayesian analyses have been performed within 
and outside the experimental collaborations. The CMS collaboration, “Phenomenological MSSM 

interpretation of CMS searches … “, JHEP 1610 (2016) 129 12

Bayesian learning

https://arxiv.org/pdf/hep-ph/9901246.pdf
https://link.springer.com/article/10.1007%2FJHEP10%282016%29129


  

– what’s our information on the pMSSM prior to looking at 
CMS’es search results?

13JHEP 1610 (2016) 129

Bayesian learning

https://link.springer.com/article/10.1007%2FJHEP10%282016%29129


  

→  what’s our information on the pMSSM prior to looking at 
CMS’es search results?

(LHC) “Precision 
measurements”

“The mass of the Higgs”

“The signal strength of the Higgs”

“Results from the Large Electron-Positron collider (LEP)”

● The argument of “naturalness” did not enter the prior (it is an argument for “pretty”)

● All particle masses were “cut off” at 3 TeV – we did not look into scenarios that are 
outside of the LHC’s reach!

14JHEP 1610 (2016) 129

Bayesian learning

https://link.springer.com/article/10.1007%2FJHEP10%282016%29129


  

→  what’s the likelihood of CMS’es search 
results, given the pMSSM?

15JHEP 1610 (2016) 129

Bayesian learning

https://link.springer.com/article/10.1007%2FJHEP10%282016%29129


  

→  what’s the likelihood of CMS’es search 
results, given the pMSSM?

About 10 CMS 
searches for new 

physics!

s: “Expected number of signal events” – need to simulate around 100,000 events, 
for every signal hypothesis! Computationally very expensive!

N: number of observed events in a search
b: number of Standard Model background events
p(b): likelihood for number of Standard Model background events 16JHEP 1610 (2016) 129

Bayesian learning

https://link.springer.com/article/10.1007%2FJHEP10%282016%29129


  

→  what’s the likelihood of CMS’es search 
results, given the pMSSM?

p(b): our knowledge of the background for the search. Summarizes all the gigantic 
experimental effort (person-years!) that went into a specific search. We integrate 
out the dependency of the likelihood on such nuisances.

About 10 CMS 
searches for new 

physics!

17JHEP 1610 (2016) 129

Bayesian learning

https://link.springer.com/article/10.1007%2FJHEP10%282016%29129


  

→  “proportional to”: what’s the normalization 
constant and why don’t we have to compute it?

18

complicated 18-dimensional integral! Luckily we do not have to solve it, 
because we can sample the posterior, e.g. with Metropolis-Hastings 
algorithm, a random walk in the theory parameter space.

JHEP 1610 (2016) 129

Bayesian learning

18

https://link.springer.com/article/10.1007%2FJHEP10%282016%29129


  

Bayesian random walk

The posterior is a probability – it is normalized! (That’s what the denominator on the 
r.h.s. is actually doing). So if I can “sample” the posterior (i.e. draw random samples from 
it), I am done!

Metropolis algorithm:

- initialisation: start with a random pMSSM point x. Compute the numerator f(x) of the 
posterior (likelihood times prior).
- generation: now take a random step in a random direction in the 18-dimensional 
space. Compute the numerator for that point, f(x’).
- acceptance: compute α = f(x’)/f(x), i.e. the ratio of the posteriors. Draw a uniformly 
distributed random number u on [0,1]. If u > α, reject the last step, go back to 
the step before. Else, accept. 19
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→  what did CMS’es searches teach us about 
the pMSSM? Prior versus posterior!

“What have we learned about the supersymmetric partner of the gluon partner, the gluino”?
Qualitative summary of the plot: 
“we had a realistic chance of finding something, but we didn’t. “

Blue area: Our 
prior knowledge 
about the mass 
of the partner 
particle of the 
gluon, the gluino

Our a posteriori 
knowledge of the mass 
of the gluino, after the 
first LHC “run” (red line), 
and the second run 
(black line).

21JHEP 1610 (2016) 129

Bayesian learning

21

https://link.springer.com/article/10.1007%2FJHEP10%282016%29129


  

Let’s do ugly!

But the pMSSM would still count as a “pretty” 
theory. How can we move to “ugly”?

Proposal: we switch from models like the 
pMSSM to the space of sensible BSM 
Lagrangians.

Obvious, difficult question: what’s a sensible 
Lagrangian? (Let’s for now put this question 
aside, assume that it can be answered. Will 
come back to this later)

22



  

Idea: we “parametrize” the space of all sensible Lagrangians by 
the modifications on the SM that it takes to obtain that particular 
Lagrangian.

Mindset very much like that of (e.g. dark matter) model builders.

Examples for modifications:

● add a scalar / fermion / vector
● add couplings
● add a second Higgs doublet mode
● add kinetic mixings

Let’s do ugly!

23



  

What are typical modifications to the SM Lagrangian,
that the algorithm should consider?
A few of the simpler cases:

● Dark photons, kinetic mixing 
between photon and 
dark photon:
only two new parameters: the mixing angle and the 
mass of the dark photon

● Extra scalar with hypercharge 0
  can implement a dark matter candidate through a Higgs portal

● Extra Higgs doublet, with or without a “Z
2
” symmetry

we could even take out the first Higgs doublet from the SM (ignoring the fact that this becomes a 
theory that violates unitarity) feed it the Higgs measurements, and if see the algorithm correctly 
reproduces the Standard Model.

Plot taken from talk by P. Crivelli

2424

Let’s do ugly!

https://indico.desy.de/indico/event/16884/session/2/material/slides/0?contribId=70
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Let’s do ugly!

Under what circumstances does this proposal not make 
sense?

→ if/when the pretty models seem to work (though the “usual” 
natural ones do not, we know that by now).
→ if/when the minimal models seem to work (think e.g. a Z’-like 
resonance is found at the LHC, but nothing else. Just add a U(1)’ 
symmetry to the standard model, then.) 

When would this proposal have its maximum benefit?

→ when neither “pretty” nor “minimal” works
→ when no clear, simple signal shows up in any of the individual 
experiments: “dispersed” signals with unclear and not trivial 
interpretation



  

Of the tools and theory calculations 
needed for this proposal, what is 

already done?
Task Description Status

Predictions, precision 
measurements

Calculation of various observables of precision 
measurements for arbitrary Lagrangians at high 
enough perturbation orders

Probably only partially?

Generic “global 
fitting” framework

A generic framework that allows to perform 
“global fits” of data to arbitrary models

Exists (e.g. GAMBIT)

Model building 
random walk

A “scanner bit” that performs  a Metropolis-
Hastings random walk, but includes model 
building

Does not exist

Fast likelihood for 
searches

A fast method to compute likelihoods for 
searches for new physics, for arbitrary 
Lagrangians

Mostly (SModelS)

Fast likelihood for 
precision 
measurements

A fast method to compute likelihoods for 
precision measurements, for arbitrary 
Lagrangians

Contur? Can we exploit effective 
field theories? SMEFT?

Fast likelihood for 
astrophysical 
observations

Fast likelihoods for astrophysical observations, 
for arbitrary Lagrangians

Micromegas? MadDM? … ?

Global combination Global combination of all likelihoods involved Done in GAMBIT

27



  

What conditions would we require 
even of an ugly Lagrangian?

Condition Is required?

Lorentz invariance yes

Renormalizability No (we anyhow don’t pretend to have a 
“complete” theory)

Unitarity Not necessarily (same as above)

Conservation of charges yes

Vacuum (meta) stability Probably not?

Perturbativity Conceptually no, technically yes?

28



  

Near-term goals
Admittedly, directly learning BSM Lagrangians is not yet feasible in the near future for many types 
of measurements. (Think e.g. we will need predictions at good enough perturbation order for 
arbitrary Lagrangians. Challenging!)

A trimmed-down version of this idea that I would like to work on that can be implemented in 
O(months), is to 

● restrict the space of models to ones that can be properly described with SLHA files (a.k.a. SUSY-
like models)

● start with direct searches, use simplified models and SModelS 

for a quick confrontation of the models with O(100) LHC search results.
● That way, we can search for “dispersed signals” – signals that become evident 

when combining searches – in the existing results.
● If now dispersed signals can be identified, we can search for maximally “spectacular” 

signatures that should be within reach of the LHC but have nevertheless been missed, at 

by the simplified models results. We can encode the notion of “spectacularity” in our prior.
● Of course, such an approach could be combined with a likelihood on Wilson coefficients, and thus 

LHC precision measurements. 



  

Simplified models are models meant to describe physics Beyond the Standard Model 
(BSM). Contrary to a “full” model like supersymmetry, however, they only introduce a small 
number (2 or 3) of new particles, allow them to decay only in one specific channel. They are 
meant as a tool, or a “abstraction interface” for a theorist to the results of the searches of 
CMS and ATLAS.

Recap: simplified models                 

CMS-PAS-SUS-17-012

A typical simplified 
models result, as 
presented by CMS. Two 
massive particles (g, χ) 
were introduced. The 
upper limits on 
production cross 
sections (the heatmap) 
are given as a function of 
the masses of 
these two particles.

the simplified 
model

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS-17-012/index.html


  

SModelS confronts theories beyond the Standard Model (BSM) 
with LHC search results by decomposing full models into their 
simplified models topologies, and comparing the cross section 
predictions of these individual  
topologies with a database 
of SMS results.

Recap: the Idea behind 
SModelS                 

S
pe

ed

Constraining power

Simplified
model

Full
simulation



  

 SModelS database

We collect the results of the experimental collaborations, 
and augment them with recast analyses (MadAnalysis5, 
CheckMATE), creating our own efficiency maps. In 
addition, fastlim kindly allowed us to also use their 
efficiency maps. SModelS v1.2.2 ships with results of 
almost 100 different analyses. https://smodels.github.io/docs/ListOfAnalyses

https://smodels.github.io/docs/ListOfAnalyses


  

Combination of analyses

Joint likelihoods for 
combining analyses

many pairs of 
analyses can be 
treated as 
approximately 
uncorrelated 
(the green blocks, 
think e.g. of a 8 TeV 
ATLAS result and a 
13 TeV CMS result)



  

Summary
● Why don’t we mechanize the task of model building, and treat it as 

random steps in a Bayesian random walk!

● We can encode many types of “goals”, (theoretical) constraints and 
desirable features in our prior.

● In order to avoid the cost of recasting LHC searches, we can use the 
conservative but fast SModelS.

● Constraints from measurements 
may be added via likelihoods 
on Wilson coeffients.




  



  

Recap: How SModelS 
works
1) Decomposition of a fundamental model

Input: SLHA file (mass 
spectrum, BRs) or 
LHE file (parton level)

Currently the model 
must have a Z

2 

symmetry

The decomposition 
produces a set of 
simplified model 
topologies (dubbed  
“elements”)



  

2) Description of the topology in the SModelS 
formalism

Each topology is described by:
• Topology shape + final states
• BSM masses
• σ x BR

We (currently) ignore spin, color, etc of the 
BSM particles

It is model independent, there is no reference 
to the original model

Recap: How SModelS 
works



  

3) Comparison of predicted signal strengths
with experimental result:

• Upper Limit Results:
Predicted signal strength = σ x BR
Experimental result:  σ

UL

• Efficiency Map Results:
Predicted signal strength = ∑  σ x BR 
x ε
Experimental result: σ

UL
=N

UL
/ L  from 

N
observed

, expected(BG), error(BG)

• r = predicted  /  σ
UL 

• Model is excluded if most 
constraining analysis has r > 1 

Recap: How SModelS 
works


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

