Z' gauge bosons at the LHC start-up

Elena Accomando

Southampton University and RAL

17 May 2010

What is a Z'?

to a theorist it could be many things...

It is useful to classify the Z' according to its spin (even though measuring the spin will require high statistics):

Spin-0 (e.g. sneutrino in R-parity violating SUSY)
Spin-2 (e.g. KK excited graviton as in Randall-Sundrum)
Spin-1 (the only cases considered here, e.g.

a) a new U(1) gauge boson from E₆ or L-R models

- b) KK excited Z bosons from ED and/or Higgsless models
- c) Techni-rho bound states from Walking TC models)

Z' from an extra U(1) gauge group 3 most popular classes of models

- **SSM** or SM-like: not realistic but used as benchmark
- E₆ models :
- $E_{\underline{6}} \to SO(10) \ge U(1) \to SU(5) \ge U(1) \ge SM \ge U(1)$

•
$$U(1) = \cos\theta U(1)_{\chi} + \sin\theta U(1)_{\psi}$$

- LR models:
- $SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L} \rightarrow SU(2)_{L} \times U(1)_{Y} \times U(1)$
- U(1)=cosφ U(1)_R + sinφ U(1)_{B-L}
- N.B. left-right symmetry implies φ = -23°
- other values are a pheno generalization

17 May 2010

Z' from an extra U(1) gauge group 3 most popular classes of models

D0 Note 5923-CONF

FIG. 5: The upper limit on the observed and expected cross section at 95% CL with superimposed the SSM Z', and E6 Z' models.

17 May 2010

Z' from an extra U(1) gauge group 3 most popular classes of models

D0 Note 5923-CONF

TABLE IV: Expected and observed lower mass limits for the SSM Z', E6 Z' models, and RS gravitons.

Model	Nom	inal	Conservative			
	Expected Lower	Observed Lower	Expected Lower	Observed Lower		
	Mass Limit (GeV/c ²)	Mass Limit (GeV/c^2)	Mass Limit (GeV/c^2)	Mass Limit (GeV/c ²)		
Z'_{SSM}	949	950	942	944		
Z'_{η}	844	810	837	800		
Z'_{χ}	834	800	827	787		
Z_{ψ}'	817	763	809	751		
$Z'_{s\sigma}$	774	719	767	713		
Z'_N	803	744	796	736		
Z'_I	732	692	716	683		
RS $(k/M_{Pl} = 0.1)$	826	786	819	767		
RS $(k/M_{Pl} = 0.07)$	767	708	758	700		

D0 3.6 fb⁻¹: Mass limit ~ 700-800 GeV

17 May 2010

Warped Extra Dimensions a special class of models

With SU(2)_L x SU(2)_R x U(1) in the bulk we can break the electroweak gauge symmetry by boundary conditions "Higgsless models"

or the Higgs may be located close to TeV brane "Walking TechniColor models"

They both predict spin-1 KK excited versions of W and Zgauge bosons

Strong motivation for extra U(1)'s: delaying the violation of perturbative unitarity

17 May 2010

Higgsless Models and New gauge bosons

... a bit of history

•BESS `85[Casalbuoni, De Curtis, Dominici, 1 extra vector boson Gatto]

•Extra dimension `90[Antoniadis, Arkani-Hamed, Dimopoulos, Dvali, ...]

•Deconstructed models `00[Arkani-Hamed, 1 a Cohen, Georgi, Hill, Pokorsky, Wang, ...]

•Linear Moose model [Foadi et al., Casalbuoni et al., Chivukula et al., ...]

A tower of extra bosons

1 and more extra bosons

1 and more extra bosons

The Higgsless Linear Moose model

or the most general framework

• The '85 BESS model can be recast in a 3-site model (N=0), and its extension (N=1) in a

4-site Linear Moose model (N=1)

(Casalbuoni, De Curtis, Dominici, Gatto, Feruglio, '89, see also E.A., '08, Foadi, Frandsen, Ryttov, Sannino, '07)

•Gauge groups $G_i = SU(2)$ with symmetry $SU(2)_L * SU(2)_R$

•6 extra gauge bosons W^{*}_{1,2} and Z^{*}_{1,2}

•4 new parameters $\{M_1, M_2, b_1, b_2, g_1\}$ related to their 2 masses and couplings to bosons and fermions.

17 May 2010

The Higgsless 4-site Linear Moose model Unitarity versus EW precision tests

Generally, in Higgsless theories, Unitarity and EWPT are hardly compatible!

A direct coupling between new gauge bosons and ordinary SM matter must be included: $b_{1,2} \neq 0$

17 May 2010

The Higgsless 4-site Linear Moose model and the EW precision tests

Bounds on <u>charged couplings</u> (and masses) from low energy precision measurements **E**_i

$$-0.1 < a_{1,2}^{c}(W_{1,2} ff) < 0.25$$

 M_1 =1000 GeV and M_2 =1250 GeV

couplings are SM-size

17 May 2010

The Higgsless 4-site Linear Moose model and the EW precision tests

Bounds on <u>neutral couplings</u> (and masses) from low energy precision measurements $\boldsymbol{\epsilon}_i$

$$-0.3 < a_{1,2}^{L}(Z_{1,2}^{T} ff) < 0.5$$

$$M_1$$
=1000 GeV and M_2 =1250 GeV

couplings are SM-size

17 May 2010

Higgsless Models and new $Z_{1,2}$ and $W_{1,2}$ at the LHC

Owing to the usual tension between unitarity and EW precision tests, the extra gauge-boson couplings to SM matter must be small!

In literature main focus was on complex processes

Higgsless Models and new $Z_{1,2}$ and $W_{1,2}$ at the LHC

Drell-Yan processes can be as well a good EWSB discovery channel

Let's start from the simple!

Belyaev et al. Phys. Rev. '09 E.A., De Curtis, Dominici, Fedeli, Phys. Rev. '08

17 May 2010

Event Generator FAST_2f

(E.A.)

FAST_2f is an upgrade of PHASE [E.A., Ballestrero, Maina], a MCEG for multi-particle processes at the LHC. It is dedicated to Drell-Yan processes at the Leading-Order and it is interfaced with PYTHIA

Processes

We consider charged and neutral Drell-Yan leptonic channels

•**pp** -> *ll* with *l*=e,**µ**

•pp -> $l\nu$ with $l=e,\mu$ and $l\nu=l\nu+l+\nu$

Kinematical cuts

Acceptance cuts: $\eta(l) < 2.5, P_t(l) > 20 \text{ GeV}, P_t^{\text{miss}} > 20 \text{ GeV}$ Selection cuts: $M_{inv}(ll) > 250 \text{ GeV}$ for pp -> *ll* $P_t(l) > 150 \text{ GeV}$ for pp -> *lV*

no realistic detector simulation is included!

17 May 2010

$Z_{1,2}$ Drell-Yan production at the LHC 1 fb⁻¹

E.A., De Curtis, Dominici, Fedeli

Two observable resonances -> distinctive signature

17 May 2010

Z_{1,2} **Drell-Yan production at the LHC 1 fb**⁻¹

E.A., De Curtis, Dominici, Fedeli

Only one observable resonance -> degeneracy with single Z' models

17 May 2010

D0 Note 5923-CONF

	TABLE II. Numbers of expected and observed events in different mass windows, and signal acceptance.							
$M_{Z'}$	Mass Window	Data	Expected	Signal Acceptance				
$({\rm GeV/c^2})$	Lower limit	Events	Background					
	(GeV/c^2)		Events					
400	354	27	22.4 ± 0.7	0.172 ± 0.014				
500	445	16	7.92 ± 0.22	0.188 ± 0.015				
600	536	7	2.93 ± 0.07	0.199 ± 0.016				
700	626	2	1.052 ± 0.025	0.207 ± 0.017				
750	673	2	0.631 ± 0.016	0.209 ± 0.017				
800	718	1	0.384 ± 0.010	0.211 ± 0.018				
850	762	1	0.222 ± 0.006	0.212 ± 0.018				
900	810	0	0.134 ± 0.004	0.216 ± 0.019				
950	858	0	0.0701 ± 0.0023	0.214 ± 0.019				
1000	902	0	0.0410 ± 0.0015	0.216 ± 0.021				

TABLE II: Numbers of expected and observed events in different mass windows, and signal acceptance.

Counting strategy:

Asymmetric mass window: $M_{Z'} > M_{Z'}$ -3R R=mass resolution=3-4% $M_{Z'}$

17 May 2010

D0 Note 5923-CONF

FIG. 4: 95% CL limit on $\sigma \times BR(X \rightarrow e^+e^-)$, where X is a high-mass neutral narrow resonance. The theoretical cross-section of the SSM Z' with its uncertainty is included for comparison

Mass	Expected Limit	Observed Limit		
(GeV/c^2)	on Production $(\sigma \times BR)(fb)$	on Production $(\sigma \times BR)$ (fb)		
400	17.89	25.36		
500	10.02	24.89		
600	6.36	14.65		
700	5.59	7.35		
750	4.05	7.74		
800	4.02	5.95		
850	3.99	6.07		
900	3.94	3.94		
950	3.96	3.96		
1000	3.94	3.94		

1

TABLE III: Expected and observed 95% confidence level upper limits on production $\sigma \times BR$.

and Narrow width approximation, i.e. σ(pp->Z') x Br(Z'->ll)

a warning on NWA and counting strategy

Higgsless model: DY-processes with Z_1 and Z_2 -boson exchange

Theory Z_{1,2} versus ----- 95% CL Observed ----- 95% CL Expected

(Poisson significance estimator in perfect agreement!)

in the following: Z_{1,2} mass limit from D0 observed data

D0 3.6 fb⁻¹:Mass limit ~ 650 GeV

17 May 2010

Discovery at the Tevatron: D0 10 fb⁻¹

Neutral channel: DY-processes with Z_1 and Z_2 -boson exchange

Discovery at the LHC: CMS 1 fb⁻¹

Neutral channel: DY-processes with Z_1 and Z_2 -boson exchange

$$= 95\% \text{ CL D0 3.6 fb}^{-1} \text{ excl.}$$
$$= Z_{1,2} \text{ discovery}$$
$$= Z_2 \text{ discovery}$$
$$= 95\% \text{ CL exclusion}$$

LHC @ 50 pb⁻¹ improves bounds from D0 3.6 fb⁻¹

LHC @ 1 fb⁻¹ can exclude M < 1400 GeV

17 May 2010

Z₁ **Discovery:** LHC 1 fb⁻¹ vs **D0** 10 fb-1

Neutral channel: DY-processes with Z_1 and Z_2 -boson exchange

---- 95% CL D0 3.6 fb⁻¹ excl.

$$Z_1$$
 discovery
---- 95% CL exclusion

LHC (*a*) 1 fb⁻¹ extends Z_1 -mass bound: M_1 =700 -> 800 GeV

17 May 2010

Z₂ Discovery: LHC 1 fb⁻¹ vs D0 10 fb-1

Neutral channel: DY-processes with Z_1 and Z_2 -boson exchange

17 May 2010

$Z_{1,2}$ exclusion: LHC 1 fb⁻¹ vs D0 10 fb⁻¹ Neutral channel: DY-processes with Z_1 and Z_2 -boson exchange

---- 95% CL D0 3.6 fb⁻¹ observed
---- 95% CL D0 3.6 fb⁻¹ expected
---- 95% CL D0 10 fb⁻¹ exclusion
---- 95% CL LHC 1 fb⁻¹ exclusion

LHC @ 1 fb⁻¹ extends Z_{1,2}-boson exclusion: M=1000 -> 1400 GeV

Discovery (a) the LHC <u>14 TeV, 100 fb¹</u> DY-processes in the neutral channel, Z_1 , Z_2 exchanges

More needed: LHC at 14 TeV and 100 fb⁻¹

How to distinguish the various models? Forwardbackward charge asymmetry A_{FB} in pp $\rightarrow l^+l^-$

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^*}\propto \frac{3}{8}(1+\cos^2\theta^*)+\mathrm{A}^\ell_{\mathrm{FB}}\cos\theta^*$

 θ^* is the angle of the *t* with the incoming quark in the dilepton frame (Collins-Soper)

Approximate the direction of the incoming quark with the boost direction of the leptonic system with respect to the beam axis (Dittmar, 1997)

M_{Z²}=M_{Z^{(SM-like)}=1.3 TeV</sub>}

we select the events within $|\mathbf{M}_{inv}(\mathbf{l}^+\mathbf{l}^-)-\mathbf{M}_{\mathbf{Z}^-}| < 3\Gamma_{\mathbf{Z}^-}$

Rapidity cut: |y(l+l-)|>1

17 May 2010

L=100 fb⁻¹

More needed: LHC at 14 TeV and 100 fb⁻¹

Forward-backward asymmetry A_{FB} in pp $\rightarrow l^+l^-$

(Dittmar,Nicollerat,Djouadi 03; Petriello,Quackenbush 08)

17 May 2010

More needed: LHC at 14 TeV and 100 fb⁻¹

On- and off-resonance A_{FB} for a single resonance scenario

•The on-resonance A_{FB} is more pronounced in the 4-site model due to the difference between the left and the right-handed fermion-boson couplings

•The off-resonance A_{FB} could reveal the double-resonant structure not appreciable in the dilepton invariant mass distribution

Conclusions

- Higher dimensional gauge theories naturally suggest the possibility of Higgsless theories
- Linear moose models provide an effective description of Higgsless theories. They are calculable, not excluded by the EW precision measurements and describe new spin-1 gauge bosons which delay the unitarity violation scale
- DY processes are the favoured channel to discover the new $Z'_{1,2}$ and $W'_{1,2}$ even during the early stage LHC data taking!
- A_{FB} for distinguishing among various models with Z`

This analysis is part of a wider project developed within NExT

NexT project

E. A., A. Belyaev, L. Fedeli, S. King, C. Shepherd-Themistocleous

or solving the LHC inverse problem:

By exploring the most promising BSM theories, i.e. SUSY, DEWSB, and LEXD, the basic idea is to create a strategy capable to deconvolute the LHC signals using a comprehensive set of kinematical variables, and to identify the underlying theory.

theory and experiment for the same goal!

17 May 2010

NexT project

Drell-Yan production cross-section

$$\sigma_{f\overline{f}} \equiv \sigma(pp \to Z'X \to f\overline{f}X)$$

Narrow width approximation

$$\sigma_{f\overline{f}} \approx \int_{(M'_Z - \Delta)^2}^{(M'_Z + \Delta)^2} \frac{d\sigma}{dM^2} (pp \to f\overline{f}) dM^2 \approx \left(\frac{1}{3} \sum_{q=u,d} \left(\frac{dL_{q\overline{q}}}{dM_{Z'}^2}\right) \hat{\sigma}(q\overline{q} \to Z')\right) \times Br(Z' \to f\overline{f})$$

Simple structure $\sigma_{l+l-} \approx \frac{\pi}{48s} \left[c_u w_u(s, M_{Z'}^2) + c_d w_d(s, M_{Z'}^2) \right]$

Carena, Daleo, Dobrescu, Tait

$$\begin{array}{ll} \text{Model dependent} & \left\{ \begin{array}{l} c_u \propto \hat{\sigma}(u\overline{u} \rightarrow Z') \times Br(Z' \rightarrow l^+l^-) \\ c_d \propto \hat{\sigma}(d\overline{d} \rightarrow Z') \times Br(Z' \rightarrow l^+l^-) \end{array} \right\} & \text{depend on g' and } g_{V,A}^{\ \ f} \\ \text{Model independent} & w_u \propto \frac{dL_{u\overline{u}}}{dM_{Z'}^2} & w_d \propto \frac{dL_{d\overline{d}}}{dM_{Z'}^2} \end{array} \right\} & \text{depend on s and } M_{Z'} \end{array}$$

All Z' models in one picture

	$\sigma_{l^+l^-} \approx \frac{\pi}{48s}$	$\begin{bmatrix} c_u w_u(s, M) \end{bmatrix}$	$(I_{Z'}^2) + c_d w_d$	$M_l(s, M_Z^2)$,)]	Direct limit	Indirec limit	Z-Z' t mixing limit
U(1)'	$Br(l^+l^-)$	c_u	c_d	c_u/c_d	$\Gamma_{Z'}/M_{Z'}$	$M_{Z'}^{\mathrm{D}}$	$M^{\rm I}_{Z'}$	$ \theta_{ZZ'} $
$E_6 \ (g' = 0.46)$	52)							
$U(1)_{\chi}$	0.0606	$6.46.10^{-4}$	$3.23.10^{-3}$	0.2	0.0117	892	1141^{e}	$1.6.10^{-3}$
$U(1)_{\psi}$	0.0444	$7.90.10^{-4}$	$7.90.10^{-4}$	1	0.0053	878	481^{c}	$1.8.10^{-3}$
$U(1)_n$	0.0371	$1.05.10^{-3}$	$6.59.10^{-4}$	1.6	0.00636	982	434^{c}	$4.7.10^{-3}$
$U(1)_S$	0.0656	$1.18.10^{-4}$	$3.79.10^{-3}$	0.31	0.0117	821	1257^{e}	$1.3.10^{-3}$
$U(1)_I$	0.0667	0	$3.55.10^{-3}$	0	0.0106	789	1204^{e}	$1.2.10^{-3}$
$U(1)_N$	0.0555	$5.94.10^{-4}$	$1.48.10^{-3}$	0.40	0.00635	861	623^{e}	$1.5.10^{-3}$
GLR $(g'=0)$.595)							
$U(1)_R$	0.0476	$4.21.10^{-3}$	$4.21.10^{-3}$	1	0.0247	-	442^{e}	-
$U(1)_{B-L}$	0.154	$3.02.10^{-3}$	$3.02.10^{-3}$	1	0.015			
$U(1)_{LR}$	0.0246	$1.39.10^{-3}$	$2.44.10^{-3}$	0.57	0.0207	630	998^e	$1.3.10^{-3}$
$U(1)_Y$	0.125	$1.04.10^{-2}$	$3.07.10^{-3}$	3.4	0.0235	-	-	-
SM $(g' = 0.7)$	4)							
$U(1)_{SM}$	0.0308	$2.42.10^{-3}$	$3.12.10^{-3}$	0.775	0.0297	1030	1787^{c}	9.10^{-4}
17 May 20)10		E. Accomar	ıdo				

All Z' models in one picture

Z' mass limit contours in the c₁-c₁ plane LHC 500 pb⁻¹

Generalized LR models

17 May 2010

Z' mass limit contours in the c_d - c_u **plane** LHC 500 pb⁻¹

Higgsless model

non trivial M_{1,2} dependence from branchings/couplings

not possible to nail down the 4-site model, but one can give constraints on the parameter space M_1, M_2, b_1, b_2

Work in progress

E. A., A. Belyaev, L. Fedeli, S. King, C. Shepherd-Themistocleous

or from LHC to the Lagrangian parameters

Z' is very easy to discover in the first LHC run @ 7 TeV and 1 fb⁻¹

Z' is also predicted by 100s of models

A fully <u>comprehensive and synthetic</u> way of presenting/intrepreting experimental results is needed

theory and experiment for the same goal!

NExT `09

W'_{1,2} **Drell-Yan production at the LHC**

E.A., De Curtis, Dominici, Fedeli

 $M_2 = M_1/z$

al # of evts in a 10GeV-bin versus $M_T(IV)$ for L=10fb⁻¹. Sum over e,µ

28 October 2009

NExT `09

W'_{1,2} **Drell-Yan production at the LHC**

	$M_{1,2}({ m GeV})$	$b_{1,2}$	$M_t^{cut}({ m GeV})$	$N_{\mathrm{evt}}^{\mathrm{sig}}(W_1)$	$N_{\mathrm{evt}}^{\mathrm{tot}}(W_1)$	$\sigma(W_1)$	$N_{\mathrm{evt}}^{\mathrm{sig}}(W_2)$	$N_{\rm evt}^{\rm tot}(W_2)$	$\sigma(W_2)$
I)	500,1250	-0.05,0.09	400	36	2435	0.7	776	2214	16.5
2)	500,1250	0.06, 0.02	400	0	2609	0	1	1807	0
3)	1000,1250	-0.08,0.03	700	808	1230	23.0	1112	1189	32.3
I)	1000,1250	0.07,0.0	700	12	443	0.6	17	88	1.8

of evts for the $W_{1,2}$ DY-production for $M_t(l\nu_l) > M_t^{cut}$

 $\sigma = N_{\rm evt}^{\rm sig}/\sqrt{N_{\rm evt}^{\rm tot}}$ for an integrated luminosity L=10 fb⁻¹

The statistical significance for the W's production can be a factor 2 bigger than for the Z's but it is less clean.

Neutral and charged channel are complementary

All six extra gauge bosons could be investigated at the LHC start-up with L ~ 1-2 fb⁻¹ for M_{1.2} < 1TeV

28 October 2009

Four-site model: $Z_{1,2}$ -boson properties

E.A., De Curtis, Dominici, Fedeli

IFAE `08

w/wo Higgs models and unitarity

e.g. WW scattering:

for ON-SHELL incoming W's

$$g_i \propto s^2$$
 $\Sigma g_i \propto s = M_{WW}^2$ $\Sigma (g_i + h_i)
ightarrow Const.$

27/03/2008

IFAE `08

The Higgsless Linear Moose model in Drell-Yan processes at the LHC

E.A., De Curtis, Dominici, Fedeli

