Supersymmetric Lepton Flavour Violation

Apostolos Pilaftsis

School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

15 March 2010, University of Sussex, Brighton, UK

Talk based on Phys. Rev. D **80** (2009) 091902 [arXiv:0904.2381], with A. Ilakovac

- LFV in the MSSM with Singlet Neutrinos $N_{1,2,3}$
- Supersymmetric LFV in the MSSM with Low-Scale $N_{1,2,3}$
- SLFV Quantum Effects
- Numerical Estimates for $\ell \to \ell' \gamma$, $\mu \to e$ conversion, $\mu \to eee$, $\tau \to eee$ etc
- Conclusions

• LFV in the MSSM + $N_{1,2,3}$

Leptonic part of the superpotential:

$$W_{
m lept} \;=\; {
m h}_{e}^{ij} E^{c}_{iR} H_{dL} \cdot L_{jL} \;+\; {
m h}_{
u}^{ij} N^{c}_{iR} H_{uL} \cdot L_{jL} \;+\; rac{{
m m}_{M}^{ij}}{2} N^{c}_{iR} N^{c}_{jR}$$

• LFV in the MSSM + $N_{1,2,3}$

Leptonic part of the superpotential:

$$W_{
m lept} \;=\; {
m h}_{e}^{ij} E^{c}_{iR} H_{dL} \cdot L_{jL} \;+\; {
m h}_{
u}^{ij} N^{c}_{iR} H_{uL} \cdot L_{jL} \;+\; rac{{
m m}_{M}^{ij}}{2} N^{c}_{iR} N^{c}_{jR}$$

LFV induced after integrating out the super-heavy $N_{1,2,3}$: [F. Borzumati, A. Masiero, PRL57 (1986) 961; J. Hisano *et al.*, PRD53 (1996) 2442.]

$$\mathcal{M}^2_{\tilde{e}} = \left(egin{array}{cc} M^2_{\tilde{L}} + (m_e m^\dagger_e) + D_1 \, 1 & m_e (A^*_e - \mu t_eta \, 1) \ (A^T_e - \mu^* t_eta \, 1) m^\dagger_e & M^2_{ ilde{e}} + (m^\dagger_e m_e) + D_2 \, 1 \end{array}
ight) \, ,$$

LFV induced by the flavour structure of the soft SUSY-breaking sector

Numerical Example for soft LFV from Hisano etal.:

$$egin{aligned} M_R &= 2 imes 10^{13} \; ext{GeV}, \; ext{h}_
u &\sim 1: \ & B(\mu
ightarrow e \gamma) \;\; \sim \;\; 2 \cdot 10^{-13} imes \; (ext{h}_
u^\dagger ext{h}_
u)_{\mu e}^2 \left(rac{ an eta}{3}
ight)^2 \underbrace{ \left(rac{ ext{ln}(M_{ ext{GUT}}/m_N)}{ ext{ln}(M_{ ext{GUT}}/M_R)}
ight)^2}_{: \sim \;\; 10} \ & \sim \;\; 2 \cdot 10^{-12} imes (ext{h}_
u^\dagger ext{h}_
u)_{\mu e}^2 \; \left(rac{ an eta}{3}
ight)^2 \;, \quad \text{for} \; m_N = 2 \; ext{TeV} \end{aligned}$$

Soft LFV is more important at large $\tan \beta$

Numerical Example for soft LFV from Hisano etal.:

$$egin{aligned} M_R &= 2 imes 10^{13} \; ext{GeV, } ext{h}_
u &\sim 1: \ & B(\mu
ightarrow e \gamma) \;\; \sim \;\; 2 \cdot 10^{-13} imes \; (ext{h}_
u^\dagger ext{h}_
u)_{\mu e}^2 \left(rac{ an eta}{3}
ight)^2 \underbrace{ \left(rac{ ext{ln}(M_{ ext{GUT}}/m_N)}{ ext{ln}(M_{ ext{GUT}}/M_R)}
ight)^2}_{:\sim \;\; 10} \ & \sim \;\; 2 \cdot 10^{-12} imes (ext{h}_
u^\dagger ext{h}_
u)_{\mu e}^2 \; \left(rac{ an eta}{3}
ight)^2 \;, \quad \text{for } m_N = 2 \; ext{TeV} \end{aligned}$$

Soft LFV is more important at large $\tan \beta$

$${B(\mu
ightarrow eee) \over B(\mu
ightarrow e \gamma)} ~\sim~ 7 imes 10^{-3}$$

Photonic charged lepton decays dominate in soft LFV

• SLFV in the MSSM with Low-Scale $N_{1,2,3}$

– **Small Neutrino Masses from Flavour Symmetries:**

$$M_{
u} = \left(egin{array}{cc} 0 & \mathbf{m}_D^T \ \mathbf{m}_D & \mathbf{m}_M \end{array}
ight), \qquad \mathbf{m}_D = rac{\mathbf{h}_{
u} \, v_u}{\sqrt{2}}$$

Light and Heavy Neutrino Mass Matrices:

$$\mathrm{m}_{
u}^{\mathrm{light}} pprox - \mathrm{m}_{D}^{T} \mathrm{m}_{M}^{-1} \mathrm{m}_{D}, \qquad \mathrm{m}_{M}^{\mathrm{heavy}} pprox m_{N} 1$$

Light-to-Heavy Neutrino Mixing: $m_D^{\dagger} m_M^{-1} \approx m_D^{\dagger}/m_N$

Define LFV parameters:

$$\Omega_{\ell\ell'} \equiv (\mathbf{m}_D^{\dagger} \mathbf{m}_M^{-1} \mathbf{m}_M^{-1\dagger} \mathbf{m}_D)_{\ell\ell'} \approx \frac{v_u^2}{2m_N^2} (\mathbf{h}_{\nu}^{\dagger} \mathbf{h}_{\nu})_{\ell\ell'}$$

 $\Omega_{\ell\ell'}$ unconstrained from $\mathrm{m}_{
u}^{\mathrm{light}}$ in Non-Seesaw Models

– The Non-Seesaw Paradigm

[A.P., PRL95 (2005) 081602 [hep-ph/0408103]; based on A.P., ZPC55 (1992) 275;
D. Wyler, L. Wolfenstein, NPB218 (1983) 205;
R.N. Mohapatra, J.W.F. Valle, PRD34 (1986) 1642.]

Break SO(3) and $U(1)_l$ flavour symmetries:

$$\mathsf{SO}(3) \longrightarrow \mathsf{SO}(2) \simeq \mathsf{U}(1)_l \stackrel{\sim \boldsymbol{\varepsilon}_{e,\mu,\tau}}{\longrightarrow} \mathsf{I}$$

U_l(1)-broken Yukawa sector:

$${
m m}_D^T \;=\; rac{v_u}{\sqrt{2}} \, \left(egin{array}{ccc} {m arepsilon}_e & a \, e^{-i\pi/4} & a \, e^{i\pi/4} \ {m arepsilon}_\mu & b \, e^{-i\pi/4} & b \, e^{i\pi/4} \ {m arepsilon}_ au & c \, e^{-i\pi/4} & c \, e^{i\pi/4} \end{array}
ight) \;,$$

where a, b, c are unconstrained from $m_{\nu}^{\rm light}$, but only $|\varepsilon_{e,\mu,\tau}|$. If $|\varepsilon_{e,\mu,\tau}| \sim 10^{-6}$ - 10^{-7}

$$\implies \mathrm{m}_{\nu}^{\mathrm{light}} \sim rac{arepsilon_{\ell} arepsilon_{u}^{2}}{2m_{N}} \sim 0.1 \; \mathrm{eV} \implies m_{N} \sim 100 - 500 \; \mathrm{GeV}$$

⇒ 3 nearly degenerate heavy Majorana neutrinos.

Light neutrino-mass spectrum:

$$m_{\nu}^{\text{light}} = \frac{v_{u}^{2}}{2m_{N}} \begin{pmatrix} \frac{\Delta m_{N}}{m_{N}} a^{2} - \varepsilon_{e}^{2} & \frac{\Delta m_{N}}{m_{N}} ab - \varepsilon_{e}\varepsilon_{\mu} & \frac{\Delta m_{N}}{m_{N}} ac - \varepsilon_{e}\varepsilon_{\tau} \\ \frac{\Delta m_{N}}{m_{N}} ab - \varepsilon_{e}\varepsilon_{\mu} & \frac{\Delta m_{N}}{m_{N}} b^{2} - \varepsilon_{\mu}^{2} & \frac{\Delta m_{N}}{m_{N}} bc - \varepsilon_{\mu}\varepsilon_{\tau} \\ \frac{\Delta m_{N}}{m_{N}} ac - \varepsilon_{e}\varepsilon_{\tau} & \frac{\Delta m_{N}}{m_{N}} bc - \varepsilon_{\mu}\varepsilon_{\tau} & \frac{\Delta m_{N}}{m_{N}} c^{2} - \varepsilon_{\tau}^{2} \end{pmatrix},$$

where

$$\Delta m_N = 2(\Delta m_M)_{23} + i[(\Delta m_M)_{33} - (\Delta m_M)_{22}], \quad \frac{b}{a} = \frac{19}{50},$$

and (in $\sim 10^{-7}$ units)

$$\sqrt{\frac{\Delta m_N}{m_N}} a = 2, \quad \varepsilon_e = 2 + \frac{21}{250}, \quad \varepsilon_\mu = \frac{13}{50}, \quad \varepsilon_\tau = -\frac{49}{128}.$$

<u>Prediction</u>: inverted mass hierarchy, $m_{\nu_3} < m_{\nu_1} < m_{\nu_2}$, with

$$m_{\nu_2}^2 - m_{\nu_1}^2 = 7.54 \times 10^{-5} \text{ eV}^2, \qquad m_{\nu_1}^2 - m_{\nu_3}^2 = 2.45 \times 10^{-3} \text{ eV}^2,$$
$$\sin^2 \theta_{12} = 0.362, \qquad \sin^2 \theta_{23} = 0.341, \qquad \sin^2 \theta_{13} = 0.047.$$

- Scalar-Neutrino Mass Matrix:

[e.g. F. Deppisch and J.W.F. Valle, PRD72 (2005) 036001]

$$\mathcal{M}^2_{ ilde{
u}} \;=\; \left(egin{array}{cccc} H_1 & M & 0 & N \ M^\dagger & H_2 & N^T & 0 \ 0 & N^* & H_1^T & M^* \ N^\dagger & 0 & M^T & H_2^T \end{array}
ight),$$

$$H_{1} = m_{\tilde{L}}^{2} + \left(\frac{1}{2}M_{Z}^{2}c_{2\beta}1\right) + \left(m_{D}m_{D}^{\dagger}\right)$$
$$H_{2} = m_{\tilde{\nu}}^{2} + \left(m_{D}^{\dagger}m_{D}\right) + \left(m_{M}^{\dagger}m_{M}\right)$$
$$M = m_{D}\left(A_{\nu} - \mu / t_{\beta}\right)$$
$$N = m_{D}m_{M}^{\dagger}$$

- Scalar-Neutrino Mass Matrix:

[e.g. F. Deppisch and J.W.F. Valle, PRD72 (2005) 036001]

$$\mathcal{M}^2_{ ilde{
u}} \;=\; \left(egin{array}{cccc} H_1 & M & 0 & N \ M^\dagger & H_2 & N^T & 0 \ 0 & N^* & H_1^T & M^* \ N^\dagger & 0 & M^T & H_2^T \end{array}
ight),$$

$$H_{1} = m_{\tilde{L}}^{2} + \left(\frac{1}{2}M_{Z}^{2}c_{2\beta}1\right) + \left(m_{D}m_{D}^{\dagger}\right)$$
$$H_{2} = m_{\tilde{\nu}}^{2} + \left(m_{D}^{\dagger}m_{D}\right) + \left(m_{M}^{\dagger}m_{M}\right)$$
$$M = m_{D}\left(A_{\nu} - \mu / t_{\beta}\right)$$
$$N = m_{D}m_{M}^{\dagger}$$

• Model assumptions to determine the significance of SLFV:

[A. Ilakovac and A.P., PRD80 (2009) 091902]

- N- $ilde{N}$ sector nearly supersymmetric, if $m_N \gg M_{
 m SUSY}$
- $\mu \ll m_N$
- $ilde{M}_L^2$, $ilde{M}_e^2$, A_e diagonal at m_N

• SLFV Quantum Effects

Dominant terms to lowest order in g_w and v_u :

– Two neutrino Yukawa couplings $\propto \ {
m h}_{
u}^2$

– Four neutrino Yukawa couplings $\propto~h_{ u}^4$

SLFV Transition Amplitudes:

$$\begin{split} \mathcal{T}_{\mu}^{\ell\ell'\gamma} &= \frac{e\alpha_w}{8\pi M_W^2} \,\overline{\ell}' \, \left[F_{\gamma}^{\ell\ell'} (q^2\gamma_\mu - \not q q_\mu) P_L \, + \, G_{\gamma}^{\ell\ell'} i\sigma_{\mu\nu} q^\nu m_\ell P_R \right] \, \ell \\ \mathcal{T}_{\mu}^{\ell\ell'Z} &= \, \frac{g_w \alpha_w}{8\pi c_W} \, \overline{\ell}' \gamma_\mu P_L \ell \, F_Z^{\ell'\ell} \\ \mathcal{T}_{box}^{\ell\ell'\ell_1\ell_2} &= \, -\frac{\alpha_w^2}{4M_W^2} \, F_{box}^{\ell\ell'\ell_1\ell_2} \, \overline{\ell}' \gamma_\mu P_L \ell \overline{\ell}_1 \gamma^\mu P_L \ell_2 \\ \mathcal{T}_{box}^{\ell\ell'qq} &= \, -\frac{\alpha_w^2}{4M_W^2} \, F_{box}^{\ell\ell'qq} \, \overline{\ell}' \gamma_\mu P_L \ell \overline{q} \gamma^\mu P_L q \, , \qquad q \, = \, u, d \end{split}$$

Photon Form Factors:

[A. Ilakovac and A.P., PRD80 (2009) 091902]

$$egin{array}{rcl} (F_{\gamma}^{\ell\ell'})^N &=& rac{\Omega_{\ell\ell'}}{6s_eta^2}\,\lnrac{m_N^2}{M_W^2}, \ (F_{\gamma}^{\ell\ell'})^{ ilde N} &=& rac{\Omega_{\ell\ell'}}{3s_eta^2}\,\lnrac{m_N^2}{ ilde m_h^2}, \end{array}$$

$$egin{aligned} &(G_{\gamma}^{\ell\ell'})^N &=& -\Omega_{\ell\ell'} \, \left(rac{1}{6s_{eta}^2} + rac{5}{6}
ight) \ &(G_{\gamma}^{\ell\ell'})^{ ilde N} &=& \Omega_{\ell\ell'} \, \left(rac{1}{6s_{eta}^2} + f
ight) \end{aligned}$$

Z-Boson and Box Form Factors:

[A. Ilakovac and A.P., NPB437 (1995) 491; PRD80 (2009) 091902]

0

$$egin{aligned} (F_Z^{\ell\ell'})^N &= - rac{3\Omega_{\ell\ell'}}{2} \ln rac{m_N^2}{M_W^2} - rac{\Omega_{\ell\ell'}^2}{2s_eta^2} rac{m_N^2}{M_W^2}, \ (F_Z^{\ell\ell'})^{ ilde N} &= rac{\Omega_{\ell\ell'}}{2} \, \ln rac{m_N^2}{ ilde m_1^2} + rac{\Omega_{\ell\ell'}^2}{4s_eta^2} rac{m_N^2}{M_W^2} \, \ln rac{m_N^2}{ ilde m_1^2}, \end{aligned}$$

$$(F_{box}^{\ell\ell'\ell_1\ell_2})^N = -\Omega_{\ell\ell'}\delta_{\ell_2\ell_1} - \Omega_{\ell\ell_1}\delta_{\ell_2\ell'} + rac{1}{4s_{eta}^4}\left(\Omega_{\ell\ell'}\Omega_{\ell_2\ell_1} + \Omega_{\ell\ell_1}\Omega_{\ell_2\ell'}
ight)rac{m_N^2}{M_W^2}$$

$$egin{aligned} &(F_{box}^{\ell\ell'\ell_1\ell_2})^{ ilde N} \,=\, -\, rac{M_W^2}{ ilde m^2} (\Omega_{\ell\ell'}\delta_{\ell_2\ell_1} + \Omega_{\ell\ell_1}\delta_{\ell_2\ell'}) \ &+ rac{1}{4s_eta^4} \left(\Omega_{\ell\ell'}\Omega_{\ell_2\ell_1} + \Omega_{\ell\ell_1}\Omega_{\ell_2\ell'}
ight) rac{m_N^2}{M_W^2} \end{aligned}$$

$$(F_{box}^{\ell\ell' uu})^{N} = -4(F_{box}^{\ell\ell' dd})^{N} = 4 \Omega_{e\mu}$$

$$(F_{box}^{\ell\ell' uu})^{\tilde{N}} = -\frac{4\tilde{m}_{W}^{2}}{\tilde{M}_{Q}^{2}} (F_{box}^{\ell\ell' dd})^{\tilde{N}} = \frac{2M_{W}^{2}\tilde{m}_{W}^{2}}{\tilde{M}_{Q}^{4}} \Omega_{e\mu}$$

REMARKS:

- SUSY Limit:

 $ilde{m}_W^2, \ ilde{m}_h^2, \ ilde{m}_{1,2}^2, \ ilde{m}_2^2, \ ilde{m}^2 \longrightarrow M_W^2 \ , \qquad t_eta \ \stackrel{ ext{SL}}{ o} \ 1 \ , \qquad \mu \ \stackrel{ ext{SL}}{ o} \ 0$

- Non-Renormalization of the SUSY Dipole Operator:

[S. Ferrara, E. Remiddi, PLB53 (1974) 347]

$$G_{\gamma}^{\ell\ell'} = (G_{\gamma}^{\ell\ell'})^N + (G_{\gamma}^{\ell\ell'})^{\tilde{N}} \stackrel{\mathrm{SL}}{
ightarrow} 0$$

- Positive Interference for **Box Form Factors**
- SUSY Enhancement in Z-Boson Form Factor through

$$rac{m_N^2}{M_W^2} {
m ln} rac{m_N^2}{ ilde{m}_1^2}$$

• Numerical Estimates

[A. Ilakovac and A.P., PRD80 (2009) 091902]

$$an eta = 3$$

 $ilde{M}_Q = M_{ ilde{
u}} = -\mu = 200 \; {
m GeV}$
 $M_{ ilde{W}} = 100 \; {
m GeV}$
 $oldsymbol{\Omega}_{\mu e} = oldsymbol{\Omega}_{ee} = oldsymbol{\Omega}_{\mu \mu}$, other $oldsymbol{\Omega}_{\ell \ell'} = 0$

Upper Bounds:

$$B(\mu^{-} \to e^{-}\gamma) < 1.2 \times 10^{-11} [1] < 1 \times 10^{-13} [2] B(\mu^{-} \to e^{-}e^{-}e^{+}) < 1 \times 10^{-12} [1] R_{\mu e}^{Ti} < 4.3 \times 10^{-12} [3] < 1 \times 10^{-18} [4] R_{\mu e}^{Au} < 7 \times 10^{-13} [5]$$

[1] Amsler, PLB 667 (2008) 1
 [2] Ritt, NPBPS 162 (2006) 279
 [3] Dohmen, PLB 317 (1993) 631
 [4] Kuno, NPBPS 149 (2005) 376

[5] Bertl, EPJC 47 (2006) 337

SLFV in the τ Sector:

$$\mathbf{\Omega}_{ au e} = \mathbf{\Omega}_{ee} = \mathbf{\Omega}_{ au au}$$
, other $\mathbf{\Omega}_{\ell\ell'} = 0$

[A. Ilakovac and A.P., PRD80 (2009) 091902]

Upper Bounds: [C. Amsler et al., PLB 667 (2008) 1] $B(\tau^- \to e^- \gamma) < 1.1 \times 10^{-7}$ $B(\tau^- \to e^- e^- e^+) < 3.6 \times 10^{-8}$ $B(\tau^- \to e^- \mu^- \mu^+) < 3.7 \times 10^{-8}$

• Conclusions

- SLFV is a new quantum-mechanical mechanism for LFV, within low-scale SUSY seesaw models with approximate flavour symmetries.
- SLFV is independent of the flavour structure of the soft SUSY sector.
- SLFV becomes dominant in non-photonic charged lepton decays, e.g. $\mu \rightarrow eee$, $\tau \rightarrow eee$, $\mu \rightarrow e$ conversion . . .
- Heavy sector of low-scale seesaw models with large ν -Yukawa couplings is potentially testable at the LHC. [A.P., ZPC55 (1992) 275;

[A.P., ZPC55 (1992) 275; A. Datta, M. Guchait, A.P., PRD50 (1994) 3195; A. Atre, T. Han, S. Pascoli, B. Zhang, JHEP0905 (2009) 030]

• Further theoretical studies are required to explore the full range of SLFV implications.