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Outline

@ Overview of QCD at non-zero quark chemical potential
@ Formulation of QCD on S* x S3 using perturbation theory

@ Results for various observables for N =3 and N = oo, preliminary
N = 2 lattice results.



Conjectured phase diagram of QCD

Progress has been made towards obtaining the phase diagram of QCD at
non-zero density using lattice simulations as well as models of QCD.
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(Left) Conjectured phase diagram of QCD in the - T plane. (Right) Detailed
possible phase diagram from an NJL model (from Alford arXiv:0907.0200).




What makes QCD at non-zero u so difficult?
The Sign Problem:

QCD at finite quark chemical potential ;1 has a complex action.

@ The boltzmann weight e~ is complex so it is not possible to perform

lattice simulations which use importance sampling.

@ The sign problem also complicates large N analysis: In the large N
limit the saddle point approximation becomes valid, but the stationary
point of a complex action with respect to the angles of the Polyakov
line lies in the space where the angles are complex. Therefore the
eigenvalues of the Polyakov line lie off the unit circle on an arc in the
complex plane.

= Need to generalize our techniques to handle a complex action.



Successful techniques that deal with or avoid the sign
problem
Lattice techniques valid for /T <1

@ Taylor expansion

o Reweighting

@ Imaginary i + analytic continuation
Infinite volume perturbation theory

@ chiral perturbation theory

@ large u perturbation theory
Using models

@ 2-color QCD

@ Random Matrix Theory

@ Nambu-Jona-Lasinio Models

o AdS/CFT
New

@ Complex Langevin

@ Finite spatial volume perturbation theory (this talk)



Region of validity of 1-loop calculations

Properties of SU(N) gauge theories on St x S3
e Valid for min[Rs1, R3] < Agep
» R3 x St small St:
* Good: Allows study at any N and in the limit of large 3-volume.
YM/QCD: m = 0, u = 0: Gross, Pisarski, Yaffe (Rev.Mod.Phys.53:43,1981), pu # 0: Korthals Altes,
Pisarski and Sinkovics (hep-ph/9904305), m # 0: Meisinger and Ogilvie (hep-ph/0108026),
QCD(Adj/AS/S): m = 0, u = 0: Unsal and Yaffe (hep-th/0608180), m # 0: Myers and Ogilvie
(arXiv:0903.4638)
* Bad: Have to be in the limit of high temperatures (or small S')
» 53 x S! small S3:
* Good: Allows study at any temperature (or any S%).
YM: Aharony et al (hep-th/0310285), QCD(Adj/AS/S): m = 0: Hollowood and Naqvi
(hep-th/0609203), Unsal (hep-th/0703025), m 5 0: Hollowood and Myers (arXiv:0007.3665), QCD:
m # 0, u # 0: Hands, Hollowood, Myers (arXiv:0910.0441)
* Bad: Must be in small 3-volume. Finite N studies are more
complicated.



Partition Function of QCD

The partition function of QCD at finite temperature T = 1/, for Ny
quark flavors, each with a mass mys and coupled to a chemical potential ur
is:

Zqcp = / DADGDye o 97 #xLaco

where 1 and v are the fundamental and anti-fundamental fermion fields,
respectively, and A is the SU(N) gauge field, A, = A7 T°.

The Lagrangian is

Ny
1 -
Lqocp = @TTF (FpuwFuv) + Z%f (Pe(A) = vopr + me) vy,
F=1

with covariant derivative

Du(A) = 8, — A,.



1-loop Lagrangian

Introduce fluctuations around a background field: Ay = a + g%,
then gauge fix and retain the one-loop contributions:

Locp =— —% (D3 () + &) — —Ba(Do( ) +AMT)B?

- §Cia(Do(a) + A —2(D5(e) + AF))e

N¢
+ D br(Dp(a) = vopr + me)ir
f=1
where A =B+ C.

@ B; = transverse: V;B; =0
o (; = longitudinal: C; = V;f



1-loop partition function

Performing the Gaussian integrals the almost-cancellation of the scalar
field contributions simplifies the one loop effective partition function:

Z(a) =

dety/ (D3(a) + A®) det™ (~D3(a) + A“T)) det™ (Pr(a) — Yop + m)

Eigenvalues £, and degeneracies d of Laplacians on S3:

A(type)Qj,/,ml,m2(917 v l3) = _Estypepgj,l,ml,mg (01, ...,63)

Example: scalars
2 — (14 2)/R?

di) = (1 4+ 1)

where / = 0,1, ..., and R is the radius of S3.



1-loop partition function: S* contribution

The eigenvalues of the Dirac operator can be computed in frequency space
in terms of the Matsubara frequencies:

Do(a) — iw, — a,

where the Matsubara frequencies, for antiperiodic (thermal) boundary
conditions are

w, = (2n+1)7/p.
We define the Polyakov loop:

P = Pels dthld) — o _ diag{e™®, ..., e/}



1-loop effective action

Simplification of the effective partition function leads gives the effective
action

S(P)=— Iog Z(P)

Z (1 — zp(nB/R)) TraP"
n=1

+Z

) Neze(nf/R, mR) [ MOHTy Py e‘”ﬁ“Tr,:PT”} ,

where .
oo v _gelvD) n
2(B/R) = LZyd e " =23 (04 2)e /R
/=1
2(B/R.mR) = Y52, dDe 5™ — 237 (04 1)e PV EHEPEmRR

For the pure Yang-Mills theory the weak-coupling analogue of the
deconfinement transition temperature can be calculated in the large N
limit: TyR ~ 0.759 or B4/R ~ 1.317 [Aharony et al (hep-th/0310285)].



Important observables

At finite N we can calculate observables by numerically performing the
integrals over the gauge field angles 6;.

e—S
(0) = ”‘w]%, 7= /[da]e—s.

@ Polyakov loop order parameters for phase transitions: (TrP), (TrPT).
P = (TrP)
P_y = (TrPY)

» These should differ for N > 2.
Average Phase: <ei¢>pq =Z7Z/Zpq.
» This tells us where the sign problem is severe.
Average number N = (Nguarks — Nantiquarks)-
» Gives the net number of quarks allowed at a given value of .

Pressure: P

(]

Energy: E



Average fermion number 4" (N =3, Nf =1, mR = 0)

250

= @ Average fermion number for
200 - i QCD on St x S3 with m =0,
: B/R =30 (low T).
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Each level L starts at (uR)o = L+ 1/2 and has:

L
height : b = NN¢ Y 21(1 + 1); width: w = A(uR) =1



Classical non-linear O(2) sigma-model results from lattice
(Banerjee and Chandrasekharan, arXiv:1001.3648)
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Average charge number Levels appear to go away with in-

creasing Lg = L, but this may not be
true if L;/Ls is kept fixed at a large
value.



Polyakov lines: & = (TrP) and &_; = (TrP") for m = 0

1

-S N i0;
0.75 F A n 1 P = J1d01e™> Yims e
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chemical potential 271 # &7_4
@ There is a spike in &?; and &_; corresponding to each jump in the

average fermion number, 4.
@ Deconfinement occurs in between the levels, as they are being filled.

o Given our notation, &?_; always preceeds &7, at each transition.



Polyakov lines: &, and &?_; with increasing u
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@ As p increases the peaks of &1 and &?_; get wider indicating that
the regions of deconfinement become larger with increasing p.



Average phase (e/?),, for m =0
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@ The average phase shows where the sign problem is severe.

o (e'?),q is smallest (largest) when |22 — &_1| is largest (smallest).



Continuum results (large mR)
Since all of our observables are a function only of 3/R, mR, or uR, then
we can obtain a continuum limit by taking:
@ (3/R small (high T perturbation theory),
@ 1R large (high density perturbation theory),
@ mR large (heavy quarks).
We take mR large. Then, in the vicinity of u = m:

z¢(nB/R,mR) =2 Il + 1)e~ V127 R24m?
1=0

:2/°°dy <y2_1>e—"§¢m
4
0

oo y2_|_l nﬂ
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JV fOI' m — o 300 -

integral 4"
@ For non-zero quark mass the S 4

expectation value .4 exhibits " Silver 200} 7
Blaze" behavior: Bulk observables are 5,1 i
zero until onset.

100 - B
mR

50 - bl

@ Onset occurs at the mass of the
lightest particle u >~ m.
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AN, P, E approach the Stefan-Boltzmann limit
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@ The Stefan-Boltzmann limit is the zero interaction free fermion limit.
On S! x S3 we obtain it from the one-loop result taking all the
0; = 0, corresponding to the “deconfined” phase, e. g.

Nsg —— 2NN / dy(y? — 1/4)

ebu

eﬁlJf + e(rg/R) V y2+m2R2



Polyakov liness: &2 and &Z_1 for m — o

T
mR

——— integral &,

P
P
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A1 and H_;1 as a function of

chemical potential for large quark

mass near onset at uR = mR =
300 N=3 Nr=1p3/R =230
(low T).

@ At low but non-zero

temperatures the
confinement-deconfinement
oscillations can be delayed by
taking mR — oc.

The transition in uR occurs
around onset at mR and
becomes sharper with
increasing mR.

The integral approximation to
z¢ (curves) breaks down
shortly after the onset
transition and the oscillations
return. The larger we take
mR, the farther in uR we can
go before breakdown.



Average phase (e/?) ,,

TS @ In the limit of large mR, spike
0.98 1 in the average phase as a
0961 | function of ©R marks the
onset transition. This is
0.94 ¢ ] followed by a brief respite from
092 J large phase fluctuations.
ool integral{e’),, @ Again we find that (e/?),, is
(P smallest (largest) when
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nit (smallest).



Large N theory at low T

In the large N limit the saddle point method is valid and it is possible to
solve for several observables analytically. Considering a single level
transition and performing the sum over n the action reduces to

:——Zlogsm ( >+NZV

ij=1
V(0) = iNO — o log (1 + §ei6>

o N is a Lagrange multiplier necessary to satisfy the det P =1
constraint: SV, 6; = 0.

°oo=o0;=2(1+1)F
o {=exp(B(n—e))
o c=¢ =/m+([+1/2)2R2




Equation of Motion
The saddle point solution is found by solving the equation of motion

05/00; = 0. This becomes:

. I'Ofeie" 1 0; —0;
IN_7:NZCOt<T>
J(#i)

14 et

Define the eigenvalues of the Polyakov line: z; = e/®. Then the equation

of motion is
sz,' 1 zi + Zj

N —

teE NGy

From the definition of the Polyakov line:

Py = (TeP") = Zem@

it is clear that Z2_, # &5 ((TrP~") # (TrP")*) for the saddle point

solution.



Fermion number

Adding EOMs for all the ;s we find that the Lagrange multiplier is

1 oz T OlogZ
N‘NZH&;_W o

which is the effective fermion number, N = JV/Nz, valid in the large N

limit.

Limits:
As £ -0 N — 0,
As £ — 0 N —o.

This is in agreement with the N = 3 results for a single level transition.



Small £ confined phase

Hypothesis: As £ increases from 0 the eigenvalues are continuously
distributed along a closed contour C in the z-plane.

It is useful to consider a map between the theory on the unit circle and the
theory in the complex z-plane of the Polyakov line eigenvalues. To this end

—Z / 27{27“@()

The contour is given by the inverse map z(s), which can be obtained by
solving the differential equation

.ds

IE = o(z)

subject to the initial condition z = e’ when & = 0.



Constraints

The distribution must satisfy the normalization condition

dz
—_— = 1
?é 22

and the det P = 1 constraint

/E (z)logz=0

o omi®



EOM for eigenvalues on a closed contour

Using

/\/Z / —}ﬁzmg@

we convert the EOM to an integral form

z+z rooy o0&z
V'(z) = ‘Bj{zm z2V'(z) =N —

-z’

where P indicates principal value and the integral over the closed contour
allows for evaluation of the right-hand side using Cauchy's theorem.



Distribution o(z) for eigenvalues on a closed contour C

We start from the distribution o(z) with z = re’® in the form of
delta-functions:

N

N
330 = [ardog > st - )s(o - &)

Jj=1 j=1

dz 1
:j{ P NZ(F ¢ — ¢j — ilog(r/r))
so
o1 U
o(2) = Sy D06 — &5 — ilog(r/17)
j=1
then we can solve the EOM assuming all poles in C to obtain the form

(=X e
QZ_ng oz 1+4+¢&z




Distribution o(z) in the small ¢ confined phase

The small ¢ confined phase with the pole —¢~1 outside. The EOM and
the normalization condition give

with V' = 0 as expected.

Solving the differential equation /% = o(z) leads to

e =z(1+¢2)°

which we invert to get the contour z(s). The Polyakov lines are

@12/;0(2)2207 @—1=/£Q(Z)l = 0§ .
c Tl C

27 z

where &_1 # &7 as advertised.



Extent of the small £ confined phase

As ¢ is increased the condition that the pole —¢71 lies outside C must
break down. Indeed as £ is increased there comes a point when o(z)

vanishes, z = £(1+o) This happens when
O.O'
N

and a gap opens up on the negative z-axis signaling a phase transition as
in the matrix model of Gross and Witten [Phys. Rev. D 21 (1980) 446].

In terms of u and e the line of transitions in the (u, T) plane is

p=¢ec—T[(1+0)log(l+0)—clogo]

valid in the low T limit.



Large & confined phase

The vanishing of the potential term in the action in the large & limit
requires that the contour closes here too. The analysis is similar to that of
the smal £ confined phase and we find that

_l1+o+¢&z
Q(Z)—m7

from the requirement that —¢~1 lies inside C. This gives V' = ¢ as
expected and the level is occupied.

The Polyakov line expectation values are

P = P_1=0.

é- 9
where comparing with the small £ confined phase &7, swaps over along
with the replacement & — £71.



Extent of the large £ confined phase

As ¢ is decreased the condition that the pole —£7! lies inside C must
break down. Indeed, as { is decreased there comes a point when o(z)

vanishes, z = _HTU' This happens when
1+o0)tte
(==
o

and a gap opens up again on the negative z-axis.

In terms of u and ¢ the line of transitions in the (u, T) plane is

p=ec+ T[(1+0)log(l+0c)—ologo]

valid in the low T limit.



The deconfined (open) phase: & < ¢ < &

In the deconfined phase the distribution has a gap and the eigenvalues lie
on an arc C in the complex z-plane defined by a square root branch cut
with endpoints Z and Z*. To solve for the case where the contour is open
it is necessary to use the resolvent / spectral curve method.

In anaolgy with the Gross-Witten model the resolvent is

1 z+ 2z ', , z+ 2
w(z) = N 7 z—z /62771'9(2)2—2’

where it is clear that

lim w(z)=1, lim w(z)=-1.
|z|—0 |z =00

We take the resolvent to be everywhere continuous except over the branch
cut. Then from the Plemelj formulae the EOM is

zV'(z) = —%[w(z—ke)—i—w(z—e)] , zeC



The distribution of the eigenvalues in the deconfined phase
The spectral density of eigenvalues is obtained from
1
zo(z) = E[w(z—i-e)—w(z—e)} , zeC.
which implies that we can solve for various observables using an average of

the form
| sme@)F (@) = § ZwF )

2mi ¢ 4miz

Following the technique of Wadia [EFI-79/44-Chicago| we solve the EOM
for the resolvent and density of eigenvalues

w(z) = —zV'(2)+f(2)\/(z = 2)(z — 2*), zo(z) = f(2)\V(z - 2)(z — 2¥).

where

o
f(Z)_(l‘i‘fz—)‘%‘f‘z"
sz |:N2+1+U—NO’+2i\/N(U—N)(1+O') :



Fermion number and Polyakov lines
We impose the SU(N) condition
dz
émw(z)logz =0.
to obtain the effective fermion number N from
B (o _N)a—/\/(l —|—N)1+N
NN+ o - NN

The Polyakov lines are obtained from an expansion of the resolvent

wz)=-1-2) %@n
n=1

§

wz)=1+2) 2"2_,
n=1

For a single winding




Large N theory at low T

0.8r

0.4

@ The discontinuities in the effective fermion number and the Polyakov
lines mark the third-order Gross-Witten transitions.



Distribution in the deconfined phase
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@ The contour C, which
gives the distribution of
the eigenvalues of the
Polyakov line, showing
the transition from the
small £ closed phase (in
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(in blue) and the large
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Preliminary lattice results from 2-color QCD

N,=N,=2, 3°x64 lattice
p=24.0,x=0.124
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Simulation results for N = 2 QCD confirm the level structure of the
fermion number and the associated spikes in the Polyakov line at each
level transition. The curious smooth — sharp feature of the observables at
the transitions needs study to determine if it is a result of larger coupling,
or perhaps resulting from working on the 4-torus.



Conclusions

@ QCD at finite chemical potential on S! x S3 has a complex action
which results the stationary solution lying in the configuration space
of complexified gauge fields.

@ Expectation values for observables can be obtained at finite N by
numerically integrating over the gauge fields.

@ Observables and the distribution of the gauge field eigenvalues can be
calculated analytically in the large N limit using the saddle point
method of Gross and Witten generalized to deal with a complex
action.

@ For small mR, the fermion number as a function of the chemical
potential suggests a level-structure where the level transitions
correspond to spikes in the Polyakov line.

@ For large mR, a continuum limit is obtained and the observables
exhibit the “Silver blaze" feature, remaining zero until onset is
reached at ;x = m. The confinement-deconfinement transitions return
for sufficiently large p.



Outlook

@ Add more flavors and look for color-superconducting phases through
calculation of observables like 1), (11))?

@ Make a connection with Complex Langevin which is a
non-perturbative technique

@ Consider higher-loop corrections and go beyond the Gaussian
approximation to obtain effects from increased coupling strength

@ Formulate a related theory from the gravity side (eg. N’ =4 SYM +
fundamental flavor branes and chemical potential)
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