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Outline

Overview of QCD at non-zero quark chemical potential

Formulation of QCD on S1 × S3 using perturbation theory

Results for various observables for N = 3 and N =∞, preliminary
N = 2 lattice results.



Conjectured phase diagram of QCD

Progress has been made towards obtaining the phase diagram of QCD at
non-zero density using lattice simulations as well as models of QCD.
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(Left) Conjectured phase diagram of QCD in the µ - T plane. (Right) Detailed

possible phase diagram from an NJL model (from Alford arXiv:0907.0200).



What makes QCD at non-zero µ so difficult?

The Sign Problem:

QCD at finite quark chemical potential µ has a complex action.

The boltzmann weight e−S is complex so it is not possible to perform
lattice simulations which use importance sampling.

The sign problem also complicates large N analysis: In the large N

limit the saddle point approximation becomes valid, but the stationary
point of a complex action with respect to the angles of the Polyakov
line lies in the space where the angles are complex. Therefore the
eigenvalues of the Polyakov line lie off the unit circle on an arc in the
complex plane.

=⇒ Need to generalize our techniques to handle a complex action.



Successful techniques that deal with or avoid the sign

problem
Lattice techniques valid for µ/T < 1

Taylor expansion

Reweighting

Imaginary µ + analytic continuation

Infinite volume perturbation theory

chiral perturbation theory

large µ perturbation theory

Using models

2-color QCD

Random Matrix Theory

Nambu-Jona-Lasinio Models

AdS/CFT

New

Complex Langevin

Finite spatial volume perturbation theory (this talk)



Region of validity of 1-loop calculations

Properties of SU(N) gauge theories on S1 × S3

Valid for min[RS1 ,RS3 ]≪ Λ−1
QCD

◮ R
3 × S1, small S1:
⋆ Good: Allows study at any N and in the limit of large 3-volume.

YM/QCD: m = 0, µ = 0: Gross, Pisarski, Yaffe (Rev.Mod.Phys.53:43,1981), µ 6= 0: Korthals Altes,

Pisarski and Sinkovics (hep-ph/9904305), m 6= 0: Meisinger and Ogilvie (hep-ph/0108026),

QCD(Adj/AS/S): m = 0, µ = 0: Unsal and Yaffe (hep-th/0608180), m 6= 0: Myers and Ogilvie

(arXiv:0903.4638)

⋆ Bad: Have to be in the limit of high temperatures (or small S
1)

◮ S3 × S1, small S3:
⋆ Good: Allows study at any temperature (or any S

1).
YM: Aharony et al (hep-th/0310285), QCD(Adj/AS/S): m = 0: Hollowood and Naqvi

(hep-th/0609203), Unsal (hep-th/0703025), m 6= 0: Hollowood and Myers (arXiv:0907.3665), QCD:

m 6= 0, µ 6= 0: Hands, Hollowood, Myers (arXiv:0910.0441)

⋆ Bad: Must be in small 3-volume. Finite N studies are more
complicated.



Partition Function of QCD

The partition function of QCD at finite temperature T = 1/β, for Nf

quark flavors, each with a mass mf and coupled to a chemical potential µf

is:

ZQCD =

∫

DADψ̄Dψe−
R β
0 dτ

R

d3
xLQCD

where ψ and ψ̄ are the fundamental and anti-fundamental fermion fields,
respectively, and A is the SU(N) gauge field, Aµ = Aa

µT a.

The Lagrangian is

LQCD =
1

4g2
TrF (FµνFµν) +

Nf
∑

f =1

ψ̄f ( /DF (A)− γ0µf + mf )ψf ,

with covariant derivative

Dµ(A) ≡ ∂µ − Aµ.



1-loop Lagrangian

Introduce fluctuations around a background field: A0 = α+ gA0,
then gauge fix and retain the one-loop contributions:

LQCD =− 1

2
A

a
0 (D2

0 (α) + ∆(s))A a
0 −

1

2
Ba

i (D2
0 (α) + ∆(v ,T ))Ba

i

− 1

2
C a

i (D2
0 (α) + ∆(v ,L))C a

i − c̄(D2
0 (α) + ∆(s))c

+

Nf
∑

f =1

ψ̄f ( /DF (α)− γ0µf + mf )ψf

where Ai = Bi + Ci .

Bi = transverse: ∇iBi = 0

Ci = longitudinal: Ci = ∇i f



1-loop partition function
Performing the Gaussian integrals the almost-cancellation of the scalar
field contributions simplifies the one loop effective partition function:

Z (α) =

det
1/2
ℓ=0

(

D2
0 (α) + ∆(s)

)

det−1
(

−D2
0 (α) + ∆(v ,T )

)

detNf ( /DF (α)− γ0µ+ m)

Eigenvalues εl and degeneracies dl of Laplacians on S3:

∆(type)Ωj ,l ,m1,m2
(θ1, ..., θ3) = −ε(type)2

l Ωj ,l ,m1,m2
(θ1, ..., θ3)

Example: scalars

ε
(s)2
l = l(l + 2)/R2

d
(s)
l = (l + 1)2

where l = 0, 1, ..., and R is the radius of S3.



1-loop partition function: S1 contribution

The eigenvalues of the Dirac operator can be computed in frequency space
in terms of the Matsubara frequencies:

D0(α)→ iω−
n − α,

where the Matsubara frequencies, for antiperiodic (thermal) boundary
conditions are

ω−
n = (2n + 1)π/β.

We define the Polyakov loop:

P = Pe
R β
0

dt A0(x) = eβα = diag{e iθ1 , ..., e iθN }



1-loop effective action
Simplification of the effective partition function leads gives the effective
action

S(P) = − log Z (P)

=

∞
∑

n=1

1

n
(1− zb(nβ/R)) TrAPn

+
∞

∑

n=1

(−1)n

n
Nf zf (nβ/R ,mR)

[

enβµTrFPn + e−nβµTrFP†n
]

,

where

zb(β/R) =
∑∞

ℓ=1 d
(v ,T )
ℓ e−βε

(v,T )
ℓ = 2

∞
∑

ℓ=1

ℓ(ℓ+ 2)e−nβ(ℓ+1)/R

zf (β/R ,mR) =
∑∞

ℓ=1 d
(f )
ℓ e−βε

(f ,m)
ℓ = 2

∞
∑

ℓ=1

ℓ(ℓ+ 1)e
−β

q

(ℓ+ 1
2
)2+m2R2/R

For the pure Yang-Mills theory the weak-coupling analogue of the
deconfinement transition temperature can be calculated in the large N

limit: TdR ≃ 0.759 or βd/R ≃ 1.317 [Aharony et al (hep-th/0310285)].



Important observables
At finite N we can calculate observables by numerically performing the
integrals over the gauge field angles θi .

〈O〉 ≡
∫

[dθ]e−SO
Z

, Z =

∫

[dθ]e−S .

Polyakov loop order parameters for phase transitions: 〈TrP〉, 〈TrP†〉.

P1 = 〈TrP〉

P−1 = 〈TrP†〉
◮ These should differ for N > 2.

Average Phase: 〈e iφ〉pq ≡ Z/Zpq.
◮ This tells us where the sign problem is severe.

Average number N = 〈Nquarks − Nantiquarks 〉.
◮ Gives the net number of quarks allowed at a given value of µ.

Pressure: P
Energy: E



Average fermion number N (N = 3, Nf = 1, mR = 0)
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Average fermion number for
QCD on S1 × S3 with m = 0,
β/R = 30 (low T).

N =
1

β

(

∂ lnZ

∂µ

)

=
−1

βZ

∫

[dθ] e−S

(

∂S

∂µ

)

N −−−→
β→∞

2Nf

Z

∫

[dθ] e−S
∞
∑

l=1

N
∑

i=1

l(l + 1)

[

eβµ

eβµ + e−iθi+β(l+1/2)/R

]

Each level L starts at (µR)0 = L + 1/2 and has:

height : hL = NNf

L
∑

l=1

2l(l + 1); width : w = ∆(µR) = 1



Classical non-linear O(2) sigma-model results from lattice

(Banerjee and Chandrasekharan, arXiv:1001.3648)
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Polyakov lines: P1 = 〈TrP〉 and P−1 = 〈TrP†〉 for m = 0
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P1 ≡
∫

[dθ]e−S
∑N

i=1 e iθi

Z
,

P−1 ≡
∫

[dθ]e−S
∑N

i=1 e−iθi

Z
.

Because of the bias in the temporal
direction introduced by a non-zero
chemical potential P1 6= P−1

There is a spike in P1 and P−1 corresponding to each jump in the
average fermion number, N .

Deconfinement occurs in between the levels, as they are being filled.

Given our notation, P−1 always preceeds P1 at each transition.



Polyakov lines: P1 and P−1 with increasing µ
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As µ increases the peaks of P1 and P−1 get wider indicating that
the regions of deconfinement become larger with increasing µ.



Average phase 〈e iφ〉pq for m = 0
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〈e iφ〉pq ≡
Z

∫

[dθ]eRe[−S]
,

where the denominator is the “phase
quenched” (real action) partition
function:

Zpq =

∫

[dθ]
∣

∣

∣
e−S

∣

∣

∣
=

∫

[dθ]eRe[−S]

The average phase shows where the sign problem is severe.

〈e iφ〉pq is smallest (largest) when |P1 −P−1| is largest (smallest).



Continuum results (large mR)
Since all of our observables are a function only of β/R , mR , or µR , then
we can obtain a continuum limit by taking:

β/R small (high T perturbation theory),
µR large (high density perturbation theory),
mR large (heavy quarks).

We take mR large. Then, in the vicinity of µ = m:

zf (nβ/R ,mR) = 2

∞
∑

l=0

l(l + 1)e−nβ
√

(l+1/2)2R−2+m2

= 2

∫ ∞

0
dy

(

y2 − 1

4

)

e−
nβ
R

√
y2+m2R2

+ 4

∫ ∞

mR

dy
y2 + 1

4

e2πy + 1
sin

(

nβ

R

√

y2 −m2R2

)

−−−−−→
mR→∞

2

∫ ∞

0
dy

(

y2 − 1

4

)

e−n(β/R)
√

y2+m2R2



N for m→∞
For non-zero quark mass the
expectation value N exhibits ”Silver
Blaze” behavior: Bulk observables are
zero until onset.

Onset occurs at the mass of the
lightest particle µ ≃ m.
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N

N −−−→
β→∞

2Nf

Z

∫

[dθ] e−S

∫ ∞

0
dy(y2−1/4)

N
∑

i=1

[

eβµ

eβµ + e−iθi+(β/R)
√

y2+m2R2

]

Each level L has:

height : hL = NNf

L
∑

l=1

2l(l + 1)→ hy = NNf

∫ ∞

0
dy 2(y2 − 1/4)

width : ∆(µR)→
(

√

(y + dy)2 + m2R2 −
√

y2 + m2R2

)

→ 0



N , P , E approach the Stefan-Boltzmann limit
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The Stefan-Boltzmann limit is the zero interaction free fermion limit.
On S1 × S3 we obtain it from the one-loop result taking all the
θi = 0, corresponding to the “deconfined” phase, e. g.

NSB −−−→
β→∞

2NNf

∫ ∞

0
dy(y2 − 1/4)

[

eβµ

eβµ + e(β/R)
√

y2+m2R2

]



Polyakov liness: P1 and P−1 for m→∞
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P1 and P
−1 as a function of

chemical potential for large quark

mass near onset at µR = mR =

30. N = 3, Nf = 1 β/R = 30

(low T ).

At low but non-zero
temperatures the
confinement-deconfinement
oscillations can be delayed by
taking mR →∞.

The transition in µR occurs
around onset at mR and
becomes sharper with
increasing mR .

The integral approximation to
zf (curves) breaks down
shortly after the onset
transition and the oscillations
return. The larger we take
mR , the farther in µR we can
go before breakdown.



Average phase 〈e iφ〉pq
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In the limit of large mR , spike
in the average phase as a
function of µR marks the
onset transition. This is
followed by a brief respite from
large phase fluctuations.

Again we find that 〈e iφ〉pq is
smallest (largest) when
|P1 −P−1| is largest
(smallest).



Large N theory at low T

In the large N limit the saddle point method is valid and it is possible to
solve for several observables analytically. Considering a single level
transition and performing the sum over n the action reduces to

S(θi) = −1

2

N
∑

i ,j=1

log sin2

(

θi − θj
2

)

+ N

N
∑

i=1

V (θi)

V (θ) = iN θ − σ log
(

1 + ξe iθ
)

N is a Lagrange multiplier necessary to satisfy the detP = 1
constraint:

∑N
i=1 θi = 0.

σ ≡ σl ≡ 2l(l + 1) N
Nf

ξ ≡ exp (β(µ− ε))
ε ≡ εl ≡

√

m2 + (l + 1/2)2R−2



Equation of Motion
The saddle point solution is found by solving the equation of motion
∂S/∂θi = 0. This becomes:

iN − iσξe iθi

1 + ξe iθi
=

1

N

∑

j(6=i)

cot

(

θi − θj
2

)

Define the eigenvalues of the Polyakov line: zi = e iθi . Then the equation
of motion is

N − σξzi

1 + ξzi
=

1

N

∑

j(6=i)

zi + zj

zi − zj

From the definition of the Polyakov line:

Pn = 〈TrPn〉 = 1

N

N
∑

i=1

e inθi

it is clear that P−n 6= P∗
n (〈TrP−n〉 6= 〈TrPn〉∗) for the saddle point

solution.



Fermion number

Adding EOMs for all the θis we find that the Lagrange multiplier is

N =
1

N

∑

i

σξzi

1 + ξzi
=

T

N2

∂ log Z

∂µ

which is the effective fermion number, N = N /N2, valid in the large N

limit.

Limits:
As ξ → 0 N → 0,

As ξ →∞ N → σ.

This is in agreement with the N = 3 results for a single level transition.



Small ξ confined phase

Hypothesis: As ξ increases from 0 the eigenvalues are continuously
distributed along a closed contour C in the z-plane.

It is useful to consider a map between the theory on the unit circle and the
theory in the complex z-plane of the Polyakov line eigenvalues. To this end

1

N

∑

i

−→
∫ π

−π

ds

2π
=

∮

C

dz

2πi
̺(z) ,

The contour is given by the inverse map z(s), which can be obtained by
solving the differential equation

i
ds

dz
= ̺(z)

subject to the initial condition z = e is when ξ = 0.



Constraints

The distribution must satisfy the normalization condition

∮

C

dz

2πi
̺(z) = 1

and the det P = 1 constraint
∫

C

dz

2πi
̺(z) log z = 0



EOM for eigenvalues on a closed contour

Using
1

N

∑

i

−→
∫ π

−π

ds

2π
=

∮

C

dz

2πi
̺(z)

we convert the EOM to an integral form

zV ′(z) = P

∮

C

dz ′

2πi
̺(z ′)

z + z ′

z − z ′
, zV ′(z) = N − σξz

1 + ξz
.

where P indicates principal value and the integral over the closed contour
allows for evaluation of the right-hand side using Cauchy’s theorem.



Distribution ̺(z) for eigenvalues on a closed contour C
We start from the distribution ̺(z) with z ≡ re iφ in the form of
delta-functions:

1

N

N
∑

j=1

=

∫

drdφ
1

N

N
∑

j=1

δ(r − rj)δ(φ − φj)

=

∮

dz

iz

1

N

N
∑

j=1

δ(φ − φj − i log(r/rj))

so

̺(z) =
2π

zN

N
∑

j=1

δ(φ − φj − i log(r/rj ))

then we can solve the EOM assuming all poles in C to obtain the form

̺(z) =
c1

c2z
− N

c2z
+
σξ/c2

1 + ξz



Distribution ̺(z) in the small ξ confined phase

The small ξ confined phase with the pole −ξ−1 outside. The EOM and
the normalization condition give

̺(z) =
1

z
+

σξ

1 + ξz
.

with N = 0 as expected.

Solving the differential equation i ds
dz

= ̺(z) leads to

e is = z(1 + ξz)σ

which we invert to get the contour z(s). The Polyakov lines are

P1 =

∫

C

dz

2πi
̺(z)z = 0 , P−1 =

∫

C

dz

2πi
̺(z)

1

z
= σξ .

where P−1 6= P∗
1 as advertised.



Extent of the small ξ confined phase

As ξ is increased the condition that the pole −ξ−1 lies outside C must
break down. Indeed, as ξ is increased there comes a point when ̺(z)
vanishes, z = − 1

ξ(1+σ) . This happens when

ξ = ξ1 =
σσ

(1 + σ)1+σ

and a gap opens up on the negative z-axis signaling a phase transition as
in the matrix model of Gross and Witten [Phys. Rev. D 21 (1980) 446].

In terms of µ and ε the line of transitions in the (µ, T ) plane is

µ = ε− T
[

(1 + σ) log(1 + σ)− σ log σ
]

valid in the low T limit.



Large ξ confined phase

The vanishing of the potential term in the action in the large ξ limit
requires that the contour closes here too. The analysis is similar to that of
the smal ξ confined phase and we find that

̺(z) =
1 + σ + ξz

z(1 + ξz)
,

from the requirement that −ξ−1 lies inside C. This gives N = σ as
expected and the level is occupied.

The Polyakov line expectation values are

P1 =
σ

ξ
, P−1 = 0 .

where comparing with the small ξ confined phase P±1 swaps over along
with the replacement ξ → ξ−1.



Extent of the large ξ confined phase

As ξ is decreased the condition that the pole −ξ−1 lies inside C must
break down. Indeed, as ξ is decreased there comes a point when ̺(z)
vanishes, z = −1+σ

ξ . This happens when

ξ = ξ2 =
(1 + σ)1+σ

σσ
.

and a gap opens up again on the negative z-axis.

In terms of µ and ε the line of transitions in the (µ, T ) plane is

µ = ε+ T
[

(1 + σ) log(1 + σ)− σ log σ
]

valid in the low T limit.



The deconfined (open) phase: ξ1 ≤ ξ ≤ ξ2

In the deconfined phase the distribution has a gap and the eigenvalues lie
on an arc C in the complex z-plane defined by a square root branch cut
with endpoints z̃ and z̃∗. To solve for the case where the contour is open
it is necessary to use the resolvent / spectral curve method.
In anaolgy with the Gross-Witten model the resolvent is

ω(z) = − 1

N

∑

j

z + zj

z − zj
= −

∫

C

dz ′

2πi
̺(z ′)

z + z ′

z − z ′

where it is clear that

lim
|z |→0

ω(z) = 1 , lim
|z |→∞

ω(z) = −1 .

We take the resolvent to be everywhere continuous except over the branch
cut. Then from the Plemelj formulae the EOM is

zV ′(z) = −1

2

[

ω(z + ǫ) + ω(z − ǫ)
]

, z ∈ C



The distribution of the eigenvalues in the deconfined phase
The spectral density of eigenvalues is obtained from

z̺(z) =
1

2

[

ω(z + ǫ)− ω(z − ǫ)
]

, z ∈ C .

which implies that we can solve for various observables using an average of
the form

∫

C

dz

2πi
̺(z)F (z) =

∮

C̃

dz

4πiz
ω(z)F (z)

Following the technique of Wadia [EFI-79/44-Chicago] we solve the EOM
for the resolvent and density of eigenvalues

ω(z) = −zV ′(z)+f (z)
√

(z − z̃)(z − z̃∗) , z̺(z) = f (z)
√

(z − z̃)(z − z̃∗) .

where
f (z) =

σ

(1 + ξz)
∣

∣

1
ξ + z̃

∣

∣

,

z̃ =
−1

ξ (1 + σ −N )2

[

N 2 + 1 + σ −Nσ + 2i
√

N (σ −N ) (1 + σ)
]

.



Fermion number and Polyakov lines
We impose the SU(N) condition

∮

C̃

dz

4πiz
ω(z) log z = 0 .

to obtain the effective fermion number N from

ξ =
(σ −N )σ−N (1 +N )1+N

NN (1 + σ −N )1+σ−N
.

The Polyakov lines are obtained from an expansion of the resolvent

ω(z) = −1− 2
∞

∑

n=1

1

zn
Pn

ω(z) = 1 + 2

∞
∑

n=1

zn
P−n

For a single winding

P1 =
N

σ + 1−N
1

ξ
, P−1 =

σ −N
1 +N ξ



Large N theory at low T
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The discontinuities in the effective fermion number and the Polyakov
lines mark the third-order Gross-Witten transitions.



Distribution in the deconfined phase
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The contour C, which
gives the distribution of
the eigenvalues of the
Polyakov line, showing
the transition from the
small ξ closed phase (in
red), the open phase
(in blue) and the large
ξ closed phase (green).



Preliminary lattice results from 2-color QCD

Simulation results for N = 2 QCD confirm the level structure of the
fermion number and the associated spikes in the Polyakov line at each
level transition. The curious smooth → sharp feature of the observables at
the transitions needs study to determine if it is a result of larger coupling,
or perhaps resulting from working on the 4-torus.



Conclusions

QCD at finite chemical potential on S1 × S3 has a complex action
which results the stationary solution lying in the configuration space
of complexified gauge fields.

Expectation values for observables can be obtained at finite N by
numerically integrating over the gauge fields.

Observables and the distribution of the gauge field eigenvalues can be
calculated analytically in the large N limit using the saddle point
method of Gross and Witten generalized to deal with a complex
action.

For small mR , the fermion number as a function of the chemical
potential suggests a level-structure where the level transitions
correspond to spikes in the Polyakov line.

For large mR , a continuum limit is obtained and the observables
exhibit the “Silver blaze” feature, remaining zero until onset is
reached at µ = m. The confinement-deconfinement transitions return
for sufficiently large µ.



Outlook

Add more flavors and look for color-superconducting phases through
calculation of observables like ψψ, (ψ̄ψ)2

Make a connection with Complex Langevin which is a
non-perturbative technique

Consider higher-loop corrections and go beyond the Gaussian
approximation to obtain effects from increased coupling strength

Formulate a related theory from the gravity side (eg. N = 4 SYM +
fundamental flavor branes and chemical potential)
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