Operator mixing and the AdS/CFT Correspondence

Valeria Gili
Sussex University - 14/06/2010

Based on ArXiv: 0810.0499 and 0907.1567 VG, George Georgiou, Rodolfo Russo

Introduction

- AdS/CFT context: Operator Mixing crucial when we have to compare observables on the two sides of the correspondence
- Planar $\mathcal{N}=4$ SYM is governed by the superconformal properties of the theory:
> diagonalization of the Dilatation Operator:

$$
\left\{\mathcal{O}_{i}\right\} \quad\left\langle\mathcal{O}_{i}(x) \mathcal{O}_{j}(0)\right\rangle=\mathbb{D}_{i j}
$$

$$
\mathbb{D} \hat{\mathcal{O}}_{i}=\Delta_{i} \hat{\mathcal{O}}_{i} \quad\left\langle\hat{\mathcal{O}}_{i}(x) \hat{\mathcal{O}}_{j}(0)\right\rangle=\frac{\delta_{i j}}{x^{2 \Delta_{i}}}
$$

$>\mathcal{N}=4$ SYM superalgebra highest weight state:

$$
[S, \mathcal{O}(x=0)]=0 \quad[Q, \mathcal{O}(x=0)] \neq 0
$$

Outline of the talk

- Remarks about the AdS/CFT Correspondence
- BMN/PP-wave subsector
- HWS in string theory
- Computation of the quantum corrections to the SYM supercharges
- Computation of the mixing terms for the twoimpurity multiplet Highest Weight State (HWS)
- Role of the mixing terms in the computation of the structure constants between two half-BPS and one non-BPS operator.

Remarks about AdS/CFT

Type IIB String Theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
 $\mathcal{N}=4$ SYM on the boundary of AdS $_{5}$

Isometry group Symmetry Group $\operatorname{PSU}(2,214)$ conformal symmetry of AdS_{5} Isometry group of $\mathrm{S}^{5} \longleftarrow \mathrm{SO}(4,2) \times \mathrm{SO}(6)$

Parameters

(2) $N-\mathrm{F}_{5}$ flux units through S^{5}
(2) χ_{0} - Axion rev
(2) $R-\mathrm{AdS}_{5}$ and S^{5} radius $\frac{R^{2}}{\alpha^{\prime}}=\sqrt{4 \pi N g_{s}}$
(2 N - rank of the gauge group $S U(N)$
(2) $g-Y M$ exp. $\lambda=g^{2} N$
(2) θ - Instantonic angle

$$
\begin{aligned}
& \frac{\theta}{2 \pi}+i \frac{4 \pi}{g^{2}}=\chi_{0}+\frac{i}{g_{s}} \\
& \text { allows to identify } \\
& \begin{array}{ll}
\frac{R^{2}}{\alpha^{\prime}}=\sqrt{\lambda} & \\
\sqrt{ } g_{s}=\frac{g^{2}}{4 \pi}=\frac{\lambda}{4 \pi N} & \begin{array}{l}
\text { 't oft limit } \longleftrightarrow \\
\text { classical }
\end{array} \\
\begin{array}{c}
\text { string theory }
\end{array} \\
& \text { strong c. limit } \longleftrightarrow \text { supergravity }
\end{array}
\end{aligned}
$$

Strong/Weak Duality

- Observables in the string side are associated to observables in the gauge theory side. They must coincide at EACH ORDER in the coupling constant:

$$
E(\lambda) \longleftrightarrow \Delta(\lambda)
$$

- BUT they are investigable in their perturbative regimes:

$$
\begin{aligned}
& \checkmark \Delta(\lambda)=\Delta_{0}+\lambda \Delta_{1}+\lambda^{2} \Delta_{2}+\mathcal{O}\left(\lambda^{3}\right) \quad \lambda \rightarrow 0 \\
& \checkmark E(\lambda)=\sqrt{\lambda} E_{0}+E_{1}+E_{2} / \sqrt{\lambda}+\mathcal{O}\left(\lambda^{-1}\right) \quad \lambda \rightarrow \infty
\end{aligned}
$$

- To overcome this weak/strong coupling nature of AdS/CFT \checkmark Computation of protected quantities
\checkmark Integrability
\checkmark Focus on more tractable subsectors: PP-wave/BMN

PP-wave string theory

Type IIB string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

$$
\begin{gathered}
d s^{2}=R^{2}\left[-\cosh ^{2} r d t^{2}+d r^{2}+\sinh ^{2} r d \Omega_{3}^{2}+\cos ^{2} \theta d \psi^{2}+d \theta^{2}+\sin ^{2} \theta d \Omega_{3}^{\prime 2}\right] \\
F_{5}=\frac{1}{R}\left(d V_{\mathrm{AdS}_{5}}+d V_{\mathrm{S}^{5}}\right) \quad \phi=\mathrm{const} .
\end{gathered}
$$

(2) Introduce Light-Cone coordinate set:

$$
x^{+}=\frac{t+\psi}{2 \mu} \quad x^{-}=\mu R \frac{t-\psi}{2} \quad \hat{r}=R r \quad y=R \theta
$$

- Perform the $R \rightarrow \infty$ limit keeping $x^{ \pm}, \hat{r}, y$ fixed

$$
\begin{aligned}
& g_{-+}=g_{+-}=2 \\
& g_{I J}=\delta_{I J}, \quad I, J=1, \ldots, 8 \\
& g_{++}=-\mu^{2} \sum_{I=1} x_{I} x^{I}
\end{aligned}
$$

SHORT STRINGS ROTATING FAST AROUND S^{5}

SYMMETRY GROUP $S O(4) \times S O(4)$

$$
F_{+1234}=F_{+5678}=2 \mu
$$

PP-wave string theory

- Full interacting string theory
- Free two-dimensional action: quantizable in term of eight towers of bosonic and fermionic oscillators

$$
\left(a_{n}^{i}, a_{n}^{i^{\prime}}\right) \quad\left(b_{n}^{\alpha_{1} \alpha_{2}}, b_{n} \dot{\alpha}_{1} \dot{\alpha}_{2}\right) \quad n \in \mathbb{N}
$$

- Physical spectum: Fock space of states $|s\rangle$ built upon a vacuum $\left|\alpha \equiv \alpha^{\prime} p^{+}\right\rangle$

$$
H=\frac{1}{\mu} \sum_{n=-\infty}^{+\infty} \frac{\omega_{n}}{\alpha}\left[a_{n}^{\dagger} a_{n}+b_{n}^{\dagger} b_{n}\right]
$$

- Maximally supersymmetric background
> eight kinematical charges
$Q^{+}, \quad \bar{Q}^{+}$
> eight dynamical charges
$Q^{-}, \quad \bar{Q}^{-}$

Supercharges in the PP-wave

background

$$
\begin{aligned}
Q^{+} & =\sqrt{2|\alpha|}\left[e(\alpha) \mathbb{P}^{-} b_{0}+\mathbb{P}^{+} b_{0}^{\dagger}\right], \bar{Q}^{+}=\sqrt{2|\alpha|}\left[\mathbb{P}^{-} b_{0}^{\dagger}+e(\alpha) \mathbb{P}^{+} b_{0}\right] \\
Q^{-} & =\sqrt{\frac{1}{2}} \gamma\left[a_{0} \mathbb{P}^{+} b_{0}^{\dagger}+a_{0}^{\dagger} \mathbb{P}^{-} b_{0}\right]+ \\
& +\frac{1}{\sqrt{|\alpha|}} \sum_{n=1}^{\infty} \sqrt{n} \gamma\left[a_{n}^{\dagger} P_{n} b_{-n}+a_{n} P_{n}^{-1} b_{n}^{\dagger}+\mathrm{i} a_{-n}^{\dagger} P_{n} b_{n}-\mathrm{i} a_{-n} P_{n}^{-1} b_{-n}^{\dagger}\right] \\
\bar{Q}^{-} & =\sqrt{\frac{1}{2} \gamma}\left[a_{0} \mathbb{P}^{-} b_{0}^{\dagger}+a_{0}^{\dagger} \mathbb{P}^{+} b_{0}\right]+ \\
& +\frac{1}{\sqrt{|\alpha|}} \sum_{n=1}^{\infty} \sqrt{n} \gamma\left[a_{n}^{\dagger} P_{n}^{-1} b_{n}+a_{n} P_{n} b_{-n}^{\dagger}+\mathrm{i} a_{-n}^{\dagger} P_{n}^{-1} b_{-n}-\mathrm{i} a_{-n} P_{n} b_{n}^{\dagger}\right]
\end{aligned}
$$

The dual BMN limit

$\mathcal{N}=4$ SYM
$\checkmark 4+4$ Weyl fermions $\psi_{A}^{\alpha}, \bar{\psi}_{\dot{\alpha}}^{A}$ field content $\checkmark 6$ scalars $\Phi^{A B}$ (or Z_{i}, \bar{Z}_{i}) $\quad A, B=1, \ldots, 4$ \checkmark Gauge connection A_{μ}

In terms of $\mathcal{N}=2$ multiplets the R-symmetry group reads

- Identify $S U(2)_{V} \times S U(2)_{H} \times U(1)_{J}$

$$
>S U(2)_{V} \times S U(2)_{H} \longleftrightarrow S O(4)_{f l}
$$

$$
>U(1)_{J} \longleftrightarrow x^{-} \text {translations }(J \rightarrow \infty)
$$

- Rewrite the x^{+}and x^{-}translation generators in terms of $\partial / \partial \psi, \partial / \partial t$. The Penrose limit translate to:

$$
\begin{aligned}
& \Delta \rightarrow \infty \quad J \rightarrow \infty \quad N \rightarrow \infty \\
& \frac{J}{\sqrt{N}}, \Delta-J, g^{2} \quad \begin{array}{c}
\text { perturbative } \\
\text { expansion }
\end{array} \\
& \text { Hamiltonian } H / \mu
\end{aligned} \quad \sim \begin{gathered}
\lambda^{\prime} \equiv \frac{g^{2} N}{J^{2}}=\frac{1}{\mu \alpha}
\end{gathered}
$$

PP-wave/BMN dictionary

Gauge invariant operators VS string states transforming in the same representation under the $S O(4) \times S O(4)$ symmetry group
(2) Vacuum $\frac{H}{\mu}|\alpha\rangle=0 \longrightarrow \Delta=J \longrightarrow|\alpha\rangle \leftrightarrow \operatorname{Tr}\left[Z^{J}\right]$
(2) Half-BPS states $\Delta-J=N \leq \sum_{p=0}^{\operatorname{Tr}\left[Z^{J} \phi^{A B}\right] \longleftrightarrow a_{0}^{j}|\alpha\rangle}$

- Two-impurity string states

$$
\sum_{p=0}^{J} \cos \frac{\pi n(2 p+3)}{J+3}\left[\Phi_{A B} Z^{p} \Phi^{A B} Z^{J-p}\right] \longleftrightarrow \sum_{i^{\prime}=1}^{4}\left(a_{n}^{\dagger i^{\prime}} a_{n}^{\dagger^{i^{\prime}}}+a_{-n}^{i^{i^{\prime}}} a_{-n}^{\dagger i^{i^{\prime}}}\right)|\alpha\rangle
$$

PP-wave/BMN string and perturbative $\mathrm{N}=4$ SYM

- BMN is a complementary regime wrt $\lambda \rightarrow 0$
-How do we use the double scaling limit?
- Perturbative expansion in $\frac{1}{\mu \alpha}=x=\frac{\lambda}{\mu^{2}}$
- We have relied on this to compare the mixing coeffcients we have obtained in the two theories

CHANGE

The multiplet is a representation of the superconformal algebra of the full interacting theory

$$
[S, O(x=0)]=0 \quad[Q, O(x=0)] \neq 0
$$

- Identify the supersymmetry generators in the two descriptions
$Q_{\alpha, A=1,2} \leftrightarrow \mathbb{P}^{+} Q^{+} \quad Q_{\alpha, A=3,4} \leftrightarrow \mathbb{P}^{+} Q^{-} \quad \bar{Q}^{\dot{\alpha}, A=1,2} \leftrightarrow \mathbb{P}^{-} \bar{Q}^{-} \quad \bar{Q}^{\dot{\alpha}, A=3,4} \leftrightarrow \mathbb{P}^{-} \bar{Q}^{+}$

$$
S_{\alpha}^{A=1,2} \leftrightarrow \mathbb{P}^{+} \bar{Q}^{+} \quad S_{\alpha}^{A=3,4} \leftrightarrow \mathbb{P}^{+} \bar{Q}^{-} \quad \bar{S}_{A=1,2}^{\dot{\alpha}} \leftrightarrow \mathbb{P}^{-} Q^{-} \quad \bar{S}_{A=3,4}^{\dot{\alpha}} \leftrightarrow \mathbb{P}^{-} Q^{+}
$$

- In the string sector the two impurity HWS is

$$
\mathbb{P}^{+} \bar{Q}^{+}|h w s\rangle=\mathbb{P}^{+} \bar{Q}^{-}|h w s\rangle=\mathbb{P}^{-} Q^{-}|h w s\rangle=\mathbb{P}^{-} Q^{+}|h w s\rangle=0
$$

String Highest Weight State

$$
|n\rangle=\frac{1}{4\left(1+U_{n}^{2}\right)}\left[a_{n}^{\dagger i^{\prime}} a_{n}^{\dagger i^{\prime}}+a_{-n}^{\dagger i^{\prime}} a_{-n}^{\dagger i^{\prime}}+2 U_{n} b_{-n}^{\dagger} \Pi b_{n}^{\dagger}-U_{n}^{2}\left(a_{n}^{\dagger}{ }_{n}^{i} a_{n}^{\dagger i}+a_{-n}^{\dagger{ }^{i}} a_{-n}^{\dagger i^{i}}\right)\right]|\alpha\rangle
$$

- Valid for finite $\mu \alpha$: full interacting string theory
- Mixing between different type of impurities
- Leading order for $\mu \alpha \rightarrow \infty$ coincide with the old dictionary
- Leading and subleading corrections: fermion impurities and derivative impurities respectively
- Straightforward to build the whole multiplet

Operator Mixing in $\mathcal{N}=4$ SYM

Free Theory: $\delta_{S} \Phi^{A B}(0)=0 \rightarrow S \sum_{p=0}^{J} \cos \frac{\pi n(2 p+3)}{J+3} \operatorname{Tr}\left[\Phi_{A B} Z^{p} \Phi^{A B} Z^{J-p}\right]=0$
Interacting theory: supersymmetry and superconformal charges get quantum corrections

$$
\text { order- } g \longrightarrow S \Phi \psi \propto g D_{\mu} \Phi
$$

$$
\begin{aligned}
\mathcal{O}_{n}^{J} & \propto \sum_{i=1}^{3} \sum_{p=0}^{J} \cos \frac{\pi n(2 p+3)}{J+3} \operatorname{Tr}\left[Z_{i} Z^{p} \bar{Z}_{i} Z^{J-p}\right] \\
& +g \mathcal{C}_{1} \sum_{p=0}^{J=1} \sin \frac{\pi n(2 p+4)}{J+3}\left(\operatorname{Tr}\left[\psi^{1 a} Z^{p} \psi_{a}^{2} Z^{J-1-p}\right]-\operatorname{Tr}\left[\bar{\psi}_{3<} Z^{p} \bar{\psi}_{4}^{\dot{\alpha}} Z^{J-1-p}\right]\right) \\
& +g^{2} C_{2} \sum_{p=0}^{J-2} \cos \frac{\pi n(2 p+5)}{J+3} \operatorname{Tr}\left[D_{\mu} Z Z^{p} D^{\mu} Z Z^{J-p-2}\right]+\mathcal{O}\left(g^{3}\right)
\end{aligned}
$$

$$
\bar{S}_{A}^{\dot{\alpha}} \Phi_{B C} \Phi_{D E}(0)=-\mathrm{i} \frac{g N}{32 \pi^{2}}\left(\epsilon_{A B C[D} \bar{\psi}_{B]}(0)-\epsilon_{A D E[B} \bar{\psi}_{C]}^{\dot{\alpha}}(0)\right)
$$

$\checkmark S U(4)$ structure: $\because \otimes \square \otimes \square=\square \oplus \square \oplus \ldots$

\checkmark Numerical Coefficient: Ward Identities

$$
\left.\partial_{\mu}^{y}\left\langle O_{1}(x) S^{\mu}(y) O(0)\right\rangle=-\mathrm{i} \delta^{4}(x-y)\left\langle\delta_{S} O_{1}(x) O(0)\right\rangle+\mathrm{i} \delta^{4}(y)\right)\left\langle O_{1}(x) \delta_{S} O(0)\right\rangle
$$

The superconformal current relevant for this computation is
$\bar{S}_{A}^{\mu \dot{\alpha}}=2 x_{\tau}\left(\bar{\sigma}^{\tau}\right)^{\dot{\alpha} \alpha} \operatorname{Tr}\left[\left(\sigma^{\rho \nu}\right)_{\alpha}^{\beta} F_{\rho \nu} \sigma_{\beta \dot{\beta}}^{\mu} \bar{\psi}_{A}^{\dot{\beta}}+2 \sqrt{2} \sigma_{\alpha \dot{\alpha}}^{\rho} \bar{\sigma}^{\mu \dot{\alpha} \beta} D_{\rho} \Phi_{A B} \psi_{\beta}^{B}+\right.$

$$
\left.-4 \mathrm{ig} \sigma_{\alpha \dot{\beta}}^{\mu}\left[\Phi_{A C}, \Phi^{C B}\right] \bar{\psi}_{B}^{\dot{\beta}}\right]+8 \sqrt{2} \bar{\sigma}^{\mu \dot{\alpha} \alpha} \operatorname{Tr}\left[\Phi_{A B} \psi_{\alpha}^{B}\right]
$$

$$
\left\langle\psi_{\gamma}^{3}(x) \bar{S}_{1}^{\mu \dot{\alpha}}(y) Z \bar{Z}_{1}(0)\right\rangle
$$

- Second and last terms of the current
ψ^{3} x

\qquad x

The contributions from the two terms cancel each others

- Third term of the current

$$
\begin{gathered}
G_{3}^{\mu}=\frac{g N}{16 \pi^{2} \dot{\sigma}^{\tau \dot{\alpha} \alpha}} \partial_{\eta}^{y} \Delta(y) \sigma_{\alpha \dot{\beta}}^{\mu} \epsilon^{\dot{\beta} \dot{\gamma}} \sigma_{\gamma \gamma}^{\nu} \partial_{\nu}^{x} \Delta(x-y) \\
\partial_{\mu}^{y} G_{3}^{\mu}=-\frac{i \mathrm{i} g N}{16 \pi^{2}}\left(\delta^{(4)}(y) \epsilon^{\alpha \dot{\gamma} \dot{\gamma}} \sigma_{\gamma \gamma j}^{\nu} \partial_{\nu}^{x} \Delta(x)+\ldots\right) \\
\downarrow \\
\bar{S}_{1}^{\dot{\alpha}} Z \bar{Z}_{1}=\frac{-\mathrm{i} g N}{8 \pi^{2}} \bar{\psi}_{3}^{\dot{\alpha}}
\end{gathered}
$$

- $\bar{S}_{1}^{\dot{\alpha}} \bar{\psi}_{B \dot{\beta}}=4 \sqrt{2} \mathrm{i} \Phi_{A B}(0) \delta_{\dot{\beta}}^{\dot{\alpha}}$

Similarly we can compute:

- $\bar{S}_{1}^{\dot{a}} \not D_{\alpha \beta} Z=2 \sqrt{2} \psi_{\alpha}^{2} \delta_{\beta}^{\dot{\alpha}}$
- $\bar{S}_{1}^{\dot{\alpha}}\left(\psi_{\alpha}^{1} Z\right)=-\frac{g N}{8 \pi^{2}} \bar{\sigma}_{\alpha}^{\mu \dot{\alpha}} D_{\mu} Z$

$$
\begin{aligned}
\mathcal{O}_{n}^{J} & =\sqrt{\frac{N_{0}^{-J-2}}{(J+3)}} \mathcal{Z} \sum_{i=1}^{3} \sum_{p=0}^{J} \cos \frac{\pi n(2 p+3)}{J+3} \operatorname{Tr}\left[Z_{i} Z^{p} \bar{Z}_{i} Z^{J-p}\right] \\
& +\frac{g \sqrt{N}}{4 \pi} \sin \frac{\pi n}{J+3} \sqrt{\frac{N_{0}^{-J-1}}{(J+3)} \sum_{p=0}^{J-1} \sin \frac{\pi n(2 p+4)}{J+3}\left(\operatorname{Tr}\left[\psi^{1 \alpha} Z^{p} \psi_{\alpha}^{2} Z^{J-1-p}\right]-\operatorname{Tr}\left[\bar{\psi}_{3 \dot{\alpha}} Z^{p} \psi_{4}^{\dot{\alpha}} Z^{J-1-p}\right]\right)} \\
& +\frac{g^{2} N}{16 \pi^{2}} \sin ^{2} \frac{\pi n}{J+3} \sqrt{\frac{N_{0}^{-J}}{(J+3)} \sum_{p=0}^{J-2} \cos \frac{\pi n(2 p+5)}{J+3} \operatorname{Tr}\left[D_{\mu} Z Z^{p} D^{\mu} Z Z^{J-p-2}\right]+\mathcal{O}\left(g^{3}\right)}
\end{aligned}
$$

ONE CAN USE THE SAME ALGORITHM TO COMPUTE THE WHOLE MULTIPLET

Field Theory VS String Theory

We can compare the large $\mu \alpha=\left(\lambda^{\prime}\right)^{-1}$ limit of the string HWS with the large J expansion of \mathcal{O}_{n}^{J} :

$$
\begin{aligned}
& |n\rangle \approx \frac{1}{4}\left[a_{n}^{i^{i^{\prime}}} a_{n}^{\dagger^{i^{\prime}}}+a_{-n}^{\dagger^{i^{\prime}}} a_{-n}^{\dagger^{i^{\prime}}}-n \sqrt{\lambda^{\prime}}\left(b^{\dagger}{ }_{-n} \mathbb{P}^{+} b^{\dagger}{ }_{n}-b^{\dagger}{ }_{-n} \mathbb{P}^{-} b^{\dagger}{ }_{n}\right)\right]|\alpha\rangle \\
& \sum_{i=1}^{3} \sum_{p=0}^{J} \cos \frac{\pi n(2 p+3)}{J+3} \operatorname{Tr}\left[Z_{i} Z^{p} \bar{Z}_{i} Z^{J-p}\right] \\
& \sum_{p=0}^{J-1} \sin \frac{\pi n(2 p+2)}{J+1}\left(\operatorname{Tr}\left[\psi^{1 \alpha} Z^{p} \psi_{\alpha}^{2} Z^{J-p-1}\right]-\operatorname{Tr}\left[\bar{\psi}_{3 \dot{\alpha}} Z^{p} \bar{\psi}_{4}^{\dot{\alpha}} Z^{J-p-1}\right]\right)
\end{aligned}
$$

(2) Fix the normalization: two-point functions get the canonical form
(2) Rewriting $\sqrt{\lambda}=\frac{g \sqrt{N}}{J}$

$$
\begin{aligned}
\left(\mathcal{O}_{s}\right)_{n}^{J} & =\sqrt{\frac{N_{0}^{-J-2}}{J+3}} \sum_{p=0}^{J} \cos \frac{\pi n(2 p+3)}{J+3} \operatorname{Tr}\left[Z_{i} Z^{p} \bar{Z}_{i} Z^{J-p}\right]+ \\
& +\frac{g \sqrt{N} n}{4 J} \sqrt{\frac{N_{0}^{-J-1}}{J+1}} \sum_{p=0}^{J-1} \sin \frac{\pi n(2 p+2)}{J+1}\left(\operatorname{Tr}\left[\psi^{1 \alpha} Z^{p} \psi_{\alpha}^{2} Z^{J-p-1}\right]-\operatorname{Tr}\left[\bar{\psi}_{3 \mathrm{\alpha}} Z^{p} \bar{\psi}_{4}^{\alpha} Z^{J-p-1}\right]\right)
\end{aligned}
$$

Agrees with the large-J limit of the SYM HWS

Comments

- If J=0 Konishi operator: no mixing
- No overlap between leading and subleading terms at one loop. Test for the three-loop anomalous dimension in the full theory.
- Subleading terms do not alter the known results for the anomalous dimension
\checkmark one loop at finite J
\checkmark higher loops for large J
- Subleading terms are crucial to verify existing selection rules for OPE structure constants (correlators among two half-BPS and one non-BPS operator)

U(1)y Bonus Symmetry I

- Originates from the $S L(2, \mathbb{R})$ symmetry of type IIB supergravity in 10 dimensions
- Not a symmetry of the $\mathcal{N}=4$ SYM Lagrangian. Exact symmetry of the equations of motion of the free theory and of the supergravity limit
- To assign a $U(1)$ y charge:
$\checkmark Q_{\alpha}^{A}, \bar{S}_{A}^{\dot{\alpha}}: u_{Y}=+1$
$\checkmark \bar{Q}_{A}^{\dot{\alpha}}, S_{\alpha}^{A}: u_{Y}=-1$

Bosonic Generators have charge zero
\checkmark HWS: charge zero. Descendent: sum of the supersymmetry charges acting on HWS

U(1)y Bonus Symmetry II

U(1)y charge conservation selection rule

Three and four-point correlators of half-BPS operators

Three-point correlators with one non-BPS operator

Mixing terms are crucial to realize this constraint

$$
\left\langle\mathcal{O}_{0}^{J_{1}, \bar{Z}_{1} \bar{Z}_{2}}\left(x_{1}\right) \mathcal{O}_{0}^{J_{2}, Z_{1} Z_{2}}\left(x_{2}\right){ }^{[4]} \overline{\mathcal{O}}_{n}^{J_{3}}\left(x_{3}\right)\right\rangle \quad J_{3}=J_{1}+J_{2}-1
$$

$\mathcal{O}_{0}^{J_{1}, \bar{Z}_{1} \bar{Z}_{2}}=\sum_{k_{1}=0}^{J_{1}} \operatorname{Tr}\left[\bar{Z}_{1} Z^{k_{1}} \bar{Z}_{2} Z^{J_{1}-k_{1}}\right]$

$$
\mathcal{O}_{0}^{J_{2}, Z_{1} Z_{2}}=\sum_{k_{2}=0}^{k_{1}=0} \operatorname{Tr}\left[Z_{1} Z^{J_{2}} Z_{2} Z^{J_{2}-k_{2}}\right]
$$

$\Longrightarrow u_{Y}=0$
${ }^{[4]} \mathcal{O}_{n}^{J_{3}}=\left(Q^{3}\right)^{2}\left(Q^{4}\right)^{2} O_{n}^{J_{3}+2} \propto \sum_{p=0}^{J_{3}} \sin \frac{\pi n(2 p+2)}{J_{3}+2} \operatorname{Tr}\left[\psi^{1 \alpha} Z^{p} \psi_{\alpha}^{2} Z^{J_{3}-p}\right]+$

$$
\begin{aligned}
& -2 \sqrt{2} g \sin \frac{\pi n}{J_{3}+2} \sum_{p=0}^{J_{3}+1} \cos \frac{\pi n(2 p+1)}{J_{3}+2} \operatorname{Tr}\left[\Phi_{A B} Z^{p} \Phi^{A B} Z^{J_{3}-p+1}\right]+\Longrightarrow \mathbf{U}_{Y}=4 \\
& +\frac{g N}{8 \sqrt{2} \pi^{2}} \sin \frac{\pi n}{J_{3}+2} \sum_{p=0}^{J_{3}-1} \cos \frac{\pi n(2 p+3)}{J_{3}+2} \operatorname{Tr}\left[D_{\mu} Z Z^{p} D^{\mu} Z Z^{J_{3}-p-1}\right]+\mathcal{O}\left(g^{2}\right)
\end{aligned}
$$

This correlator does not conserve the $U(1)_{Y}$ charge, then its coefficient must be zero

- First non-trivial contributions come at order g
- Conformal symmetry fixes the spacetime dependence to:

$$
\Delta_{x_{1} x_{2}} \Delta_{x_{112} x_{3}, 1}^{J_{1+2}} J_{x_{2} x_{3}} \quad \text { with } \quad \Delta_{x_{i}, x_{j}} \propto \frac{1}{\left(x_{i}-x_{j}\right)^{2}}
$$

- Contributions to the structure constant:
(1) contraction of the leading term of the non-BPS operator with the two half-BPS ones through a Yukava coupling $g \operatorname{Tr}[\psi \psi \Phi]$
(2) tree-level contraction of the subleading term of the non-BPS operator with fermionic impurities and the two half-BPS ones
(3) tree-level contraction of the subleading term of the non-BPS operator with derivative impurities and the two half-BPS ones

Contribution (1)

- Constraint: $k_{1}=0, k_{2}=J_{2}$ and $k_{1}=J_{1}, k_{2}=0$
- Contr with the Yukawa: $p=0$ and $p=J_{3}$. Different sign compensated by the antisymmetric phase factor
- The Yukawa can be contracted with both the half-BPS operators

$$
A_{3}^{(L)}=-\mathrm{i} \sqrt{2} \frac{g N^{J_{3}+3}}{2^{J_{3}+1}} \sin \frac{2 \pi n}{J_{3}+2} \Delta_{x_{1} x_{2}}^{2} \Delta_{x_{1} x_{3}}^{J_{1}-1} \Delta_{x_{2} x_{3}}^{J_{2}-1} \times
$$

$$
\left(J_{1} \Delta_{x_{2} x_{3}} \int d^{4} z \Delta_{x_{1} z} \partial_{\mu}^{\left(x_{3}\right)} \Delta_{x_{3} z} \partial^{\mu\left(x_{3}\right)} \Delta_{x_{3} z}+J_{1} \leftrightarrow J_{2}\right)
$$

$$
A_{3}^{(L)}=-\frac{g N^{J_{3}+3}}{2^{J_{3}+1} \sqrt{2}} \sin \frac{2 \pi n}{J_{3}+2} \Delta_{x_{1} x_{2}}^{2} \Delta_{x_{1} x_{3}}^{J_{1}} \Delta_{x_{2} x_{3}}^{J_{2}}\left(J_{1} \Delta_{x_{1} x_{3}}+J_{2} \Delta_{x_{2} x_{3}}\right)
$$

DOES NOT TAKE THE FORM DICTATED BY CONFORMAL INVARIANCE!

Contribution (2)

- Focusing on the term $\operatorname{Tr}\left[Z_{1} \ldots \bar{Z}_{1} \ldots\right]$: planar contractions for $p=k_{1}-k_{2}+J_{2}$
- Term $\operatorname{Tr}\left[Z_{1} \ldots \bar{Z}_{1} \ldots\right]$ double this result: planar contractions for $p=k_{2}-k_{1}+J_{1}$, mapped
 to the previous case by $p \rightarrow J_{3}-p+1$ (phase factor symmetric)

Summing over the phases:

$$
A_{3}^{\left(S L_{f}\right)}=\frac{g N^{J_{3}+3}}{2^{J_{3}+2} \sqrt{2}} \sin ^{-1} \frac{\pi n}{J_{3}+2}\left(\cos \frac{\pi n}{J_{3}+2}-\cos \frac{\pi n\left(2 J_{1}+1\right)}{J_{3}+2}\right) \Delta_{x_{1} x_{2}} \Delta_{x_{1} x_{3}}^{J_{1}+1} \Delta_{x_{2} x_{3}}^{J_{2}+1}
$$

Contribution (3)

(Planarity constraints $k_{1}=0, k_{2}=J_{2}$ and $k_{1}=J_{1}, k_{2}=0$

- Multiplicity given by the values of p depends on the way we contract the derivative impurities
- First case: for any $p \in\left[0, J_{1}-2\right]$, multiplicity $J_{1}-p-1$ - Second case: just exchange $x_{1} \leftrightarrow x_{2}$ and $J_{1} \leftrightarrow J_{2}$
- Third case: introduce k counting the background fields following the impurity which are contracted with x_{1}. For any $k \in\left[0, J_{1}-1\right]$, we have $p \in\left[k, J_{2}+k-1\right]$
- In any case exchanging the role of the impurities doubles the result.

Summing over these diagrams we get

$$
\left.\begin{array}{rl}
A_{3}^{\left(S L_{u}\right)}= & \frac{g N^{J_{3}+3}}{2^{J_{3}+2} \sqrt{2}} \Delta_{x_{1} x_{2}}^{2} \Delta_{x_{1} x_{3}}^{J_{1}} \Delta_{x_{2} x_{3}}^{J_{2}}\left[2 J_{1} \sin \frac{2 \pi n}{J_{3}+2} \Delta_{x_{1} x_{3}}+2 J_{2} \sin \right. \\
-\sin ^{-1} \frac{\pi n}{J_{3}+2}\left(\cos \frac{\pi n}{J_{3}+2}-\cos \frac{\pi n\left(2 J_{1}+1\right)}{J_{3}+2}\right) \Delta_{x_{1}+1 x_{2}}^{-1} \Delta_{x_{1} x_{3}} \Delta_{x_{2} x_{3}}^{2}
\end{array}\right]
$$

Summary and Comments

- We introduced a novel approach to the computation of the quantum correctios to the superconformal charges in the full PSU(2,2|4)-invariant theory
- The quantum corrected charges allow to solve the mixing for the gauge invariant operators with two impurities and dual string states in the BMN limit
- Mixing with novel structures with both fermionic and derivative impurities appearing at order g and g^{2}
- The new terms do not alter the known results for the anomalous dimension of the operators we studied
- Mixing terms are crucial to fulfill selection rules for the structure constants between two half-BPS and one non-BPS operators
- Computed the same structure constant in the PP-wave strings theory: the correlator I presented is actually non-zero in the dual theory
- U(1)y selection rule is exact in the couplings: what is the origin of the mismatch?
- Study the higher order corrections to the superconformal charges. What about the divergencies?
- Yangian symmetry of three-point functions?

