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Unification of all forces related to the existence of extra-
dimensions of space-time. (Kaluza 1921, Klein 1926)

R

r ! R

E ! !/Rc

the gravitational force law reduces to the familiar inverse 
square law

quantum mechanical wave functions are independent on 
the position on the circle. The circle is invisible.

gMN

gµν 4-dim metric

4-dim vector field

4-dim massless scalar field

M4 X

Long range forces
Time dependence of parameters

gµ4
g44
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Superstring theory
Consistent quantum theory of gravity coupled to matter in 
10 spacetime dimensions (1975-1985)

4D
6D compact 

space

E !
√
α′ Low energy effective theory is described by 

10D supergravity

1985 Candelas et al. starting from heterotic string theory 
one could derive supersymmetric GUT.
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4D Minkowski space
X

6D Ricci flat manifold: Calabi-Yau manifold

The classical equations of supergravity are scale invariant

One-parameter family of solution differing on the value of
In general, hundreds of parameters called moduli (massless scalar 
fields)
How do the particular values we observe for the fundamental 
parameters of physics, such as the electron mass, actually emerge 
from the theory?

V

Proliferation of massless 
scalar fields

The origin of the 
fundamental parameters

gMN → λgMN
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Moduli space

M = MC ×MK

Complex structure deformation of M

Locally,

Kaehler deformation of M

dilaton: interaction strength between strings

Proliferation of massless scalar fields:

•Solution: eom of general relativity and supergravity are scale 
invariant only at the classical level.

•Quantum theory can prefer a particular value of the moduli.

•Quantum effects can be summarized in an effective 
potential, defined as the total vacuum energy.

MC

MK

φ
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•Review of IIB Flux compactifications

•Importance of pertubative and non perturbative corrections

•LARGE Volume compactifications
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•Inclusion of thermal corrections

•Maximal temperature

•Moduli evolution

First part

Second part

Plan of the talk
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Review of IIB flux compactification

SIIB =
1

2k210

∫
d10x

√
−gs

{
e−2φ

[
Rs + 4(∇φ)2

]
−

F 2
(1)

2
− 1

2 · 3!G(3) · Ḡ(3) −
F̃ 2
(5)

4 · 5!

}

+
1

8ik210

∫
eφC(4) ∧G(3) ∧ Ḡ(3) + S loc

•Type IIB string in 10D

•Look for solutions such that

g10 = e−2A(y)dx2
4 + e2A(y)g̃mndy

mdyn

G(3) = F(3) − τH(3) τ = C(0) + ie−φ

F̃(5) = F(5) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3) F̃(5) = ∗F̃(5)

F3, H3 ∈ H3(M,Z)

F1 = dC0 F3 = dC2 F5 = dC4 H3 = dB2

•Field strengths

φ = φ(y)

•Eom requires the presence of localized sources such as D3 branes and 
O3 planes, D7 branes wrapping the internal 3-cycles and anti-D3 branes
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4D effective description

•Described by N=1 supergravity with
Candelas, de la Ossa 1991

holomorphic (3,0) form 

K = −2 lnV − ln [−i(τ − τ̄)]− ln

(
i

∫

M6

Ω ∧ Ω̄

)

axio-dilatonVolume modulus 

Gukov Vafa Witten 1999W =

∫

M6

Ω ∧G3Superpotential

Kaehler potential
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•Four-dimensional effective potential
V = eK

(
GABDAWDBW − 3|W |2

)

DAW = ∂AW −W∂AK•Kahler potential has no-scale form

(A, B) = K., CS moduli and dilaton
∑

AB

GAB∂AK∂BK = 3

Giddings, Kachru, Polcinski 2001
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V = eK
(
GijDiWDjW

)

(i, j) = CS moduli and dilaton

•In this approximation, Kaehler moduli are not stabilized.

•Dilaton and c.s. moduli are stabilized by solving 

DiW = 0
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•Four-dimensional effective potential

•The potential is positive semidefinite with vacua precisely 
when V=0!

•Quantum corrections will generally generate a potential for 
these moduli.
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Perturbative and non-perturbative corrections
N=1 SUGRA has•Kahler potential:

K = K0 +Kp +Knp

= K0 + J
•Superpotential:

•(gauge kinetic function)

•Scalar potential

V = eK
(
GABDAWDBW − 3|W |2

)
+D-terms

VF

W = W0 +Wnp

= W0 + Ω

V0 VJ VΩVF
tree level

+ +=
perturbative 
correction

non-perturbative 
correction
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Conlon, Quevedo, Suruliz 05
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•Consistent inclusion of perturbative corrections in the Kahler 
potential gives dramatic changes in the structure of the potential.

Becker Becker Haack Louis 02

Ω

J
This issues in IIB Flux Compactifications

|VΩ| > |VJ |

VF = eK
[
Gρiρ̄j

(
∂ρiW∂ρ̄jW̄ +

(
∂ρiW (∂ρ̄j K̄)W̄ + c.c.

))]

+3eK
|W |2ξ
Vg3s/2

•F-term potential is

•We want to ask when

ξ = − χζ(3)

2(2π)3
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11



One-parameter Calabi-Yau

V = eK
[
4σ2a2

4
e−2aσ − 4aσe−aσW0 +

9
√
5W 2

0

4
√
2σ3/2g3/2s

]

If gs=0.1, a=2pi (D3-brane instantons) then

W0 ∼ 10−75|VΩ| > |VJ |
In general, both pertubative and non-perturbative corrections 
must be included!

VΩ VJ

An example: the quintic

Scalar potential

Perturbative corrections dominate at both small and large 
volume. 
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V =

√
2

3
√
5
σ3/2
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P4
[1,1,1,6,9]Study scalar potential for a particular model,

h1,1 = 2 h2,1 = 272

DτWcs = 0 and DφiWcs = 0

Kaehler moduli appear non-perturbatively in the superpotential

V =
1

9
√
2

(
τ3/2b − τ3/2s

)
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Large Volume compactification: a working model

Volume

Fix complex structure moduli and dilaton

Moduli

W = W0 +Ase
iasρs +Abe

iaρb

ρs,b = bs,b + iτs,b
K = Kcs − 2 ln

(
V +

ξ

2g3/2s

)

13



V. Calò                                                             SUSSEX UNIVERSITY 01/10

Examine the potential in the LARGE Volume limit

Scalar potential

VF = λ
√
τs (asAs)

2 e−2asτs

V − µτsW0 (asAs)
e−asτs

V2
+ νξ

W 2
0

V3

To see the structure, take the limit  

V → ∞ asAse
−asτs =

W0

V
The potential then becomes

VF =
W 2

0

V3

(
λ′
√
lnV − µ′ lnV + ν′

)

LARGE Volume minimum exists

V =
1

9
√
2

(
τ3/2b − τ3/2s

)
# 1, τb # τs > 1
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where numerical coefficients have been dropped. We have implicitly extremized
with respect to the axion b4 to get a negative sign in front of the second term as
described below equation (27). It is obvious that in the limit

τ5 → ∞ with a4τ4 = lnV, (49)

the potential approaches zero from below as the middle term of equation (48)
dominates. This is illustrated in figure 1 where we plot the numerical values of
ln(V ).

3.8

4

4.2

4.4

4.6

5·10
7

1·10
8

1.5·10
8

-75

-70

-65

4

4.2

4.4

4.6

-75

-70

-65

Figure 1: ln(V ) for P 4
[1,1,1,6,9] in the large volume limit, as a function of the

divisors τ4 and τ5. The void channel corresponds to the region where V becomes
negative and ln(V ) undefined. As V → 0 at infinite volume, this immediately
shows that a large-volume minimum must exist. Here the values W0 = 20, A4 = 1
and a4 = 2π have been used.

The location and properties of the AdS minimum may be found analytically.
To capture the form of equation (48), we write

V =
λ
√

τ4e−2a4τ4

V − µ

V2
τ4e

−a4τ4 +
ν

V3
. (50)

The axion field b5 has been ignored as terms in which it appears are exponentially
suppressed.
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The minimum is a non-susy AdS

V min
F ∼ −O

(
1

V3

)

We can solve for the minimum analytically ∂τsV = ∂τbV = 0

〈τ4〉 ∼ ξ2/3 〈V〉 ∼ W0e
a4τ4
gs

15
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cycle that controls the overall volume; this cycle may be made arbitrarily large
while holding all other cycles small, and controls the overall volume. For all
other cycles, an arbitrary increase in their volume decreases the overall volume
and eventually leads to an inconsistency. The small cycles may be thought of as
local effects; if the bulk cycle is large, the overall volume is largely insensitive to
the size of the small cycles.

2!cycle

Large 4!cycle

Large

Small 4x2

Cycles

Figure 2: A Swiss cheese picture of a Calabi-Yau. There is one pair of large 2-

and 4-cycles - increasing the cycle volume increases the overall volume. The other

pairs are such that increasing the cycle volume decreases the overall volume.

To capture the above, let us consider a Calabi-Yau with divisors τb, τs,i such
that the volume can be written

V =
(

τb +
∑

aiτs,i

) 3

2 −
(∑

biτs,i

) 3

2 − .... −
(∑

kiτs,i

) 3

2

. (86)

We assume that a limit τb " τs,i is well-defined. By working in this limit, the
minus signs can be seen to follow from (82). The form given above is valid
globally for both P4

[1,1,1,6,9] and F11 models. The form (86) is illustrative and it is
not important for our argument that it hold generally; the important assumption
is that there exists a well-defined limit τb " τs,i. We also note that the argument
that follows can then be recast as in [14] using expressions solely in terms of
2-cycle moduli. In the limit τb → ∞, τs,i small , the scalar potential takes the
form

V = eK
[

Gi̄∂iW∂̄W̄ + Gi̄((∂iK)W∂̄W̄ + c.c.) +
3ξ

4V

]

(87)

31

V = τ3/2b −
∑

i

τ3/2s,i

We have an explicit minimum and so we can compute the 
spectrum and soft terms.

16



V. Calò                                                             SUSSEX UNIVERSITY 01/10

Canonical normalization
Thermal equilibrium: masses and couplings depend on the vev of 
moduli fields.

L = Kij̄∂µ(δτi)∂
µ(δτj)− 〈V0〉 −

1

2
Vij̄δτiδτj +O(δτ3)

τb = 〈τb〉+ δτb ,

τs = 〈τs〉+ δτs

expand in the vicinity of the 
T=0 minimum

introduce canonical 
normalized quantum 
fluctuations

δτi =
1√
2
[(#vΦ)iΦ+ (#vχ)iχ]

L =
1

2
∂µΦ∂

µΦ+
1

2
∂µχ∂

µχ− 〈V0〉 −
1

2
m2

ΦΦ
2 − 1

2
m2

χχ
2

δτb ∼ O
(
V1/6

)
Φ+O

(
V2/3

)
χ

δτs ∼ O
(
V1/2

)
Φ+O (1)χ

mixing of the 
quantum fluctuations

17



Example: couplings to gauge bosons
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Masses
m2

Φ !
(
lnV
V

)2

M2
P

m2
χ ! ∼ M2

P

V3 lnV

large hierarchy 
of masses

MSSM: magnetized 
D7-branes wrapping 
the small 4-cycle

Lgauge = − τs
MP

FµνF
µν LχXX ∼

(
1

MP lnV

)
χGµνG

µν ,

LΦXX ∼
(√

V
MP

)
ΦGµνG

µνGµν =
√
〈τs〉Fµν

fi =
TMSSM

4π
+ hi(F )S

18



LARGE Volume Models
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Cosmological moduli problem
de Carlos, Casas, Quevedo, Roulet 1993

•Moduli decay

•Moduli are shifted from the zero temperature 
minimum O(Mp)

•Lifetime
τ ∼

M2
p

m3
φ

" 1 mφ ! 1TeV

•Dominate the energy density of the Universe

•Reheat the Universe
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Γφ ! H(T )

ρφ ∼ 1

T 3

Γφ ∼ D
m3

φ

M2
P

∼ g1/2! T 2/MP

20
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The decay of the moduli will reheat the Universe to a 
temperature Tr

21

Tr ∼ (ΓφMp)
1/2 ∼ m3/2

φ M−1/2
P

It will destroy D, 4He and thus the successful nucleosynthesis 
predictions

Tr > 1MeV

mφ > O(10)TeV

Similar bounds for modulinos and gravitino

Small cycle moduli

m~1000 TeV

Tr ∼ 107GeV

Volume modulus

m~1 MeV

CMP!! (trapping mechanism, 
thermal inflation)

21



Solution of CMP?
Thermal Inflation

Flat directions lifted by supersymmetry breaking

Flaton fields 〈σ〉 # mσ

Flaton fields + matter in thermal equilibrium

V = V0 +
(
T 2 −m2

σ

)
σ2 + . . .

maximum 〈σ〉 = 0

Lyth Stewart (1995)

Field trapped in the false vacuum

T ∼ V 1/4
0 > Tc

The potential energy dominates over the 
radiation energy. Inflation! 

T > mσ = Tc

T = Tc Inflation ends

minimum 〈σ〉 = M! # mσ

N ∼ log
(
V 1/4
0 /Tc

)
∼ log(M!/mσ)

1/2
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M! ∼ 1011GeV

mσ ∼ 103GeV

22



so far...

•Effective potential at tree level

•Inclusion of perturbative correction (LARGE 
Volume)

•Inclusion of non-perturbative correction 
(KKLT)

Zero temperature N=1 sugra

V. Calò                                                             SUSSEX UNIVERSITY 01/10

•Cosmological moduli problem

23



Temperature-dependent corrections: general structure

VTOT = VT=0 + VT !=0
where

At non-zero temperature

V. Calò                                                             SUSSEX UNIVERSITY 01/10

VT=0 = δVnp + δVα′ + δVgs

VT has a generic loop expansion

ideal gas of non-interacting particles

V 1−loop
T = ± T 4

2π2

∫ ∞

0
dx x2ln

(
1∓ e−

√
x2+m2/T 2

)

VT = V 1−loop
T + V 2−loop

T + . . .

V 1−loop
T = −π2T 4

90

(
gB +

7

8
gF

)
+

T 2

24

(
TrM2

b + TrM2
f

)
+O

(
TM3

b

)
T ! m and for chiral superfields

1-loop

d.o.f.

moduli-dependent 
mass matrices

24
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Temperature-dependent corrections: general structure

VTOT = VT=0 + VT !=0
where

At non-zero temperature

VT=0 = δVnp + δVα′ + δVgs

VT has a generic loop expansion

VT = V 1−loop
T + V 2−loop

T + . . .

2-loop (beyond ideal gas approximation)

V 2−loops
T = α2T

4

(
∑

i

fi(gi)

)
+ β2T

2
(
TrM2

b + TrM2
f

)
(
∑

i

fi(gi)

)
+ ...

sum over the interactions 
through which different species 

reach thermal equilibrium

g.i.: f(g) ∼ g2

λφ4 f(g) ∼ λ

25
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Particle interaction/decay 
rate

Universe 
expansion rate

•Universe has for much of its history been in thermal equilibrium

•Radiation dominated Universe

26

H ∼ g1/2∗ T 2/MP

Thermal equilibrium in the expanding Universe

Γ > H

•Thermal equilibrium: 2-2 interactions

•Thermal equilibrium: 1-2 interactions

scattering
annihilation

inverse pair production

decays
single particle production

〈Γ〉 ∼ n〈σv〉

ΓR
D ∼ D

m3

M2
ΓR
D ∼ αm

26



Thermal equilibrium: 2-2 interactions

〈Γ〉 ∼ n〈σv〉
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•Renormalisable interactions

•Gravity

〈Γ〉 ∼ 〈σ〉T 3

〈σ〉 ∼ α2 T 2

(T 2 +M2)2
〈Γ〉 ∼ α2T

〈Γ〉 ∼ α2 T 5

M4

long range

short range

•1 renormalisable and 1 gravitational vertex

〈Γ〉 ∼ d
T 5

M4
P

〈Γ〉 ∼
√
d
g2T 3

M2
P

27
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•Gravitational interactions are not in thermal equilibrium

•No-thermal corrections for the moduli effective potential

T ! g1/2! MP

g2
√
d

•Thermal equilibrium for gravitational interactions

•In LVS d ∼ V ∼ 1014

Moduli can be in thermal equilibrium below Planck scale

〈Γ〉 ∼
√
d
g2T 3

M2
P

! H ∼ g1/2! T 2/MP

28



Thermal equilibrium: 1-2 interactions

long range

ΓR
D ∼ D

m3

M2
ΓR
D ∼ αm
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•Thermal average

〈ΓD〉 = ΓR
D

m

〈E〉

short range

•Renormalisable interactions

•Non-renormalisable interactions

〈ΓD〉 #
{

g2m2

T , for T ! m
g2m, for T " m ,

〈ΓID〉 #
{

g2m2

T , for T ! m

g2m
(
m
T

)3/2
e−m/T , for T " m .

〈ΓD〉 #
{

D m4

M2T , for T ! m

D m3

M2 , for T " m ,
〈ΓID〉 #

{
D m4

M2T , for T ! m

D m3

M2

(
m
T

)3/2
e−m/T , for T " m

ΓID = ΓD T ! m

29



Substituting the results of [16] for !vΦ and !vχ in (4.4), we can write the original Kähler

moduli δτi as (for asτs ! 1):

δτb =
(√

6〈τb〉1/4〈τs〉3/4
) Φ√

2
+

(√

4

3
〈τb〉

)

χ√
2
∼ O

(

V1/6
)

Φ + O
(

V2/3
)

χ , (4.7)

δτs =

(

2
√

6

3
〈τb〉3/4〈τs〉1/4

)

Φ√
2

+

(√
3

as

)

χ√
2
∼ O

(

V1/2
)

Φ + O (1) χ . (4.8)

As expected, these relations show that there is a mixing of the original fields. Nevertheless,

δτb is mostly χ and δτs is mostly Φ. On the other hand, the mass-squareds are [16]:

m2
Φ & Tr

(

M2
)

&
(

gseKcs

8π

)
24
√

2νa2
s〈τs〉1/2

V2
M2

P ∼
(

lnV
V

)2

M2
P (4.9)

m2
χ &

Det
(

M2
)

Tr (M2)
&

(
gseKcs

8π

)
27ν

4as〈τs〉V3
M2

P ∼ M2
P

V3 lnV
. (4.10)

We can see that there is a large hierarchy of masses among the two particles, with Φ being

heavier than the gravitino mass (recall that m3/2 ∼ MP /V) and χ lighter by a factor of
√
V.

Using the above results and assuming that the MSSM is built via magnetised D7 branes

wrapped around the small cycle, we can compute the couplings of the Kähler moduli fields

of the CP 4
[1,1,1,6,9] model to visible gauge and matter fields. This is achieved by expanding

the kinetic and mass terms of the MSSM particles around the moduli VEVs. The details

are provided in Appendix A, where we focus on T > MEW since we are interested in

thermal corrections at high temperatures. This, in particular, means that all fermions and

gauge bosons are massless and the mixing of the Higgsinos with the EW gauginos, that

gives neutralinos and charginos, is not present. We summarise the results for the moduli

couplings in Tables 2 and 3.

Gauge bosons (FµνFµν) Gauginos (λ̄λ) Matter fermions (ψ̄ψ) Higgsinos ( ¯̃HH̃)

χ 1
Mp lnV

1
V lnV No coupling 1

V lnV

Φ
√
V

Mp

1
V3/2lnV No coupling 1√

V lnV

Table 2: CP 4
[1,1,1,6,9]] case: moduli couplings to spin 1 and 1/2 MSSM particles for T > MEW .

Higgs (H̄H) Higgs-Fermions (Hψ̄ψ) SUSY scalars (ϕ̄ϕ) χ2 Φ2

χ MP
V2(lnV)2

1
MPV1/3

MP
V2(lnV)2

MP
V3

MP
V2

Φ MP

V5/2(lnV)2
1

MPV5/6
MP

V5/2(lnV)2
MP

V5/2
MP

V3/2

Table 3: CP 4
[1,1,1,6,9] case: moduli couplings to spin 0 and 1/2 MSSM particles and cubic self-

couplings for T > MEW .

– 20 –

Equilibrium

30

T ! 103m3/2

What are the particles in thermal equilibrium? (Finite temperature 
corrections)

〈Γ〉 ∼
√
d
g2T 3

M2
P

! H ∼ g1/2! T 2/MP

first time!

V. Calò                                                             SUSSEX UNIVERSITY 01/10
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Finite temperature corrections in LVS

MSSM particles + small modulus thermalize

1 loop: masses
2 loop: couplings

gMSSM: contribution from two loops involving MSSM particles

VTOT = V0 +
T 2

24

(
m2

Φ +m2
Φ̃

)

+T 4
(
κ1g

2
MSSM + κ2g

2
ΦXXm2

Φ + κ3g
2
Φ̃X̃X

m2
Φ̃

)
+ ..

dimensional couplings

T 4
(
κ2g

2
ΦXXm2

Φ + κ3g
2
Φ̃X̃X

m2
Φ̃

)
∼ T 2

(
m2

Φ +m2
Φ̃

)
T 2 V

M2
P

V0 ! T 2

24

(
m2

Φ +m2
Φ̃

)

Corrections from the moduli are subleading

1)

2)
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VTOT = VT=0 + 4πc1
T 4

τs

•Phase transitions in the early Universe

•Thermal Inflation (bulk) and the cosmological moduli 

problem

•Runaway at high temperatures. (Maximal Temperature)

•Non-thermal production of dark matter (work in progress)

VT=0 = λ
√
τs (asAs)

2 e−2asτs

V − µτsW0 (asAs)
e−asτs

V2
+ νξ

W 2
0

V3

finally...
2-loops MSSM 
effects dominate
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Decompactification temperature

• IIB flux compactification: metastable minimum

• Decompactification: source of energy greater than the 
barrier

Radiation
InflationVb

Vb ∼ m2
3/2M

2
P

Vb ∼ m3
3/2MP

m3/2 =
|W0|
M2

pV

• Volume modulus couple to all form of energy

• barrier ~ AdS minimum

KKLT

LVS
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Vb

After inflation, inflaton decays to radiation

High-temperature thermal plasma: thermal corrections

V th
tot ∼ V (V) + c T 4

V th
tot ! Vb

Buchmuller, Hamaguchi, Lebedev, Ratz 0411109

Decompactification due to thermal energy

Tmax ∼
(
m3

3/2Mp

)1/4
∼ Mp

V3/4

Tmax ∼
√
m3/2Mp ∼

√
W0Mp

KKLT

LVS

Cannot be 
cirvumvented by 

late entropy 
production 

because there is 
no local 

minimum for 
T>Tmax. 

Tmax ∼ 108GeV
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Radiation dominated Universe

Small moduli decay (II)

T decreases

No increase in entropy and CMP

35
V. Calò                                                             SUSSEX UNIVERSITY 01/10

Tmax T 0
RH Tf TD

Tmax ∼
(
m3

3/2Mp

)1/4

∆ ∼ 1

TD ≡ TRH ∼ ln

(
Mp

m3/2

)
m3/2

35
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Lower bound on the CY volume

Impose:

36

TD < Tmax

Radiation dominated Universe

T decreases

Tmax T 0
RH Tf TD

Tmax ∼
(
m3

3/2Mp

)1/4
TD ≡ TRH ∼ ln

(
Mp

m3/2

)
m3/2

36
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Lower bound on the CY volume

We are finally ready to explore the constraint T∗ < Tmax. Recall that the maximal tem-

perature is given by the decompactification temperature (6.30):

Tmax =

(
P

4πκ1

)1/4
[

(
√

2 − 1)

4
√

2

]1/4 √
W0〈τs〉5/8

V3/4
MP . (6.54)

Let us now consider the ratio Tmax/T∗ and impose that it is larger than unity (using

g∗(MSSM) = 228.75):

R ≡ Tmax

T∗
= c

V1/4

(lnV)3/2
with c ≡ J

[

(
√

2 − 1)g∗
80
√

2

]1/4
π〈τs〉11/8

6W0
& 〈τs〉11/8

2W0
, (6.55)

where we have defined

J ≡
(

4πκ1P
2
)−1/4

=
8.42

κ1/4
1

e−Kcs/2 for gs = 0.1, (6.56)

and in (6.55) we have set J = 1. In fact, from (6.8), we find that in the case of SQCD with

Nc = 3 and Nf = 6, κ1 = 2.625. However for the MSSM we expect a larger value of κ1

which we assume to be of the order κ1 = 10. Then for natural values of Kcs like Kcs = 3,

from (6.56), we find J = 1.05. Let us consider now the maximum and minimum values

that the parameter c can take for natural values of 〈τs〉 and W0:
{

〈τs〉max = 100

W0,min = 0.01
=⇒ cmax & 104, (6.57)

{

〈τs〉min = 2

W0,max = 100
=⇒ cmin & 10−2. (6.58)

Now writing V & 10x, R becomes a function ofR > 1 ⇔ Tmax > T∗

c = 4 ∀x

c = 3 x > 2.1

c = 2 x > 3.8

c = 1 x > 5.9

c = 0.5 x > 7.6

c = 0.1 x > 11.3

c = 0.05 x > 12.8

c = 0.01 x > 16.1

Table 4: Lower bounds on the physi-
cal Volume as seen by the string Vs ∼
10x−3/2 for some benchmark scenar-
ios.

x and c. Finally, we can make a 3D plot of R with

cmin < c < cmax and 2 < x < 15, and see in which

region R > 1. This is done in Figure 6. In order to

understand better what values of V are disfavoured,

we also plot in Figure 7, as the shaded region, the re-

gion in the (x,c)-plane below the curve R = 1, which

represents the phenomenologically forbidden area for

which Tmax < T∗. We conclude that small values of

the Volume, which would allow the standard picture

of gauge coupling unification and GUT theories, are

disfavoured compared to larger values of V, that nat-

urally lead to TeV-scale SUSY and are thus desirable

to solve the hierarchy problem. In Table 4, we show

explicitly how the lower bound on the Volume, for some benchmark scenarios, favours LVS

with larger values of V. It is reassuring to notice that for typical values of V ∼ 1015,

Tmax > T∗ except for a tiny portion of the (x,c)-space. It also important to recall that
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Figure 6: Plots of the ratio R ≡ Tmax/T∗ as a function of V = 10x and the parameter cmin < c <
cmax as defined in (6.55), (6.57) and (6.58). In the left plot, the red surface is the constant function
R = 1, whereas in the right plot the black line denotes the curve in the (x,c)-plane for which R = 1.
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Figure 7: Plot of the R = 1 curve in the (x,c)-plane. The shaded region represents the phe-
nomenologically forbidden area, in which the values of x and c are such that R < 1 ⇔ Tmax < T∗.

the physical value of the volume as seen by the string is the one expressed in the string

frame Vs, while we are working in the Einstein frame where Vs = g3/2
s VE . Hence if we write

VE ∼ 10x, then we have that Vs = 10x−3/2, upon setting gs = 0.1.

General LARGE Volume Scenario

Let us now generalise our lower bound on V to the four cases studied in Subsections

5.2 and 5.3 for the multiple-hole Swiss-cheese and K3 Fibration case (focusing on the small

K3 fiber scenario) respectively.

First of all, we note that, since in all the cases the 4-cycle supporting the MSSM is

stabilised by string loop corrections [7], we can estimate the actual height of the barrier
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V ≡ 10x

37

TD < Tmax

ln

(
Mp

m3/2

)(
m3/2

Mp

)1/4

< 1

c ∼ τ11/8s

W0

R ≡ c
V1/4

lnV > 1
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Kallosh Linde 0401011

Decompactification during Inflation

∆V (V,φ) = V (φ)

Vn

D3-D7 brane 
inflation n=3

V inf
tot = V (V) +∆V (V,φ)

Vb

V inf
tot ! cVb

Energy of the inflaton = uplifting term (runaway)

runaway is quite 
generic

Conlon Kallosh Linde Quevedo 0806.0809

•Low-scale inflation
•“Decouple” the height of the 
barrier from gravitino mass

H ! m3/2

H ! m3/2
3/2

KKLT

LVS
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•Moduli decay

•During inflation, moduli are shifted from the zero 
temperature minimum O(Mp)

•After inflation, moduli oscillate freely around the true 
minimum: matter dominated Universe

•Entropy production

Decay of moduli can produce a substantial amount of 
entropy

Γφ ∼
m3

φ

M2
P

∆ ≡ Sfin

Sin
∼ T 3

RH

T 3
D

V. Calò                                                             SUSSEX UNIVERSITY 01/10

•Primordial thermal abundances are washed away

ρφ ∼ 1

T 3

Ωthermal
cdm → Ωthermal

cdm

(
Tr

Tf

)3 Tr < Tf mφ ∼ 10TeV
mWIMP ∼ 100GeV
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Ωcdm = 0.233± 0.013

Dark matter abundance from thermal production  

Ωcdm = 0.23×
(
10−26cm3s−1

〈σv〉

)

WIMP Miracle
Weak scale physics

ΩNT
cdm → Ωcdm

(
Tf

Tr

)

Particles with larger cross sections can yield the right amount 
of dark matter due to non-thermal production

Dark matter abundance from non-thermal production  

Non-thermal dark matter
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