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1. INCREASING DIVISION OF LABOUR IN KNOWLEDGE PRODUCTION AND USE

The growth of Research and Development activities (R & D) reflects the increasing division

of labour in the production and use of scientific and technological knowledge - a process

foreseen by Adam Smith at the beginning of the Industrial Revolution.  Since then,

professional education, the establishment of laboratories, and improvements in techniques of

measurement and experimentation have progressively increased the efficiency of discovery,

invention and innovation (Price, 1984; Mowery and Rosenberg, 1989). Three complementary

forms of specialization have developed in parallel, each contributing to the growth of R & D.

1.1 Specialisation by discipline: the growth of science and engineering

First, progress and specialisation in scientific disciplines accelerated in the 19th century with

the development of more powerful research tools and techniques.  Increasing opportunities

for application also led to the emergence of the engineering disciplines: hence chemical

engineering in addition to applied chemistry, and electrical engineering in addition to applied

physics (Rosenberg and Nelson, 1994). The differences in timing of the emergence of new

opportunities for innovation reflected radical but uneven improvements in the knowledge

base underlying technological change, and in particular the emergence of new technological

paradigms (Freeman et al, 1982, Dosi, 1982).

The mechanical paradigm was the basis of the Industrial Revolution.  It did not grow out of

contemporaneous scientific advances, but of improvements in the quality of metals and the
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precision with which they could be formed and machined.  These enabled the design,

development and testing of prototypes of families of machines with greatly improved

performance based on materials of homogeneous and predictable quality, and on shapes with

compatible sizes.  Similarly, the initial improvements in metals processing technologies

depended less on scientific understanding than on development activities, experimenting with

different alloys and processing conditions in pilot plant.  Even today, such development

activities in prototypes and pilot plant typically account for about three quarters of the R & D

expenditures of private business firms and for about two-thirds of total R & D.

1.2 Specialisation by corporate function: the growth of business R & D

The science-based chemical paradigm (based increasingly on synthetic chemistry) and the

electrical paradigm (based on electro-magnetism and radio waves) laid the basis for the

industrial R & D laboratory, initially in the chemical and electrical firms in Germany and the

USA.  Many of the initial applications - like the use of techniques of chemical analysis to

control the quality and composition of materials in the increasingly large-scale processing

industries - were relatively mundane, but very profitable in reducing costs.  Management

progressively learned that the science-based technological opportunities were applicable over

a range of existing and new product markets, and therefore opened up opportunities for what

is now called ’related’ product diversification.  Mowery and Rosenberg (1989) have described

the spread of the establishment of R & D laboratories in the USA from the chemical industry

to other sectors, and from larger to smaller firms.  Similar processes have been at work in

Europe (Caron et al., 1995; Nelson, 1993) and more recently in East Asia (Odagiri and Goto,

1996).

Thus, in addition to the benefits of the cognitive division of labour into more specialized

fields, the functional division of labour within business firms also augmented the rate of

technical change.  Corporate R & D laboratories and similar groups devoted full-time to

inventive and innovative activities provided an effective method for creating, combining and

co-ordinating increasingly specialized knowledge.  They provided improved and specialized

instrumentation, which enabled firms to monitor and benefit more systematically and

effectively from advances in specialized academic disciplines.  They also created skills in the

development and testing of laboratory concepts and prototypes, and the translation into

commercialized products.  Firms were able to experiment with a wider range of products and



4

processes than had previously been possible when constrained by established products and

production lines.  In fields rich in technological opportunity, firms have in consequence

become multi-product as well as multi-technology.

Technological paradigms have been associated with the emergence of large dynamic firms

that have been successful in exploiting the new opportunities.  The largest R & D spenders

today are in companies that grew with the emergence of the mechanical (and automobile),

chemical and electrical-electronic paradigms.  Aerospace is a special case, having been

technologically force-fed, especially since World War Two, by government R & D subsidies

and procurement linked to military requirements.  The fastest growing R & D spenders today

are those closely associated with ICTs and software technology.

1.3 Specialization by institution: the growth of academic research

In the 19th century, de Tocqueville forsaw that the dynamics of capitalist competition would

greatly stimulate the development of innovative activities that showed the prospect of a

commercial return.  He also argued that public authorities would need to support

complementary public research of a more fundamental nature, in order to avoid diminishing

returns, to open up new opportunities, and to provide trained researchers.  This has happened

too.  In all advanced countries governments have become the main source of the funding of

research activities, and related post-graduate training, in universities and similar institutions.

Corporate R & D laboratories have come to depend increasingly on a supply of scientists and

engineers aware of the latest research results, and trained in the latest research techniques

(Salter and Martin, 2001)

1.4 R & D and modernisation

This historical pattern of specialisation and growth in knowledge production has been

broadly repeated in the processes of modernisation of late-coming countries, and is

observable in countries at different levels of development today: R & D expenditures as a

percentage of Gross Domestic Product (GDP) increase with GDP per head, both in specific

countries over time, and in cross sections of countries at any point in time.  In successful

modernising countries, R & D is preceded by systematic business investments in

improvement-generating activities: in particular, in production engineering, quality control
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and design activities, initially making minor modifications and improvements, and later

becoming the basis for indigenous innovative activities (Lall, 1992; Bell, 1984).  At this

stage, business-funded R & D increases rapidly, accompanied by the growth of university-

based research in underlying disciplines, with both reflected in the growth in the numbers of

international patents and scientific papers.  This pattern can be observed most clearly in both

South Korea and Taiwan over the past 20 years.

The centrally planned Soviet model of modernisation, practised in the former USSR and

imposed or adopted elsewhere, gave high priority to R & D.  By the late 1950s and early

1960s, R & D expenditures in Central and Eastern European countries were apparently

higher than those in Western Europe and the USA.  Certain Western observers therefore

concluded that the Soviet system was superior in promoting R & D and technical change.

However, Soviet economic performance subsequently deteriorated, and it later become clear

that a very high proportion of Soviet R & D was oriented towards weapons development, and

that the government-established R & D laboratories established for each industry were

decoupled from the requirements of producers and consumers (Hansen and Pavitt, 1987).

The major reductions in R & D activities since their collapse in 1989 can be seen as painful

adjustments to make R & D activities - and the underlying activities in production

engineering, quality control and design - become an integral part of a process of economic

modernisation (Dyker and Radosevic, 1999).

The Soviet system also had inadequate linkages with technical advance in the rest of the

world economy.  One important feature distinguishing today’s modernising countries from

those of the 19th century is the availability of more productive technologies in more advanced

countries.  Countries successful in assimilating these more advanced technologies have had

two characteristics (Hobday, 1995): first, strong linkages with the more advanced countries’

technology whether through inward direct investment (e.g. Singapore), inward technology

licensing by locally owned firms (e.g. Japan, S. Korea), or subcontracting agreements from

advanced country to local firms (e.g. Taiwan); second, the development of local, change

generating activities, culminating in R & D activities, that were essential inputs to effective

imitation, as well as to innovation (Cohen and Levinthal, 1987).
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2. MEASUREMENT OF R & D ACTIVITIES

2.1 Patterns of R & D Activity

By the beginning of the 1960s, initiatives by the US National Science Foundation and the

Organisation of Economic Cooperation and Development (OECD) had established common

definitions of R & D activities, and led to the collection by governments of systematic data

on R & D activities.  These have since been complemented by privately funded surveys

comparing the R & D activities of individual business firms. They show the following

common and largely invariant features of R & D activities.

• In industrially advanced countries, business and government are the main sources of

funds for R & D activities.  Business funding is in general larger, and spent in-house

mainly on applied research and development activities.  Government funding is divided

between basic research performed mainly in university-type institutes, and various types

of R & D associated with health, the environment, defence, and the support of industry

and agriculture.  This R & D is performed mainly in the laboratories of government

agencies and business firms.

• In the industrially advanced countries, the share of GDP typically spent on R & D varies

between 1.5 and 3.0% of Gross Domestic Product (GDP), compared to 0.5 and 1.5% in

the newly industrialising countries, and less than 0.5% in the rest.  The share of national

R & D funded and performed by business firms tends to increase along with GDP per

head.

• More than 60% of all business-funded R & D is typically performed in the chemical,

electrical-electronic and automobile industries.  The largest individual corporate spenders

on R & D are the world’s leading automobile, electrical and ICT (information and

communication technologies) firms.

 

 2.2 The economic determinants and impact of R & D activities

 

 The improved quality of R & D statistics has enabled economists and other analysts to

deepen understanding of both the determinants and the economic impact of R & D activities,

at the level of countries, industries and firms.  A number of analysts have been able to show
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that - amongst the industrially advanced countries - differences in the levels and rates of

growth of national R & D activities have a significant influence on differences in national

performance in exports and productivity (Fagerberg, 1987, 1988).

 

 At the industry level, considerable attention has been given to the effects of firm size and

industrial structure on R & D activities.  Given the dependence of specialisation on scale, the

proportion of firms performing R & D increases with firm size.  However, there is no clear

consensus on how R & D intensity varies with firm size amongst large firms: evidence can be

found either way (Cohen, 1995).  And although R & D is found mainly in concentrated

industries, there is compelling evidence that variations amongst industries in both the degree

of concentration and R & D intensity are jointly determined by a third factor, namely, inter-

industry variations in the extent of technological opportunities (Levin et al., 1985).

 

 Less progress has been made so far in measuring the effects of differences in R & D

expenditures on company performance.  This is partly because comprehensive and

comparable R & D data at the company level are only slowly becoming available.  It is also

because of the difficulty of defining a proper measure of corporate performance.  Those used

include the R & D production function, stock market evaluation, and long-term growth

(Patel, 2000).

 

 2.3 Limitations

 

 Sections 3.1 and 3.2 show that statistics on R & D activities can be a useful proxy measure

for innovative activities.  But they have their limitations, the most often mentioned of which

is that they measure inputs and not outputs.  Equally, if not more important are the following:

 

• In large firms, R & D statistics do not measure the often considerable expenditures on

complementary activities in production and marketing, that are necessary to transform the

outputs of R & D into commercially successful innovations

• In small firms, they do not measure part-time innovative activities, which are particularly

important in the machinery and software sectors.
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• They capture only very imperfectly the growing volume of innovative activities in

software now being performed in firms in service sectors, such as finance and

distribution.

Other indicators of knowledge-generating and innovative activities have therefore been

developed to complement R & D indicators, the most important of which have been counts of

patents, papers, citations and numbers of innovations (Freeman, 1987; van Raan, 1988).

3. SOME CONTEMPORARY DEBATES IN R & D MANAGEMENT

Many of the characteristics and problems of managing corporate R & D have changed very

little since the 19th century.

• The need to orchestrate and integrate specialised knowledge and skills across disciplines,

professions, functions and divisions.

• The progressive improvement in fundamental scientific understanding, accompanying the

increasing systemic complexity of innovations - a process that will continue with the

more widespread application of the techniques emerging from ICT (information and

communications technologies).

• The difficulty (impossibility?) of making reliable predictions about the success or

otherwise of specific innovations, especially major ones.

 At the same time, new problems and challenges have emerged.

 

• With increasing specialisation in both the production of knowledge, and of the

components of increasingly complex systems, firms are faced with increasingly difficult

choices about what products and knowledge to outsource, and what to retain in-house.

An important part of the in-house R & D function is now devoted to the monitoring and

co-ordination of innovative and production activities external to the firm.

• In addition to the well established function of supporting foreign production, large firms

are performing a growing share of their R & D outside their home country, in order to tap

into the increasingly numerous international sources of leading-edge scientific and

technical advance.  This poses new challenges for managers in integrating skills and



9

knowledge over long distances (Niosi, 1999), and for national policy-makers in assessing

the location of the benefits of public investments in academic research.

• There is some evidence that academic research is becoming increasingly linked to

commercial R & D activities.  For some, this is the consequence of unwelcome financial

pressure from governments on universities to demonstrate short term "relevance" in their

research.  For others, it is the consequence of fundamental changes in the locus of

knowledge production.  Other evidence suggests that reductions in the costs of technical

experimentation through simulation software now makes it easier for academic

researchers to develop and test experimental prototypes.
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Economics of Science (4.10.64)

Determining the principles governing the allocation of resources to science as well as

the management and consequences of the use of these resources are the central issues

of the economics of science.  Studies in this field began with the assumption that

science was a distinct category of public spending that required rationalisation.  They

have moved towards the view that science is a social system with distinct rules and

norms.  As the systems view has developed, the focus of the economics of science has

moved from the effects of science on the economy to the influence of incentives and

opportunities on scientists and research organisations.

There is a productive tension between viewing science as a social instrument and as a

social purpose.  In the first view, science is a social investment in the production and

dissemination of knowledge that is expected to generate economic returns as this

knowledge is commercially developed and exploited.  This approach has the apparent

advantage that the standard tools of economic analysis might be directly employed in

choosing how to allocate resources to science and manage their use.  In the second

approach, science is assumed to be a social institution whose norms and practices are

distinct from, and only partially reconcilable with, the institutions of markets. While

this second approach greatly complicates the analysis of resource allocation and

management, it may better represent the actual social organisation of science and the

behaviour of scientists, and it may, therefore, ultimately produce more effective rules

for resource allocation and better principles for management.  Both approaches are

examined in this article, although it is the first that accounts for the majority of the

economics of science literature (Stephan 1996).

1. The Economic Analysis of Science as a Social Instrument
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 In arguing for a continuing high rate of public funding of science following World

War II, US Presidential Science Advisor Vannevar Bush (1945) crafted the view that

science is intrinsically linked to technological and economic progress as well as being

essential to national defence.  The aim of ’directing’ science to social purposes was

already well recognised, and had been most clearly articulated before the war by John

D. Bernal (1939).  What distinguished Bush’s argument was the claim that science had

to be curiosity-driven and that, in companies, such research would be displaced by the

commercial priorities of more applied research.  The view that science is the

wellspring of economic growth became well established within the following

generation, giving rise to statements like,"Basic research provides most of the original

discoveries from which all other progress flows" (United Kingdom Council for

Scientific Policy 1967).

 

 The concept of science as a source of knowledge that would be progressively developed

and eventually commercialised became known as the ’linear model’.  In the linear

model, technology is science reduced to practical application.  The ’linear model’ is an

over-simplified representation that ignores the evidence that technological change is

often built upon experience and ingenuity divorced from scientific theory or method,

the role of technological developments in motivating scientific explanation, and the

technological sources of instruments for scientific investigation (Rosenberg 1982).

Nonetheless, it provides a pragmatic scheme for distinguishing the role of science in

commercial society.

 

 If science is instrumental in technological progress and ultimately economic growth and

prosperity, it follows that the economic theory of resource allocation should be

applicable to science.  Nelson (1959) and Arrow (1962) demonstrated why market

forces could not be expected to generate the appropriate amount of such investment

from a social perspective.  Both Arrow and Nelson noted that in making investments in

scientific knowledge, private investors would be unable to capture all of the returns to

their investment because they could not charge others for the use of new scientific

discoveries, particularly when those discoveries involved fundamental understanding of

the natural world.  Investment in scientific knowledge, therefore, had the characteristics

of a ’public good’ like publicly accessible roads.  This approach established a basis for
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justifying science as a public investment. It did not, however, provide a means for

determining what the level of that investment should be.

 

 Investments in public goods are undertaken, in principle, subject to the criterion that

benefits exceed costs by an amount that is attractive relative to other investments of

public funds.  To employ this criterion, a method for determining the prospective

returns or benefits from scientific knowledge is required.  The uncertainty of scientific

outcomes is not, in principle, a fundamental barrier to employing this method.  In

practice, it is often true that the returns from investments in public good projects are

uncertain, and prospective returns often involve attributing to new projects the returns

from historical projects.  Griliches (1958) pioneered a methodology for retrospectively

assessing the economic returns on research investment, estimating that social returns of

700% had been realised in the period 1933-1955 from the $2 million of public and

private investments on the development of hybrid corn from 1910-1955. Other studies

of agricultural innovation as well as a limited number of studies of industrial innovation

replicated Griliches’ findings of a high social rate of return (see Steinmueller 1994 for

references).  Mansfield (1991) provides a fruitful approach for continuing to advance

this view.  Mansfield asked R&D executives to estimate the proportion of their

company’s products and processes commercialised in 1975-85 that could not have been

developed, or would have been substantially delayed, without academic research carried

out in the preceding 15 years.  He also asked them to estimate the 1985 sales of the new

products and cost savings from the new processes.  Extrapolating the results from this

survey to the total investment in academic research and the total returns from new

products and processes, Mansfield concluded that this investment had produced the

(substantial) social rate of return of 28%.

 

 The preceding discussion could lead one to conclude that the development of a

comprehensive methodology for assessing the rate of return based on scientific research

was only a matter of greater expenditure on economic research. This conclusion would

be unwarranted. Efforts to trace the returns from specific government research efforts

(other than in medicine and agriculture) have been less successful.  The effort by the US

Department of Defense Project Hindsight to compute the returns from defence research

expenditures not only failed to reveal a positive rate of return, but also rejected the view

that "any simple or linear relationship exists between cost of research and value
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received," (Office of the Director of Defense Research and Engineering 1969).  Similar

problems were experienced when the US National Science Foundation sought to trace

the basic research contributions underlying several major industrial innovations

(National Science Foundation 1969).  In sum, retrospective studies based upon the very

specific circumstances of ’science enabled’ innovation or upon much broader claims that

science as a whole contributes a resource for commercial innovation seem to be

sustainable.  When these conditions do not apply, as in the cases of specific research

programmes with uncertain application or efforts to direct basic research to industrial

needs, the applicability of retrospective assessment, and therefore its value for resource

allocation policy, is less clear.

 

 More fundamentally, imputing a return to investments in scientific research requires

assumptions about the ’counter-factual’ course of developments that would have

transpired in the absence of specific and identified contributions of science.  In

examples like hybrid corn or the poliomyelitis vaccine, a reasonable assumption about

the ’counter-factual’ state of the world is a continuation of historical experience.  Such

assumptions are less reasonable in cases where scientific contributions enable a

particular line of development but compete with alternative possibilities or where

scientific research results are ’enabling’ but are accompanied by substantial development

expenditures (David, Mowery, and Steinmueller 1992; Mowery and Rosenberg 1989;

Pavitt 1993).

 

 For science to be analysed as a social instrument, scientific activities must be

interpreted as the production of information and knowledge.  As the results of this

production are taken up and used, they are combined with other types of knowledge in

complex ways for which the ’linear model’ is only a crude approximation.  The result is

arguably, and in some cases measurably, an improvement in economic output and

productivity.  The robustness and reliability of efforts to assess the returns to science

fall short of standards that are employed in allocating public investment resources.

Nonetheless, virtually every systematic study of the contribution of science to economy

has found appreciable returns to this social investment.  The goals of improving

standards for resource allocation and management may be better served, however, by

analysing science as a social institution.
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2. Science as a Social Institution

The economic analysis of science as a social system begins by identifying the

incentives and constraints that govern the individual choices of scientists and this may

reflect persistent historical features of science or contemporaneous policies.

Incentives may include tangible rewards such as monetary awards, intangible, but

observable, rewards such as status, and less observable rewards such as personal

satisfaction.  Similarly, constraints should be interpreted broadly, including not only

financial limitations but also constraints stemming from institutional rules, norms and

standards of practice.  The following simplified account suggests one of several ways

of assembling these elements into a useful analytical framework.

Becoming a scientist requires substantial discipline and persistence in educational

preparation as well as skills and talents that are very difficult to assess.  Scientific

training may be seen as a filter for selecting from prospective scientists those who

have the ability and drive to engage in a scientific career.  In addition, the original

work produced during research training demonstrates the capacity of the researcher

and provides a means for employers to assess the talents of the researcher (David

1994).  Analysing science education as an employment filter is a complement to more

traditional studies of the scientific labour market such as those reviewed by Stephan

(1996).  The employment filter approach may also waste human resources by making

schooling success the only indicator of potential for scientific contribution.  If, for

example, the social environment of the school discourages the participation or

devalues the achievement of women or individuals from particular ethnic groups, the

filter system will not perform as a meritocracy

The distinctive features of science as a social system emerge when considering the

incentives and constraints facing employed scientists.  Although there is a real

prospect of monetary reward for outstanding scientific work (Zuckerman 1992), many

of the incentives governing scientific careers are related to the accumulation of

professional reputation (Merton 1973).  While Merton represented science as

’universalist’ (open to claims from any quarter) the ability to make meaningful claims

requires participation in scientific research networks, participation that is constrained

by all of the social processes that exclude individuals from such social networks or
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fail to recognise their contribution. The incentive structure of seeking the rewards

from professional recognition, and the social organisation arising from it, is central to

the ’new economics of science’ (Dasgupta and David 1994).

The new economics of science builds upon sociological analyses (Cole and Cole

1973; Merton 1973; Price 1963) of the mechanisms of cumulative reinforcement and

social reward within science.  From an economic perspective, the incentive structure

governing science is the result of the interactions between the requirement of public

disclosure and the quest for recognition of scientific ’priority,’ the first discovery of a

scientific result.  Priority assures the alignment of individual incentives with the social

goal of maximising the scientific knowledge base (Dasgupta and David 1987).

Without the link between public disclosure and the reward of priority, it seems likely

that scientists would have an incentive to withhold key information necessary for the

further application of their discoveries (David, Foray and Steinmueller 1999).

As Stephan (1996) observes, the specific contribution of the new economics of

science is in linking this incentive and reward system to resource allocation issues.

Priority not only brings a specific reward of scientific prestige and status but also

increases the likelihood of greater research support.  Cumulative advantage therefore

not only carries the consequence of attracting attention, it also enables the recruitment

of able associates and students and provides the means to support their research.

These effects are described by both sociologists of science and economists as the

Matthew effect after Matthew 25:29, ’For to every one who has will more be given,

and he will have abundance; but from him who has not, even what he has will be

taken away.’  As in the original parable, it may be argued that this allocation is

appropriate since it concentrates resources in the hands of those who have

demonstrated the capacity to produce results.

The race to achieve priority and hence to collect the rewards offered by priority may,

however, lead to inappropriate social outcomes because priority is a ’winner takes all’

contest.  Too many resources may be applied to specific races to achieve priority and

too few resources may be devoted to disseminating and adapting scientific research

results (Dasgupta and David 1987; David and Foray 1995), a result that mirrors earlier

literature on patent and technology discovery races (Kamien and Schwartz 1975).
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Moreover, the mechanisms of cumulative advantage resulting from achieving priority

may reduce diversity in the conduct of scientific research.  This system has the

peculiarity that the researchers who have the greatest resources and freedom to depart

from existing research approaches are the same ones who are responsible for creating

the status quo.

The principal challenges to the view that science is a distinct social system are the

growing number of scientific publications by scientists employed in private industry

(Katz and Hicks 1996) and the argument that scientific knowledge is tightly bound to

social networks (Callon 1994).  Private investments in scientific research would

appear to question the continuing validity of the ’public good’ argument.  For example,

Callon (1994) contends that scientific results are, and have always been, strongly

’embedded’ within networks of researchers and that ’public disclosure’ is therefore

relatively useless as a means of transfer for scientific knowledge.  Gibbons et al.

(1994) argue that research techniques of modern science have become so well

distributed that public scientific institutions are no longer central to scientific activity.

While the arguments of both Callon and Gibbons et al. suggest that private scientific

research is a direct substitute for publicly funded research, other motives for funding

and publication such as gaining access to scientific networks suggest the public and

private research are complementary (David, Foray, and Steinmueller 1999).  The

growing reliance of industry on science provides a justification for investing in

science to improve the ’absorption’ of scientific results (Cohen and Levinthal 1989;

Rosenberg 1990).  Employed scientists need to be connected with other scientific

research colleagues who identify ’membership’ in the scientific community with

publication, and labour force mobility for employed scientists requires scientific

publication.  Thus, it is premature to conclude that the growing performance of

scientific research in industry or publication of scientific results by industrial authors

heralds the end of the need for public support of science.

The growing significance of private funding of scientific research does, however,

indicate the need to improve the socio-economic analysis of the incentive and

governance structures of science.  Empirical work on the strategic and tactical

behaviour of individual scientists, research groups and organisations is urgently

needed to trace the implications of the changing environment in which the social
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institutions of science are evolving.  Ultimately, these studies should be able to meet

the goal of developing better rules for allocating and managing the resources devoted

to science.
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European governments invest considerable sums of money in science. This article

examines the reasons why they do this, covering briefly the historical context of

European science funding and highlighting current issues of concern. The focus is on

government funding of science, rather than funding by industry or charities, since

government has historically been the largest funder of ‘science’ as opposed to

‘technology’. As an approximate starting point, ‘science’ refers to research that is

undertaken to extend and deepen knowledge rather than to produce specific

technological results, although the usefulness of this distinction will be questioned

below. By ‘science policy’ what is meant is the set of objectives, institutions and

mechanisms for allocating funds to scientific research and for using the results of

science for general social and political objectives (Salomon 1977). ‘Europe’ here only

refers to Western Europe within the European Union, excluding the Eastern European

countries.

1. Background

Government funding of science in Europe started in a form that would be

recognizable today only after the Second World War, although relations between

science and the state can be traced back at least as far as the Scientific Revolution in

the seventeenth century (Elzinga and Jamison 1995). The history of science funding

in Europe can be summarized broadly as a movement from a period of relative

autonomy for scientists in the post-war period, through stages of increasing pressures

for accountability and relevance, resulting in the situation today, where the majority

of scientists are encouraged to direct their research towards areas that will have some

socially or industrially relevant outcome.
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However, this account is too simplistic. Many current concerns about science funding

are based on the idea that ‘pure’ or ‘basic’ science (autonomous research concerned

with questions internal to the discipline) is being sacrificed in place of ‘applied’

research (directed research concerned with a practical outcome), incorrectly assuming

that there is an unproblematic distinction between the two (see Stokes 1997). Looking

back, it can be seen that even in the late 1950s there were expectations that science

should provide practical outcomes in terms of economic and social benefits, and the

work that scientists were doing at this time was not completely ‘pure’, because much

of it was driven by Cold War objectives. This is a demonstration of the broader point

that in science policy the categories used to describe different types of research are

problematic, and one must be careful when using the traditional terminology.  With

these caveats in place, it is possible to trace the major influences on European science

funding.

In the 1950s and 1960s much of the technologically-oriented funding of research was

driven by military objectives and attempts to develop nuclear energy.  In terms of

science funding, this was a period of institutional development and expansion in

science policy (Salomon 1977). The autonomy that scientists enjoyed at this time was

based on the assumption that good science would spontaneously generate benefits.

Polanyi (1962) laid out the classic argument to support this position, describing a self-

governing ‘Republic of Science’. He argued that because of the essential

unpredictability of scientific research, government attempts to direct science would be

counter-productive because they would suppress the benefits that might otherwise

arise from undirected research. This influential piece can be seen as a response to

Bernal’s work (1939), which was partly influenced by the Soviet system and which

argued that science should be centrally planned for the social good.

Another important concept of the time was the ‘linear model’ propounded by US

science adviser Vannevar Bush (1945). In this model for justifying the funding of

science, a one way conceptual line was drawn leading from basic research to applied

research to technological innovation, implying that the funding of basic research

would ultimately result in benefits which would be useful to society.

But pressures on science from the rest of society were increasing. In the 1970s there

was a growing awareness of environmental problems (often themselves the results of
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scientific and technological developments), and European countries also experienced

the oil crises, with accompanying fiscal restrictions. There were increasing pressures

on scientists to be accountable for the money they were spending on research.  Also at

this time the social sciences, especially economics, provided new methods for

understanding the role of scientific research in industrial innovation and economic

growth (see Freeman 1974).

In the 1980s Europe realized it had to respond to the technological and economic

challenges of Japan and the US, and because of the ending of the Cold War, military

incentives for funding science were no longer so pressing. Technology, industrial

innovation and competitiveness were now the main reasons for governments to fund

science. Academic studies of innovation also began to question the linear model of the

relationship between science and technology, described above, arguing that the

process was actually more complicated (e.g. Mowery and Rosenberg 1989). This led

to pressures on the previous ‘contract’ between government and scientists (Guston

and Keniston 1994), which had been based on the assumptions of the linear model.

Rather than presuming that science would provide unspecified benefits at some

unspecified future time, there were greater and more specific expectations of scientists

in return for public funding. This was accompanied by reductions in the growth of

science budgets, producing a ‘steady state’ climate for scientific research, where

funding was not keeping up with the rapid pace at which research was growing (see

Ziman 1994).

Science policy work at this time produced tools and data for measuring and assessing

science. Various techniques were developed, such as technology assessment, research

evaluation, technology management, indicator-based analysis, and foresight (Irvine

and Martin 1984).

In the 1990s there was greater recognition of the importance of scientific research for

innovation, with the development of new hi-tech industries that relied on fundamental

scientific developments (such as biotechnology), in conjunction with other advanced

technologies. There were also growing pressures for research to be relevant to social

needs. Gibbons et al. (1994) argued that the 1990s have witnessed an increasing

emphasis on problem-oriented, multi-disciplinary research, with knowledge
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production having spread out to many diverse locations, and that distinctions between

basic and applied science, and between science and technology, are becoming much

more difficult to make.

2. The Influence of the European Union

Moving from a general historical context to look more specifically at the European

level shows that research funding from the European Union (EU), in the form that it

currently takes, did not start until 1984 with the first ‘Framework Programme’. This

funded pre-competitive research (i.e. research that is still some way from market

commercialization) following an agenda influenced by industrial needs (Sharp 1997).

From the 1960s onward, the Organization for Economic Cooperation and

Development (OECD) had been a more influential multinational organization than the

EU in terms of national science policies (Salomon 1977). In particular, the OECD

enabled countries to compare their research activities with those of other countries,

and encouraged greater uniformity across nations.

Currently EU research funding only comprises a few percent of the total research

funding of all the member states (European Commission 1994), although it has been

more important in the ‘less favored’ regions of Europe (Peterson and Sharp 1998).

Consequently, in terms of science funding, the national sources are more important

than the EU.  However, EU programmes do have an influence on the funding

priorities of national governments. In theory, the EU does not fund research which is

better funded by nation states (according to the ‘principle of subsidiarity’ - see Sharp

1997), so it does not fund much basic research, but is primarily involved in funding

research that is directed towards social or industrial needs.

The most important impact of the EU has been in stimulating international

collaboration and helping to form new networks, encouraging the spread of skills.

One of the requirements of EU funded projects is that they must involve researchers

from at least two countries (Sharp 1997). This could be seen as part of a wider

political project that is helping to bind Europe together. It is possible that many of

these collaborations might have happened without European encouragement because

of a steady rise in all international collaborations (Narin et al. 1991).  However, it is
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likely that through its collaborative programmes and their influence, the EU will play

an increasingly important role in the future of research funding in the member

countries (Senker 1999).

3. Individual Countries in Europe

Since it is the individual countries in Europe that are responsible for the majority of

science funding, the organization of their research systems deserves attention.

All the countries have shown the general trends outlined above, but the historical and

cultural differences among the European nations lead to considerable diversity in

science funding arrangements. It is possible to compare the different countries by

looking at the reasons why they fund science and the ways in which research is

organized.

European nations, like those elsewhere, have traditionally funded science to

encourage economic development, although most countries also attach importance to

advancing knowledge for its own sake. Some countries such as Sweden and Germany

have emphasized the advancement of knowledge, and other countries, such as Ireland,

have put more emphasis on economic development (Senker 1999). Since the 1980s,

the economically important role of science has been emphasized in every country.

This has often been reflected at an organizational level with the integration of

ministerial responsibilities for science funding with those for technology and higher

education.

We can compare individual countries in terms of differences in the motivations

behind funding research. Governments in France and Italy have traditionally

promoted ‘prestige’ research, and have funded large technology projects, such as

nuclear energy. These reasons for funding research, even though they are less

significant in the present climate, have had long-lasting effects on the organization of

the national research systems. The UK is notable in that the importance of science for

economic competitiveness is emphasized more than in other European countries, and

industrial concerns have played a larger role (Rip 1996).
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Organizational differences between countries can tell us something about the way research

funding is conceptualized and can also reflect national attitudes toward the autonomy and

accountability of researchers. In the different European countries the locus of scientific

research varies. In some countries the universities are most important (e.g. Scandinavia,

Netherlands, UK), and funds are competed for from research councils (institutions that

mediate between scientists and the state - see Rip 1996). In this type of system there will

usually be some additional university funding which provides the infrastructure, and some of

the salaries. The level of this funding varies between countries, which results in differences

in scientists’ dependence on securing research council funds and has implications for

researcher autonomy. In other countries a great deal of scientific research is carried out in

institutions which are separate from the universities (e.g. France and Italy).

The situation is not static, and scientific research in the university sector has been growing in

importance across the whole of Europe (Senker 1999). For example, in France, the science

funding system has traditionally been centralized with most research carried out in the

laboratories of the Centre National de la Recherche Scientifique (CNRS). Now the situation

is changing and universities are becoming more involved in the running of CNRS labs,

because universities are perceived to be more flexible and responsive to user needs (Senker

1999). Germany is an interesting case because there is a diversity of institutions involved in

the funding of science. There is a division of responsibility between the federal state and the

Länder, which are responsible for the universities. There are also several other types of

research institute, including the Max Planck institutes, which do basic research, and the more

technologically-oriented Fraunhofer institutes. Resulting institutional distinctions between

different types of research may lead to rigidities in the system (Rip 1996). In all countries in

Europe there is an attempt to increase coordination between different parts of the national

research system (Senker 1999).

4. Current trends

As has been emphasized throughout, European governments have demanded

increasing relevance of scientific results and accountability from scientists in return

for funding research. Although the situation is complex, it is clear that these pressures,

and especially the rhetoric surrounding them, increased significantly during the 1990s.
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This has led to worries about the place for serendipitous research in a "utilitarian-

instrumental" climate (Nowotny 1997:87).

These pressures on science to be useful are not the only notable feature of the current

funding situation. The views of the public are also becoming more important in

decisions concerning the funding of science.

The risks and detrimental effects of science are of particular concern to the public,

possibly because the legitimacy of the authority of politicians and scientists is being

gradually eroded (Irwin and Wynne 1996). Throughout Europe there has been a

growth in public distrust in technological developments, which has led to pressures

for wider participation in the scientific process. This is related to the current (and

somewhat desperate) emphasis on the ‘public understanding of science’, which is no

longer simply about educating the public in scientific matters, but has moved towards

increasing participation in the scientific process (see Gregory and Miller 1998).

Concerns about the environmental effects of scientific developments can be traced

back many decades, but recent incidents have led to a more radical diminution of

public faith in scientific experts (with issues such as climate change, Chernobyl, BSE

and GMOs).

The public distrust of science may also be due to the fact that scientists, by linking

their work more closely either to industrial needs or to priorities set by government,

are losing their previously autonomous and potentially critical vantage-point in

relation to both industry and government.

Certain European countries, especially the Netherlands and Scandinavia, which have a

tradition of public participation, are involving the public more in debates and priority

setting on scientific and technological issues. This has been described as a "post

modern" research system (Rip 1996). As the distinction between science and

technology becomes less clear, in this type of research system there is also a blurring

of boundaries between science and society.
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5. Implications

An implication of these changes in science funding is that the growing importance of

accountability and of the role of the public in scientific decisions may have

epistemiological effects on the science itself, since scientific standards will be

determined not only by the scientific community but by a wider body of actors often

with divergent interests (Funtowicz and Ravetz 1993).

If norms are linked to institutions, and if institutions are changing because of the

greater involvement of external actors in science, and of science in other arenas, then

the norms may be changing too (Elzinga 1997). This is an issue that was touched on

in the 1970s and 1980s by the proponents of the ‘finalization thesis’ who argued that,

as scientific disciplines become more mature, they become more amenable to external

steering (Böhme et al. 1983). The importance of external influences leads to worries

about threats to traditional values of what constitutes ‘good’ science (Elzinga 1997,

see also Guston and Keniston 1994 for US parallels). There may be an emergence of

new standards of evaluation of scientific research.

European science funding has changed considerably since it was institutionalized, partly

because of its success in generating new technologies and partly because of its failures and

their social consequences. It is becoming more difficult to categorize science, technology and

society as separate entities (Jasanoff et al. 1995), or to think of pure scientists as different

from those doing applied research. Wider society has become inextricably linked with the

progress of science and the demands placed on scientists and science funding mechanisms

are starting to reflect this restructuring. This tendency is likely to continue into the future.
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