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Abstract 

Innovation systems are complex systems that can exhibit scaling and emergent 

properties. Predictable and measurable scaling correlations exist between measures 

commonly used to characterize innovation systems and national economies.   

 

This paper examines scaling relationships between GERD & GDP and between GDP & 

population and uses them to construct scale-independent indicators of the European and 

Canadian innovation systems. It discusses the theory and practice of building scale-

independent indicators and scale-independent models. The theory is based on 

knowledge gathered from the study of complex systems. The practice is illustrated using 

OECD and Statistics Canada data commonly used to construct conventional indicators. 

 

Keywords: complex system, scaling, power law, emergent properties, innovation, 

innovation system, indicators, scale-independent, model 
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1. Introduction 

Observers of innovation systems make comparisons (Freeman, 1987; Katz et al., 1998; 

Lundvall, 1992; Stoneman, 1995). Invariably they compare groups or collective entities 

such as countries, institutions, departments, firms, etc. over time and often broken down 

by scientific or technology field. They use quantitative and qualitative measures of the 

inputs, outputs and processes in the systems to construct indicators that frequently 

inform government programs and public policy. 

 

According to the OECD a science and technology indicator is  

 

a series of data which measures and reflects the science and technology 

endeavour of a country, demonstrates its strengths and weaknesses and 

follows its changing character notably with the aim of providing early warning 

of events and trends which might impair its capability to meet the country’s 

needs (Godin, 2005; OECD, 1976).  

 

This paper will focus only on quantitative indicators. A quantitative indicator is defined as 

numbers or ratios of numbers derived from empirical1 observations that can be used to 

inform public policy. 

 

There is a wide variety of indicators2. For example, a standard measure of the size of an 

economy is its Gross Domestic Product (GDP). It is an indicator of the market value of 

goods and services from all sectors in the economy. Similarly the gross expenditure on 

research and development (GERD) is a cherished indicator of a country’s R&D effort 

(Godin, 2005). GERD, expressed as a percentage of GDP, is commonly called the R&D 

intensity indicator. It is frequently used to compare the R&D effort of innovation systems. 

                                                 
1 Empirical means information based on experience or observational information and not 

necessarily on proven scientific data. US NIH glossary 
http://www.niaid.nih.gov/factsheets/GLOSSARY.htm  

2 In this paper a distinction will not be made between science and technology indicators 
and knowledge and innovation indicators commonly used to measure and evaluate 
innovation systems and their members. 
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Often, a government will use the R&D intensity as a  target in its policy objectives to 

argue for more R&D resources (Voyer, 1999).   

 

Another commonly used indicator is the number of research documents published by the 

scientists and engineers in an innovation system. It is used as a measure of the size of 

the system (Katz et al., 1998). A variety of measures such as the number of firms or 

scientists and engineers are also used as indicators of the size of an innovation system. 

The impact of a country’s published output is frequently measured by the number of 

citations to its publications. Sometimes, groups are compared using indicators based on 

numbers of citations per paper (A.F.J Van Raan, 2005). It is best practice for a group of 

peers to review a collection of indicators to see if they converge on program or policy 

relevant issues (Irvine et al., 1983). 

 

Since the official beginning of the use of S&T indicators by the OECD in the 1960s many 

warnings have been made about employing indicators for comparative purposes (Godin, 

2005). For example, as early as 1967 the OECD cautioned about the use of GERD for 

comparative purposes because “the percentage of GNP devoted to R&D varies directly 

with per capita GNP. [But] this appears to be true at the top and bottom of the scale” 

(Godin, 2005). Furthermore warnings have been issued that international comparisons of 

R&D expenditures are influenced by the scale of the economies being compared 

(Holbrook, 1991) The journal impact factor (Adams, 2002) and indicators based on 

citations/paper have been similarly criticized as misleading (Katz, 2000, 2005).  

 

Many important indicators are derived from the ratio of common measures. For example, 

GDP per capita (GDP/population) is frequently used as an indicator of a nation’s income 

and as previously mentioned GERD/GDP is used as an indicator of the R&D intensity of 

an innovation system. It will be shown that GERD can exhibit a predictable scaling 

relationship with GDP and that GDP can show a predictable scaling relationship with 

population. Furthermore, it will be shown that when a scaling relationship exists between 

two measures (e.g. GERD/GDP, GDP/population and citations/paper) then the ratio of 

those measures also exhibits a scaling relationship. It will be claimed that these scaling 

relationships should be taken into account when comparisons are made between groups 

of different sizes. Indicators that have been adjusted for size or scale are called scale-

independent indicators (Katz, 1999, 2000, 2005).  
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Van Raan (Anthony F. J. Van Raan, 2005 (submitted)) claims that “one could also argue 

that a larger impact as measured on the bases of citations cannot be simply waved aside 

as purely a scale-dependent effect. In this way groups are ‘punished’ for having reached 

a considerable size as the number of citations received by them should be corrected for 

size3”. It will be argued that innovation systems are complex systems that exhibit 

emergent properties and they tend to scale. And it will argue that unless observers and 

policy-makers account for the non-linear scaling effects then their expectations of the 

performance of individual members of the system may be unrealistic. 

 

This paper focuses on the theory and practice for constructing scale-independent 

indicators. The theory underlying these indicators is based on information gathered from 

the study of complex systems. The practice for constructing scale-independent indicators 

is illustrated using common statistical measures for two innovation systems, the 

European and Canadian innovation systems.  

2. Complex Systems, Scaling and Power Laws 

It is difficult to precisely define a complex system; however, it is recognizable because it 

has identifiable characteristics (Amaral et al., 2004). Amongst other things a complex 

system    

• has a dynamic internal structure that evolves and interacts in a complex manner,  

• exhibits emergent behaviours and patterns that are not the result of rules or 

caused by a single entity in the system. Flocking of birds, swarming of bees, 

schooling of fish and swirling of hurricanes are emergent properties found in 

nature (Parrish et al., 2002; Peterson, 2000). The stock market is a system that 

has emergent properties determined by the collective actions of investors (Blok, 

2000).  

• is open in the sense that information flows across its boundaries which in turn are 

difficult to clearly identify.  

• is composed of complex subsystems.  
                                                 
3 If Van Raan’s argument were valid then there would be no reason to normalize the 

impact by dividing citations by number of papers. One purpose of normalization is to 
adjust for size so impact comparisons can be made between large and small groups. 
However, the current normalization procedure is only valid when there is a linear 
scaling relationship between citations and papers but this rarely occurs (Katz, 2005). 
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Frequently a complex system is represented as a complex network with nodes 

representing the units and edges representing the interactions between them (Albert et 

al., 2002; Steven H. Strogatz, 2001).  Researchers have developed a variety of models 

to simulate complex systems. Indicators commonly used to compare innovation systems 

have been used to confirm that many important properties exhibited by these models 

can be seen using empirical data  (Albert et al., 2002; Amaral et al., 2001; Havemann et 

al., 2005).  Examples of these will be discussed later. 

 

Most, if not all, complex systems have at least one common feature. They have a 

propensity to exhibit scaling properties (Carlson et al., 2002; M. E. J. Newman, 2000). In 

other words they exhibit characteristics that are statistically similar at many levels of 

aggregation. For example, the swirl of a hurricane contains many smaller swirls and 

similarly a swarm of bees contains smaller swarms. The identifying signature of a scaling 

property is a power law relationship. Power laws are common to physical (Christensen et 

al., 2002; Warhaft 2002), natural science (Goldberger et al., 2002; Katz et al., 1999; 

West et al., 2002) and social systems (M. E. J. Newman et al., 2002). They describe 

well-known statistical regularities4 such as Pareto, Lotka, Bradford and Zipf’s laws. 

These laws have been shown to hold for such things as the distribution of the sales and 

size of firms, the productivity of researchers and inventors, the journals in scientific fields 

and the use of language. These laws typify many characteristics of innovation systems 

(De Solla Price, 1963).  

 

Formally a power law relationship is defined by were the variable of interest 

 and n > 0. In real world systems the range of a power law distribution may 

be finite since the tail of the distribution asymptotically approaches a power law as x gets 

large (Stanley et al., 2001).  In other words, in real systems the range of an ideal power 

law relationship maybe constrained to a finite range. Power laws are readily identifiable 

when they are plotted on a log-log scale because they appear linear.  

αxxF ∝)(

],[ 0 nxxx∈

 

                                                 
4 Observers of social systems sometimes refer to these statistical regularities as social 

laws. 
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The exponent, α, of a power law is called its scaling factor and it is given by the slope of 

the linear regression line drawn through the log values. It is a useful indicator. For 

example, the area and the volume of a circle and a sphere increase as the square and 

cube of the radius, respectively. The scaling factor for a circle is 2.0 and for a sphere it is 

3.0 and it tell us that if the radius doubles then the area of the circle increases four fold 

(22) and the area of the sphere by eight fold (23). The area of a circle and the volume of a 

sphere are emergent properties seen in many two and three dimensional objects. 

However, they are unique because the scaling factors of these emergent properties are 

integers. Scaling properties in most natural and social systems do not have integer 

scaling factors.  For example, objects like clouds, plants and the World Wide Web can 

have scaling properties that have scaling factors between 1.0 and 3.0 (S. H. Strogatz, 

2005). 

 

If innovation systems are truly complex we would expect them to exhibit scaling and 

emergent properties. In fact, the tell-tale power law signatures of scaling relationships 

have been seen in innovation system indicators for decades. This is witnessed by the 

large number of papers that have been written describing the importance of Lotka, 

Pareto and Zipf distributions in the activities of parts of innovation systems (Katz, 1999). 

Some these papers have suggested models to explain the power law generating 

processes that produce scaling characteristics.  

3. Power Law Generators 

Power laws are generated by a wide variety of mechanisms (Mitzenmacher, 2003) that 

range from completely deterministic processes (strictly rule based) to completely non-

deterministic processes (stochastic or random). In fact, Mitzenmacher says “Power law 

distributions and lognormal distributions are quite natural models and can be generated 

from simple and intuitive generative processes.” Examples of three types of generative 

models will be discussed: (1) deterministic generators; (2) non-deterministic generators; 

and (3) mixed deterministic and non-deterministic generators. 

3.1 Deterministic generators 

Ideal exponential growth is deterministic since all past and future values are predictable. 

It can be shown that a pair of exponential processes that are coupled through a common 

variable such as time will exhibit a power law correlation where the scaling factor is given 
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by the ratio of the exponents of the exponential processes5. This relationship was used 

to demonstrate scaling correlations between the growth of citations6 and papers in the 

ISI database (Katz, 2005). Deterministic power law generators have been identified that 

generate scale free networks (Barabasi et al., 2001; Dorogovtsev et al., 2001). 

3.2 Non-deterministic generators 

Brownian motion, the random motion of liquid and gas molecules, is an example of a 

non-deterministic generator of power law distributions.  Stock market processes and 

gains & losses from gambling activities generate brown noise which is an allusion to 

Brownian motion because both have a 1/f2 power spectrum distribution. Brownian motion 

contains several subtle statistical self-similarities or power laws distributions (Blok, 2000; 

Schroeder, 1991).   

 

A number of models have been proposed to generate the power laws commonly seen in 

word frequency distributions of language. All but one of these models is based on a 

mixed generator (a random process plus one or more rules). This type of generator will 

be discussed in the next section. In 1957, a researcher proposed a model based on a 

monkey typing randomly on a keyboard. The characters were struck with equal 

probabilities. It has been mathematically proven that this model generates rank word 

frequency power law distribution (Mitzenmacher, 2003).  

3.3 Mixed generators 

Mixed deterministic and non-deterministic processes can be generators of power law 

distributions. A random multiplicative process is known to generate a lognormal or Gibrat 

distribution (Gibrat, 1931). This process is defined by 1−= ttt XFX  where X0 and F0 are 

the starting size and the initial growth factor. The growth factor can be positive or 

                                                 
5 Assume we are given any two exponential processes and . Using 

these two relationships 

ptaex = qtbey =
qtpt byax 11 )()( ==e  and thus qby 1)(p =ax 1)( therefore it 

can be seen that pqpq xaby )(=  which has the form of .  In other words, 
any pair of coupled exponential processes will exhibit a power law correlation with 
exponent, 

αxxF ∝)(

pq=α , and intercept, pqabs )(= , that are predictable from the 
exponents and intercepts of the individual exponential processes. This relationship 
holds even if the two processes are delayed in time with respect to each other or if they 
have different starting values at t = 0. 

6 Citations were counted using a 3 year window. 
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negative representing growth and shrinkage (negative growth). However, if a random 

multiplicative process is bounded by a minimum then it will yield a power law distribution 

instead of a lognormal distribution (Mitzenmacher, 2003; Solomon et al., 1997). There is 

a wide variety of mixed power law generators with dynamics that are governed by 

random processes and one or more rules.   

 

The chaos game (Barnsley, 1988) is a simple example. It involves a random number 

generator and a simple rule. A player starts playing by placing three points on a piece of 

paper and selecting an arbitrary starting point. Randomly one of the three points is 

chosen and a rule is applied. The rule is ‘go half way from the current point to the 

randomly selected point and make a point at that position’. After thousands of steps the 

well-known features of the Sierpinski triangle or gasket fractal will be visible in the 

structure of the dots. The probability distribution of the sizes of the triangles in the 

Sierpinski triangle follows a power law (Schroeder, 1991).  

 

Recent research has demonstrated that the standard deviation of the growth rate of firms 

has a scaling correlation with the size of the firms measured using sales (Amaral et al., 

1998; Amaral et al., 2001). Furthermore, the scaling relationship remained whether size 

was measured using the number of employees, assets, costs of goods sold and plants, 

property or equipment. A power law correlation has also been found between the 

standard deviation of growth rates and the sizes of countries measured using GDP and 

between the standard deviation of growth rates of universities and their sizes measured 

using papers, patents and R&D expenditure (Plerou et al., 1999).  

 

Amaral et al. (2001) built a model to explain the scaling relationships. The model is 

based on three assumptions7: (1) firms (groups) tend to organize into multiple divisions 

(subgroups) once they achieve a certain size; (2) there is a broad distribution of 

minimum size in the economy and (3) the growth rates of different divisions are 

independent of one another. In the model the growth rate of the size of each division in 

the firms evolved according to a random multiplicative process. New divisions were 
                                                 
7 Many firms stumble at the point where they make divisions because they fail to 

appreciate the need for interdivision coordination or they micromanage too closely the 
divisions from the centre. Thus, growth rates are highly irregular. Source: Private 
communications with Cooper Langford, University of Calgary. 
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formed and small divisions absorbed according to a well-defined lower bound and two 

fixed probabilities. The authors concluded that “the model predicts that the number of 

subunits comprising an organization and the typical size of these subunits obey scaling 

laws”. 

 

The web has spawned a variety of research activities some of which focus on 

constructing models to explain the evolution of its structure. A preferential attachment 

model has gained considerable favor because it appears to explain frequently observed 

scaling characteristics. Many investigators have reported that the probability distribution 

of in-links and out-links to web pages follow power law distributions (Albert et al., 2002; 

Barabasi et al., 1999; Faloutsos et al., 1999). The preferential model assumes that the 

web grows by continuously adding new nodes. The links between nodes are added in a 

preferential manner. The preference is determined by the popularity of web pages 

measured by the number of in-links. In other words, pages that are linked to more 

frequently are preferred over other pages. At each step in the model a new page is 

created and then an existing page is randomly selected. The probability that the new 

page will link to the existing page is determined by the number of in-links to the existing 

page. Over time the in-link probability distribution of the web that is generated by the 

model will be a power law.  

 

In summary, a variety of processes generate power law distributions. Unlike some 

physical processes social activities are never completely deterministic nor are they 

completely random. Human activity is complex ranging from the free will of individuals to 

the laws of society. It is likely that most, if not all, of the power law distributions and 

correlations observed in complex social systems are generated by mixed processes. In 

the next section it will be shown that regional and national innovation systems exhibit 

scaling behaviors that (1) emerge with time and (2) exist at points in time. In both 

instances the scaling relationships are likely generated by complex mixed generators.  

4. Scaling and Innovation Systems 

An innovation system is a social construct. Its character emerges from the interactions 

between its members and the members of other systems. Some of the interactions are 

more “rule-like” than others because they are governed by laws, regulations, treaties, 

etc.  Other interactions are more random because they are governed by complex social, 
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political and economic forces.  It seems reasonable to assume that most scaling 

relationships seen in an innovation system are produced by mixed generators.  

 

If scaling relationships and emergent properties are prevalent in innovation systems they 

should be visible using data commonly used to measure their properties. The following 

examples explore scaling correlations between GERD & GDP and GDP & population for 

the European (EU15) and Canadian innovation systems (1) over time and (2) at points in 

time. Scale-independent indicators derived from these scaling relationships are used to 

explore emergent properties of the two innovation systems. 

 

A scale-independent indicator is an indicator derived from a power law distribution or 

correlation. The phrase scale-independent is used because indicators that have been 

derived from a power law are normalized by the scaling relationship so they can be 

comparable over a wide range of sizes. This paper focuses on only two types of scale-

independent indicators: scaling factor indicators and relative magnitude indicators. 

Examples of both of these indicators will be given later.  

 

There are other scale-independent indicators. For example, the distribution pattern of the 

data points about an ideal power law can provide indicators to underlying dynamics8 

(Katz et al., 1999). Sometimes the intercept of a power law is used as an indicator, 

particularly in physical systems. Also, some power law distributions have exponential 

cut-off points (Mossa et al., 2002; Mark E. J. Newman, 2001) that may be a useful 

indicator.   

 

The European and Canadian innovation systems are used in this paper for two reasons. 

First, there is a large difference between the scales of the systems; by almost any 

measure the European system is about an order of magnitude larger than the Canadian 

system. Second, the structures of the two systems are considerably different. The 

European innovation system is a collection of fifteen national systems that has been 

evolving for about 50 years into a supranational system through a variety of democratic 

and legal processes (Schuch, 1998). All fifteen countries did not join at once. The 

European Economic Community was formed in 1958 and it consisted of 6 countries 
                                                 
8 For example, the common patterns seen in European and Canadian data presented in 

Figure 7 might be indicative of a common dynamic. 
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(Germany, France, Italy, the Netherlands, Luxembourg, and Belgium). The UK, Ireland 

and Denmark joined in 1973, Greece in 1981, Spain and Portugal in 1986 and Austria, 

Finland and Sweden in 1995. In contrast the Canadian innovation system is composed 

of ten provincial and two territorial  systems that has evolved over about 135 years into a 

federal innovation system (StarMap, 2004).  Most of the provinces had joined the 

Canadian Federation by 1873. The last provinces to join were Saskatchewan and 

Alberta in 1905 and Newfoundland in 1949. 

 

Funding for publicly funded research in the Canadian system comes primarily from the 

federal government with smaller contributions from the provincial and territorial 

governments. In contrast publicly funded research in the European system is funded 

primarily by national governments with smaller contributions from the European 

Commission. EC programmes, such as European Framework Programmes have a 

strong focus on activities that encourage more cohesion in the European research area. 

Similarly, in Canada a variety of government programs encourages federal cohesion in 

the Canadian innovation system.  

 

The data in the following examples were sourced from the OECD and Statistics Canada. 

The Canadian data is more complete than OECD data. For example, GERD data is 

available for every Canadian province for every year in the time interval while the OECD 

data is missing certain values for many European nations. For analysis purposes 

missing European data was interpolated9. The economic data for the Canadian system 

are in a common currency and the OECD data has been converted to purchasing power 

parity at current prices in US dollars (PPP $US). The conversion introduces errors into 

the OECD data (Neary, 2005) that are not found in the Canadian data. This can affect 

the quality of the indicators built from OECD data. 

4.1 Scaling over Time 

Figure 1 plots the growth of GDP and GERD from 1981 to 2000 for the European Union 

and Canada. Figure 1a shows that the European GDP tended to grow exponentially over 

time with an exponent of 0.051 ± 0.001. Over the same period the GERD also tended to 

                                                 
9 The exponential growth trend over the time period was used to interpolate missing 

GERD values. 
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grow exponentially with an exponent of 0.052 ± 0.002. Figure 1b shows similar 

exponential growth trends in Canada.  

 

[Figure 1 here] 
 

It is apparent from the graphs that neither the GDP nor GERD exhibited perfect 

exponential growth. In fact we won’t expect the growth to be perfectly exponential since 

the magnitude of the national and provincial GERDs and GDPs are determined by the 

interplay of many factors. On the other hand the exponential growth tendencies suggest 

there are some rule-like tendencies such as interest rates that exist in these systems. 

The mathematical relationship given in the footnote of 3.1 shows that two coupled 

exponential processes will exhibit a scaling correlation. GERD and GDP are coupled in 

time therefore they should exhibit a predictable scaling correlation. Using the values for 

the exponential growths from Figure 1 it is predicted that the scaling factor for the power 

law correlation between GERD and GDP for the European innovation system should be 

0.052/0.051 = 1.027. Figure 2a shows that the measured value was 1.034 ± 0.028 which 

is within 1% of the predicted value. The predicted value for the Canadian innovation 

system was 0.076 ± 0.003 / 0.053 ± 0.002 = 1.418 and the measured value was 1.418 ± 

0.028 (Figure 2b). 

 

[Figure 2 here] 
 

When two measures exhibit a scaling relationship the ratio between those measures 

also exhibits a scaling relationship with the divisor. Consider a power law relationship 

given by thenαkxy = 1−= αkxxy . If a scaling relationship exists between GERD and 

GDP then GERD/GDP, the R&D intensity indicator, should exhibit a scaling relationship 

with GDP. Using this relationship the R&D intensity indicator for the European innovation 

system is predicted to scale with GDP with a scaling factor of 0.027 and the Canadian 

innovation system with a scaling factor of 0.418. The measured values were 0.034 ± 

0.028 and 0.418 ± 0.028, respectively. Since the European GERD scaled nearly linearly 

with GDP its R&D intensity almost remained constant over the time interval illustrated by 
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the fact that its scaling factor was close to zero10. On the other hand the R&D intensity 

for Canadian innovation system exhibited a tendency to increase 1.33 times (20.418) when 

the GDP doubled. This is a strong non-linear tendency. 

 

What do the scaling factors tell us about these two innovation systems? The GERD-GDP 

scaling factor tells us two things. The sign of the scaling factor indicates whether the 

GERD is growing faster or slower than GDP. The magnitude of the scaling factor 

indicates how much the GERD would be expected to grow as GDP increases.  For 

example, over the 20 year period the European GERD tended to grow 2.05 (21.034) times 

and the Canadian GERD tended to grow 2.67 (21.418) times every time the GDP doubled 

(21.0).  In other words, the European GERD grew almost linearly with GDP and the 

Canadian GERD grew quite nonlinearly with GDP. This is supported by the fact that the 

OECD reported that the R&D intensity for the European innovation system grew from 

1.67% in 1981 to 1.89% in 2000 for a difference of 0.22%. On the other hand the 

Canadian system grew from 1.24% in 1981 to 1.92% in 2000 for a larger difference of 

0.68%.  

 

In summary, the scaling factor, α, can be used as a scale-independent indicator. In the 

example it was used as a measure of the relative growths of two coupled exponential 

processes. When α = 1 then the relative growth rates are the same; when α > 1 then 

GERD is growing faster than GDP; and when α < 1 then GERD is growing slower than 

GDP.  

 

The scaling factor will be used as an indicator in other examples. A naming notation is 

used to uniquely identify the scaling factor between the two variables, X and Y where 

variable log Y is regressed on variable log X. The name given is the Y-X scaling factor. 

For example in the previous example the indicator was called the GERD-GDP scaling 

factor because it compared the growth rate of GERD to GDP. 

 

Inter-innovation system scale-independent indicators can also be produced. For 

example, since the European and Canadian systems exhibited exponential GDP growth 

trends and they are coupled in time they exhibit a scaling correlation. The scaling 

                                                 
10 Only in the special case where α = 1, that is the relationship is linear, does kxy = . 
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relationship between the Canadian GDP (GDPC) and the European GDP (GDPE) had a 

GDPC-GDPE scaling factor equal to 1.05 ± 0.03. The GERDC-GERDE scaling factor had a 

value of 1.43 ± 0.03. These indicators show that the Canadian GDP and GERD grew 

faster than the European GDP and GERD between 1981 and 2000. According to these 

scaling relationships if the European GDP and GERD doubled the Canadian GDP and 

GERD would be expected to increase 2.07 (21.05) and 2.7 (21.43) times, respectively. 
 

 

Table 1

Table 1 - European GERD-GDP Scaling Factors (1981–2000) 

 and  give the GERD-GDP scaling factors for the nations and provinces 

in the European and Canadian innovation systems. Also, the population in the year 2000 

is given for each nation and province to give the reader a sense of their sizes.  

Table 2

 

Country 
Pop. 

(‘000) α se* R2 
Austria  8,012 1.50 ± 0.03 0.99 
Belgium 10,246 1.26 ± 0.03 0.99 
Denmark 5,338 1.82 ± 0.02 1.00 
Finland 5,176 2.05 ± 0.05 0.99 
France 60,594 1.11 ± 0.04 0.98 
Germany 82,188 0.87 ± 0.05 0.95 
Greece 10,917 2.58 ± 0.06 0.99 
Ireland 3,799 1.49 ± 0.05 0.98 
Italy 57,762 1.11 ± 0.09 0.91 
Netherlands     15,922 1.03 ± 0.04 0.98 
Portugal 10,225 1.84 ± 0.05 0.99 
Spain 39,927 1.75 ± 0.06 0.98 
Sweden 8,872 1.57 ± 0.05 0.98 
United Kingdom 58,643 0.73 ± 0.02 0.99 

* se is the standard error for α 
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Table 2 - Canadian GERD-GDP Scaling Factors (1981 – 2000) 

Province 
Pop. 

(‘000) α se* R2 
Alberta 3,010 1.09 ± 0.08 0.91 
British Columbia 4,060 1.40 ± 0.06 0.97 
Manitoba 1,146 1.06 ± 0.08 0.92 
New Brunswick 756 1.38 ± 0.14 0.85 
Newfoundland & Labrador 538 1.21 ± 0.09 0.90 
Nova Scotia 942 1.14 ± 0.07 0.94 
Ontario 11,698 1.33 ± 0.04 0.98 
Prince Edward Island 138 1.09 ± 0.07 0.94 
Quebec 7,382 1.84 ± 0.05 0.99 
Saskatchewan 1,022 1.35 ± 0.12 0.88 
* se is the standard error for α 

 

The standard errors and the R2 values indicate that the power law correlations have 

statistical significance. There appears to be a tendency for the significance to decrease 

slightly with the size of the nation or province measured by population. The GERDs for 

two of the largest nations in the European system, UK and Germany, did not grow as 

fast their respective GDPs. On the other hand the GERDs of Canadian provinces grew 

faster than their respective GDPs. The tables will be referred to again in later analysis. 

4.2 Scaling at Points in Time 

Figure 3a is a log-log plot of 1990 GERD & GDP values for nations in the European 

innovation system. 1990 was chosen because it is half way through the time interval 

under consideration. Figure 3b is a similar plot for the provinces in the Canadian 

innovation system. The following question is being asked of these data. In 1990 did the 

members of the European and Canadian innovation systems exhibit a scaling correlation 

between GERD and GDP?  

 

To help answer the question three regression lines have been drawn through the data 

points. There are two dotted lines and a solid line. The upper dotted line is a linear 

regression constrained to pass through the origin. This case is a special power law 

where the scaling factor is equal to 1.0. The lower dotted line is a linear regression that 

was not constrained to pass through the origin. The solid line is the power law regression 

line.  The R2 statistics suggests that both linear regressions fit the data better than the 
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power law. However, a visual inspection11 reveals that neither linear regression fits the 

data very well. The variances of the actual GERD values from the values predicted by 

the linear regressions vary with the size of the GDP.  In other words, the data are 

heteroscedastic12 and the R2 value has little statistical significance. On the other hand, 

the power law regression is close to homoscedastic and it has a good R2 value. The 

same observations are true for the Canadian innovation system (Figure 3b).  

 

[Figure 3 here] 
 

This GERD-GDP scaling factor will be called a systemic scaling factor because it 

quantifies the relationship between GERD and GDP across members of the system at a 

point in time. The system scaling factor is not determined by any individual entity in the 

system. It evolves from the complex interaction between its members and between itself 

and other systems.  It is an emergent property of a system.  

 

The system GERD-GDP scaling factor tells us how the expenditures on R&D by 

members of an innovation system tended to scale at a point in time with the size of the 

member economies. For example, the systemic GERD-GDP scaling factor for the 

European system was 1.25 telling us that when the size of the national economy doubles 

the systemic tendency was for GERD to increase by 2.4 times (21.25). In the Canadian 

system GERD tended to increase by 2.2 times (21.13).  

 

As shown in the previous section the R&D intensity is expected to show a tendency to 

scale with GDP. The measured scaling factor for the scaling relationship between R&D 

intensity and GDP for the European innovation system in 1990 was 0.25 ± 0.15 and for 

the Canadian innovation system it was 0.13 ± 0.04. In other words, in the European 

innovation system the R&D intensity showed a systemic tendency to increase 1.19 times 

(20.127) with a doubling in country size measured by GDP. In the Canadian system R&D 

intensity tended to increase 1.09 times (20.127) as the province size doubled.  

 

                                                 
11 The residuals were plotted against the estimated y values and it confirmed that the 

data were heteroscedastic. 
12 Data are heteroscedastic when the errors in the actual y values from the predicted 

values are related to the size of x values. 
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The R&D intensity indicator should be adjusted for scaling effects before using it to 

compare countries and provinces. For instance Austria and Saskatchewan are 1/10 the 

size of Germany and Ontario, respectively. The systemic scaling relationships between 

GERD and GDP for the European and Canadian innovation systems indicate that the 

R&D intensity for Germany was expected to be about 75% higher than for Austria and 

the R&D intensity for Ontario should be approximately 35% higher than for 

Saskatchewan13. A relative GERD indicator will be introduced shortly that can be used 

instead of the R&D intensity indicator because it has been adjusted for the scaling 

relationship between GERD and GDP.   

 

Some might argue that when the scaling factor is close to 1.0 the nonlinear effects can 

simply be ignored. Assume the scaling factor is 1.05 and that we wish to compare two 

innovation systems where one system has an order of magnitude larger GDP than the 

other system. Given a scaling factor of 1.05 we would expect the larger system to have a 

GERD 11.2 times (101.05) larger than the smaller one. In other words, the larger system 

would be expected to have a 12% larger GERD than if we assumed the scaling factor 

was 1.0 or linear. Thus, a small scaling factor can have a large effect. 

 

Figures 3a and 3b shows a striking difference between the European and Canadian 

innovation systems. The national GERDs in the European system exhibit a larger range 

of variances from the GERDs predicted by the systemic scaling correlation than the 

range of variances displayed by the provincial GERDs from the Canadian systemic 

scaling correlation. This difference probably occurs because the European innovation 

system is more loosely coupled than federal Canadian system. It will be shown that the 

variances of the two systems evolve differently over time. 

 

Table 3 and 4 give the relative GERD indicators for the members of each system in 

1981, 1990 and 2000. The relative GERD indicator is calculated by taking the ratio 

between the actual GERD and the GERD predicted by the measured systemic scaling 

correlation. For example, Table 3 shows that the UK had a relative GERD of 1.57, 1.13 

and 1.07 in 1981, 1990 and 2000, respectively. In other words, in 1981 the UK GERD 

was 1.57 times larger than the amount predicted by systemic scaling correlation between 
                                                 
13 The percentages were determined by using the fact that 100.25 = 1.78 and 100.127 = 

1.34. 
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GERD and GDP across members of the European innovation system in 1981. By the 

year 2000 the value had dropped to 1.07.  

 

Table 3 - European Relative GERD Indicators 
Country 1981 1990 2000 
Austria 1.32 1.17 1.18 
Belgium 1.64 1.27 1.23 
Denmark 1.39 1.47 1.37 
Finland 1.63 1.79 2.08 
France 1.22 1.21 1.26 
Germany 1.39 1.26 1.43 
Greece 0.20 0.30 0.41 
Ireland 1.18 0.94 0.71 
Italy 0.56 0.67 0.62 
Netherlands 1.73 1.49 1.13 
Portugal 0.39 0.46 0.49 
Spain 0.33 0.50 0.55 
Sweden 2.51 2.25 2.31 
United Kingdom 1.57 1.13 1.07 

 
 

Table 4 - Canadian Relative GERD Indicators 
Province 1981 1990 2000 
Alberta 0.97 0.85 0.61 
British Columbia 0.66 0.76 0.81 
Manitoba 1.25 0.99 1.03 
New Brunswick 0.78 0.98 0.70 
Newfoundland & Labrador 1.01 1.15 0.95 
Nova Scotia 1.50 1.33 1.32 
Ontario 1.29 1.05 1.27 
Prince Edward Island 1.04 0.91 1.25 
Quebec 1.08 1.22 1.50 
Saskatchewan 0.71 0.88 0.93 

 

The relative GERD indicators for the European innovation system ranged from about 

0.20 to 2.5. In comparison the relative GERD indicators for the Canadian systems 

ranged from 0.60 to 1.5. An analysis of the variances from the population mean was 

performed assuming that the nations and provinces listed in the tables represent the 

entire European and Canadian innovation systems. This assumption is not quite true 

because Luxembourg and two Canadian territories have not been included due to lack of 

GERD data. Also, Statistics Canada reports the Federal funding for the Nation Capital 
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Region14 (NCR) separate from the provincial funding. The NCR values accounted for 

approximately 3% of the total GERD in 2000 and they have not included. 

 

The variance from the population mean of the relative GERDs for each innovation 

system was calculated for each year and the values are plotted in Figure 4. It can be 

seen that the variance for the European innovation system decreased from above 0.40 

to about 0.29 in the first half of the time period and levelled off for the second part of the 

time period. On the other hand the variance from the population mean for the Canadian 

innovation system was about 1/10 as large as the variance for the European innovation 

system and it varied comparatively little over the time period.    

 

[Figure 4 here] 
 

The larger variances of the relative GERD in the European innovation system compared 

to the Canadian innovation system can be partially explained by time span over which 

the innovation systems have been evolving and the differences in their governance 

structures. Most Canadian provinces have been in the Canadian confederation for over 

100 years but some European nations have only been in the European Union for a 

couple of decades. Also, Europe is a union based on treaties. Canada is a confederation 

with a central federal government. The governance of European innovation system is 

more decentralized than the Canadian system. It seems natural to assume that the 

characters of the two innovation systems will be different. For example, the European 

Union has less influence on national R&D expenditures than the Federal government 

has over the R&D expenditures by the provinces. Less variance from the systemic 

scaling trend could be indicative of a system whose members are more tightly 

integrated. It seems that the time dependent variance from the systemic scaling trend 

can be used as an indicator of systemic integration.  

5. A Scale-independent Model of an Innovation System 

The scaling relationships between GERD and GDP over time and at points in time can 

be combined to build a composite scale-independent model that illuminates how they 

                                                 

14 Canada's National Capital region is centred upon the cities of Ottawa in Ontario and Gatineau 
in Quebec. 
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emerged together. Figure 5a and 5b contains log-log plots of GERD versus GDP for the 

European and Canadian innovation systems. The circles are the 1990 data points seen 

in Figures 3a and 3b, respectively. The dotted lines are the 1990 regression lines seen in 

the same figures. The long solid dark lines are power law regressions at two other points 

in time across the national and provincial systems of innovation in 1981 (lower) and 2000 

(upper). The systemic scaling factors and R2 values for the three regression lines are 

given in the top left hand corner of the figures. The short light lines are power regression 

lines representing the scaling correlation between the exponential growth rates between 

GERD and GDP for each nation and province. The scaling factors are the slopes of the 

power law regression lines and they were given in Table 1. For example, in Figure 5a the 

short line labelled UK for the United Kingdom gives the scaling correlation between the 

exponential growth rates of the GERD and GDP from 1981 to 2000. The scaling factor 

was 0.73 indicating that the UK GERD did not grow as fast as its GDP. On the other 

hand the short line labelled FIN for Finland had a scaling factor of 2.05. Its GERD grew 

much faster than its GDP.   

 

[Figure 5 here] 
 

Figure 6 is a plot of the values of the systemic GERD-GDP scaling factors for the 

European and Canadian systems over the time period. The system scaling factor for the 

European innovation system had an obvious decline from 1.31 ± 0.19 in 1981 to 1.02 ± 

0.15 in 2000. The Canadian systemic scaling factor was 1.09 ± 0.06 in 1981 and 1.14 ± 

0.07 in 2000.  

 

[Figure 6 here] 
 

Table 1 and Figure 5a give clues as to why the European systemic scaling factor 

decreased with time. The GERDs of the small and medium sized nations tended to grow 

significantly faster than their respective GDPs. In contrast the GERD of the larger 

nations like Italy, UK, France and Germany grew close to the same as or slower than 

their respective GDPs. The systemic tendency of the European innovation system was 

for the small and medium sized members to force the lower GDP end of the systemic 

scaling correlation up with time and the larger nations tended to move the upper end 

down or at least maintain a level close to status quo. Overall, the systemic GERD-GDP 
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scaling factor for the European innovation system changed from being quite nonlinear 

(1.31) to being more linear (1.02). If the trend continues it will become nonlinear again as 

GERD will be growing at a slower rate than GDP.  In comparison the GERDs of every 

Canadian province grew close to or faster than their respective GDPs. The larger 

provinces, particularly Quebec, grew their GERDs at rates similar in magnitude to the 

rates of the small and medium sized European nations. It is unclear if the tendency of 

the systemic GERD-GDP scaling factor for the Canada innovation system is increasing 

or perhaps fluctuating around 1.1 or there about. This issue will be explored in the next 

section. 

6. Using a Scale-independent Model 

It was demonstrated in the previous sections that scaling correlations exist between 

GERD and GDP across European nations and Canadian provinces at points in time. 

Also, it was shown that the value of the systemic scaling factor can change over time. 

The systemic scaling factors are not mathematically predictable from the underlying 

exponential growth rates; however, they can be measured. The exponential growth 

trends can be used to predict future values of GERD and GDP and then these values 

can be used to measure the systemic scaling factor at a point in the future.  

 

Consider the following. If GERD and GDP had exhibited perfect exponential growth then 

their future values would be exactly predictable and the future values of the systemic 

scaling factor could be accurately measured. In fact, if the exponential growth was 

prefect then all past and future values could be predicted from any two consecutive 

years of data. However, GERD and GDP do not exhibit exactly exponential growth rates; 

they only exhibit a tendency to grow exponentially. It takes more than two consecutive 

years of data to identify the trend. The longer the time window over which the 

observations are made the more accurately the trend can be predicted. For example, the 

scale-independent models in the previous section were constructed using a 20 year time 

window. They could have been built using a different size of time-window. A smaller 

observation window would capture more recent trends but at the cost of losing longer 

term accuracy in the model.   

 

Scale-independent models were constructed using 20 and 5 year observation time 

windows and then they were used to predict the size of national and provincial GERDs 
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and GDPs in the year 2005. Table 5 and Table 6 give the scaling factor for the power 

law relationship between GERD and GDP measured using the 5 year observation 

window from 1996 to 2000. As expected the R2 values for these scaling factors tended to 

be lower that those seen in Table 1 and Table 2 where a 20 year observation window 

was used. 

  
 

Table 5 - European Innovation System (1996-2000) 
Country α se* R2 
Austria 2.06 ± 0.20 0.97 
Belgium 1.70 ± 0.05 1.00 
Denmark 1.94 ± 0.15 0.98 
Finland 2.16 ± 0.20 0.97 
France 0.74 ± 0.11 0.94 
Germany 1.84 ± 0.13 0.98 
Greece 2.38 ± 0.44 0.91 
Ireland 0.66 ± 0.04 0.99 
Italy 1.28 ± 0.16 0.96 
Netherlands 0.75 ± 0.15 0.89 
Portugal 1.92 ± 0.24 0.95 
Spain 1.53 ± 0.13 0.98 
Sweden 1.38 ± 0.19 0.95 
United Kingdom 0.98 ± 0.14 0.94 

* se is the standard error for α 
 

 

Table 6 - Canadian Innovation System (1996-2000) 
Province α se* R2 
Alberta 0.58 ± 0.19 0.76 
British Columbia 2.52 ± 0.31 0.96 
Manitoba 2.34 ± 0.61 0.83 
New Brunswick 0.70 ± 0.58 0.33 
Newfoundland Labrador 1.00 ± 0.18 0.91 
Nova Scotia 1.74 ± 0.28 0.93 
Ontario 1.55 ± 0.14 0.97 
Prince Edward Island 4.24 ± 0.36 0.98 
Quebec 1.53 ± 0.12 0.98 
Saskatchewan 2.45 ± 0.80 0.76 
* se is the standard error for α 

 

The two models were used to predict the 2005 GERD and GDP values which were then 

used to calculate the 2005 systemic scaling factors. The European systemic scaling 

factor was predicted to be 0.93 ± 0.12 using a 20 year observation window and 0.92 ± 

0.15 using a 5 year observation window. The values of the system scaling factor for the 
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Canadian innovation system were projected to be 1.22 ± 0.06 and 1.08 ± 0.09, 

respectively. These findings suggest that the systemic scaling factor for the European 

innovation system will tend to decrease and in fact the GERD is anticipated to grow 

slower than GDP. However, it is still not clear what will happen to the systemic scaling 

factor for the Canadian innovation system other than it will likely stay well above 1.0.  

7. Another Scale-independent View 

Population is an important measure of the size of an economic system. It is used to 

calculate such things as GDP per capita, an indicator that is frequently used to compare 

the income of nations. We know from the preceding discussion that the growth of GDP 

can be approximated by an exponential growth trend. An examination of the growth 

trends of the European and Canadian populations showed that they tended to growth 

exponentially too. Over the 20 year time interval the European population tended to grow 

by 0.31% per annum and the Canadian population grew by 1.16% per annum.  

 

Figure 7 is a log-log plot of GDP versus population for Europe and Canada.  A 

predictable scaling correlation exists between these two measures. The predicted value 

of the scaling factor for the European innovation system was 0.051 ± 0.001 / 0.003 ± 

0.000 = 16.30. The measured value was 15.96. The predicted value of the scaling factor 

for the Canadian innovation system was 0.053 ± 0.002 / 0.012 ± 0.000 = 4.56. The 

measured value was 4.54 ± 0.18. In both systems the actual data exhibit similar patterns 

of distribution about the predicted scaling trend lines. This pattern might be indicative of 

other underlying trends in such things as migration and economic factors. This requires 

further investigation. However, it can be said with confidence that the scaling relationship 

between GDP and population in Europe and Canada observed from 1981 to 2000 is 

reasonably predictable. Also, it tells us that a doubling of the population would be 

expected to increase GDP by nearly 638,000 times (215.96) in Europe but only 23.6 (24.56) 

times in Canada. The large difference in the scaling factors can be explained by the fact 

that the GDPC-GDPE scaling factor was 1.03 (see section 4.1) and the POPC-POPE 

scaling factor was measured to be 3.69. This indicates that while the European and 

Canadian GDPs are growing at similar rates the Canada’s population was growing 

nearly 4 times as fast as the European population. It will take Europe a much longer to 

double its size that it will take Canada. The GDP-POP scaling factors also indicate that 
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GDP per capita would expected to increase 32,000 (214.96) and 12 (23.56) fold, 

respectively, each time the GDP doubles.  

 

[Figure 7 here] 
 

Figures 8 and 9 and Tables 7 and 8 give the highlights of scale-independent models for 

Europe and Canada based on the exponential growth of population and GDP between 

1981 and 2000. Figure 8a contains a variety of log-log plots of GDP versus population 

for Europe. As in Figure 5a the circles are the 1990 data points and there are three 

power law regression lines. The dotted line is the regression line through the 1990 data. 

The lower line is the regression line through the 1981 data and the upper line is through 

the 2000 data. The scaling factors of the regression lines are given in the upper right 

hand corner of the graph. The shorter lines give the scaling correlation between GDP 

and population for each European country. Figure 8b contains a similar plot for Canada. 

Figure 9 is a plot of the value of the systemic scaling factor over time. 

 

[Figure 8 here] 
 

Table 7 - European GDP-Population Scaling Factors 
Country Α se* R2 
Austria 11.86 ± 0.97 0.89
Belgium 19.01 ± 1.20 0.93
Denmark 17.39 ± 1.81 0.84
Finland 11.18 ± 0.67 0.94
France 10.42 ± 0.13 1.00
Germany 12.51 ± 1.19 0.86
Greece 8.09 ± 0.20 0.99
Ireland 16.70 ± 1.75 0.84
Italy 33.59 ± 3.80 0.81
Netherlands 8.95 ± 0.21 0.99
Portugal 25.15 ± 6.47 0.46
Spain 22.55 ± 0.87 0.97
Sweden 10.06 ± 0.77 0.90
United Kingdom 23.21 ± 1.00 0.97
* se is the standard error for α 
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Table 8 – Canadian GDP-Population scaling factors 
Province α se* R2 
Alberta 3.37 ± 0.16 0.96 
British Columbia 2.77 ± 0.12 0.97 
Manitoba 9.20 ± 0.30 0.98 
New Brunswick 14.78 ± 0.89 0.94 
Newfoundland and Labrador -6.01 ± 1.58 0.44 
Nova Scotia 10.38 ± 0.43 0.97 
Ontario 3.81 ± 0.18 0.96 
Prince Edward Island 10.71 ± 0.60 0.95 
Quebec 7.27 ± 0.38 0.95 
Saskatchewan 5.12 ± 4.17 0.08 
* se is the standard error for α 

 

Tables 7 and 8 show that the reliability of the GDP-Population scaling factors for some 

smaller nations and provinces are questionable. For example the GDP-Population 

scaling factor for Saskatchewan has a large standard error and a low R2 value. This 

occurred because while the provincial GDP exhibited exponential growth the population 

had both positive and negative growth periods.  Also, the scaling factors in Europe 

tended to be larger and had less variation in their ranges than those for Canada. This is 

illustrated by the fact that the scaling factors in Europe ranged from 8.09 ± 0.20 for 

Greece to 33.40 ± 3.80 for Italy and had an average magnitude of 16.5. In Canada they 

ranged from -6.01 ± 1.58 for NL to 14.8 ± 0.08 for New Brunswick with an average 

magnitude of 6.4. 

 

[Figure 9 here] 
 

Figure 9 suggests that the systemic GDP-Population scaling factor is decreasing for 

Europe and Canada. It was quite constant in Europe staying around 1.02 to 1.04 until 

the mid 1990s and then declined dipping below 1.0 in 1998. Over the same interval the 

systemic GDP-population scaling factor for Canada decreased from 1.16 and then 

appeared to level off around 1.1. 

 

Figure 8b illustrates an interesting point. A scale-independent model can accommodate 

exponential decreases. Newfoundland and Labrador (NL) exhibited a decline in 

population and GDP over the 20 year time frame as seen by the negative slope of its 

power law regression line. Also, a scale-independent model can accommodate the case 

where one variable exhibits exponential growth and the other exponential decay.  
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8. Summary and Conclusions 

In summary, scaling correlations between GERD & GDP and GDP & population have 

been shown for the European and Canadian innovation systems. The scaling 

correlations that emerge within the national and provincial innovation systems are 

predictable from the underlying exponential growths of GERD, GDP and population. The 

scaling correlations that exist across national and provincial innovation systems at points 

in time are not mathematically predictable but they are measurable.  In other words, in 

the examples the scaling correlations over time appeared to be more deterministic than 

the scaling correlations at points in time. 

 

The European and Canadian innovation systems exhibit emergent properties. For 

example, the systemic scaling relationship between GERD & GDP and GDP & 

population at points in time are not predictable and they are not solely determined by any 

national or provincial innovation system. A systemic scaling relationship is determined by 

the complex activities of the member systems within the European and Canadian 

innovation systems. Furthermore, the systemic scaling factor can change with time 

indicative of another emergent property. 

 

Scale-independent indicators were constructed statistical measures commonly used to 

construct conventional indicators of innovation systems. Unlike conventional indicators 

scale-independent indicators can be used to compare systems of different sizes. For 

example, the GERD-GDP scaling factors can be used to compare the relative growth 

rates of GERD and GDP of members in the same and in different innovation systems. 

Similarly, the system GERD-GDP scaling factor can be used to compare how the 

GERDs in an innovation system tends to increase with increasing GDPs at points in 

time.  

 

R&D intensity, GDP per capita and citations per paper15 are indicators commonly used to 

compare innovation systems. They are used by governments and agencies to measure 

performance, set targets and inform public policy. It has been demonstrated that the 

measures used to derive the ratios in these cherished conventional indicators tend to 

scale with size (GDP, population and papers). They should not be used to compare 
                                                 
15 Scaling correlations between citations and papers have been shown in my previous 

papers (Katz, 2005). 
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innovation systems of different sizes unless they have been adjusted for scaling 

tendencies. Scale-independent indicators are more robust than conventional indicators 

because they can account for systemic behaviours in an innovation system. These 

indicators will assist innovation system observers to compare small and large players in 

a complex innovation system without the non-linear distortion introduced through the use 

of conventional indicators.  

  

Scale-independent indicators can be used to construct scale-independent models of 

innovation systems. These models provide insights into how the systemic scaling 

relationships emerged with time due to changes in the internal dynamics of the system. 

In turn the variances of member systems about a systemic scaling correlation trend can 

provide insights into how a collection of regional or national innovation systems are 

evolving into national and supranational innovation systems. In other words, information 

derived from scale independent models can have policy relevance relating to the 

cohesion and integration of an innovation system. Also by using different sized time 

windows of observation the model can be used to calculate how the system scaling 

factor is emerging in the shorter and longer term.  

 

Innovation systems are complex systems with many interacting complex subsystems. 

They can exhibit predictable and measurable scaling characteristics. The scaling 

correlations can be used to build scale-independent indicators which in turn can be used 

to construct scale-independent models.  The evolution of the scaling correlations can be 

used to identify emergent properties of an innovation system and in turn inform public 

policy. 
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Figure 1 – Growth of GERD and GDP for (A) European Innovation System and (B) Canadian 
Innovation System from 1981 to 2000. 
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Figure 2 – Scaling correlation between GERD and GDP for (A) European innovation 
system and (B) Canadian innovation system from 1981 to 2000 
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A –Austria, B – Belgium, D – Germany, DK – Denmark, E – Spain, EL – Greece, F – France, 

FIN – Finland, I – Italy, IRL –Ireland, NL –Netherlands, P – Portugal, S – Sweden and UK -United Kingdom 

 
AB – Alberta, BC - British Columbia, MB – Manitoba, NB - New Brunswick, NL -Newfoundland & Labrador, NS - Nova 

Scotia, ON – Ontario, PE - Prince Edward Island, QC – Quebec and SK – Saskatchewan 
Figure 3 – Systemic scaling correlation between GERD and GDP in 1990 for (A) 
European innovation system and (B) Canadian innovation system 
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Figure 4 – Variance of the relative GERDs for the European and Canadian innovation 
systems 
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A – Austria, B – Belgium, D – Germany, DK – Denmark, E – Spain, EL – Greece, F – France, 

FIN – Finland, I – Italy, IRL –Ireland, NL –Netherlands, P – Portugal, S – Sweden and UK -United Kingdom 

 
AB – Alberta, BC - British Columbia, MB – Manitoba, NB - New Brunswick, NL -Newfoundland & Labrador, NS - Nova 

Scotia, ON – Ontario, PE - Prince Edward Island, QC – Quebec and SK – Saskatchewan 
Figure 5 – Scale-independent GERD-GDP models of the (A) European innovation 
system and (B) Canadian innovation system from 1981 to 2000 
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Figure 6 – Value of the GERD-GDP systemic scaling factor over time for European and 
Canadian Innovation systems 
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Figure 7 – Scaling correlation between GDP and population for (A) Europe and (B) 
Canada from 1981 to 2000 
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A – Austria, B – Belgium, D – Germany, DK – Denmark, E – Spain, EL – Greece, F – France,  FIN – Finland, I – Italy, 

IRL –Ireland, NL –Netherlands, P – Portugal, S – Sweden and UK -United Kingdom 

 
AB – Alberta, BC - British Columbia, MB – Manitoba, NB - New Brunswick, NL -Newfoundland & Labrador, NS - Nova 

Scotia, ON – Ontario, PE - Prince Edward Island, QC – Quebec and SK – Saskatchewan 
Figure 8 – Scale-independent GDP-population model of (A) Europe and (B) Canada 
from 1981 to 2000. 
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Figure 9 – GDP-Pop systemic scaling factor for the Europe and Canada from 1981 to 
2000. 
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