Making electric mobility happen: Insights from a reflexive, multi-method research program

Jonn Axsen Associate Professor Sustainable Transportation Action Research Team (START) Simon Fraser University Vancouver, Canada

October 24, 2017 SPRU, University of Sussex

SFU

Sustainable Transportation Action Research Team (START)

nature energy

ANALYSIS PUBLISHED: 22 FEBRUARY 2016 | ARTICLE NUMBER: 16013 | DOI: 10.1038/NENERGY.2016.13

Moving beyond alternative fuel hype to decarbonize transportation

Noel Melton^{1,2*}, Jonn Axsen² and Daniel Sperling³

Overview

- 1) Why electric vehicles?
- 2) A multi-method, reflexive approach
- 3) Insights from interviews
- 4) From interviews to surveys
- 5) From surveys to models
- 6) From research to policy evaluation

1) Why electric vehicles?

4

Bigger picture: three-legs of the transport GHG mitigation "stool"

All legs need to be addressed...

Long-term modeling suggests that PEVs can 7 play an important role in GHG mitigation

Source: Sykes and Axsen (2017), *Energy Policy*

3) Insights from Interviews

My latest work

"Qualitative" interviews n = dozens

"Quantitative" surveys n = 100s or 1000s

Technology adoption models (0-15 year time horizon)

Energy-economy system models (20-40yr + time horizon)

Mainstream has low awareness...

The majority expressed confusion about **PEVs**:

"Is the Leaf electric or is it hybrid?" – Mr. Chen

"What's the deal here? You don't plug this in, the hybrid?" - Clair

And confusion about vehicle-grid integration and V2G.

"That gets pretty complicated..." - Andreas

"[seems] futuristic" - Clair

"Oh god!" – Christine (in confusion)

15

Sources: Axsen and Kurani (2012), Environment and Planning A Axsen, Orlebar & Skippon (2013), Ecological Economics

Sources: Axsen and Kurani (2012), Environment and Planning A Axsen, Orlebar & Skippon (2013), Ecological Economics

Perspectives on the "mainstream" consumer ¹⁹

The "Rational Actor"....

...has perfect information.
...has established preferences.
...has static preferences.
...can articulate those preferences.

The "Reflexive Participant"...

...might have little or no information ...might have unformed preferences ...can change preferences over time. ...might have trouble communicating those preferences

The "Reflexive Participant" Approach 20						
Flow of the conversation Ex	ample instrument					
Background: Tell me about your car	Inventory/narrative					
Awareness: Have you heard of this tech?	"Test" questions					
Initial perceptions: What do you think?	Belief questions					
Explain more: Let me explain more	"Buyers' Guide"					
Reflexive experience: Go do something	Driving diary/demo					
Response exercise: What would you like in Context A, Context B, etc.	Design space					
Follow up: Why did you select that?	Belief questions					

Canadian "Mainstream" Survey (n = 1754), ²¹ representative of new vehicle buying households

Source: Axsen et al. (2015), *Electrifying Vehicles*

"Design Space" Exercise

22

Click Here to open the example response that we provide earlier in a new window.

Vehicle type	Driving range	Gasoline fuel use	Refuel/ Home recharge time	Purchase price	I CHOOSE
	\rightarrow	Gas		\$	
A conventional RAM 1500 4X4 FFV	750 km gasoline	15.2 L/100 km	5 mins	\$50000	Conventional Please select •
A hybrid RAM 1500 4X4 FFV	750 km gasoline	10.2 L/100 km	5 mins	\$51600	Hybrid 1st Choice
A plug-in hybrid RAM 1500 4X4 FFV	Electric for the first: Please select your answer •	10.2 L/100 km	Time to fully charge empty battery at home Please select your answer	\$0	Plug-in hybrid Please select V
A electric only RAM 1500 4X4 FFV	Electric only for: Please select your answer	None	Time to fully charge empty battery at home Please select your answer	\$0	Electric Please select V
A hydrogen fuel cell RAM 1500 4X4 FFV	500 km hydrogen	None	5 mins	\$61000	Hydrogen 2nd Choice 🔻

Mainstream buyers are more attracted to PHEVs, not so much BEVs

Source: Axsen, Goldberg and Bailey (2016), Transportation Research Part D

Stated choice experiment

Vehicle type	Range	Recharge/ refuel time	Destination r	echarging or refuelling access	Fuel cost	Purchase price & incentive	I CHOOSE
	→		Level 2	Fast or H ₂ refuelling	\$	\$	
Conventional Honda CIVIC	650 km gasoline	5 min.	-	_	\$32 /week	\$25,000 - \$0 \$25,000	Conventional
Hybrid Honda CIVIC) 1070 km gasoline	5 min.	-	_	\$20 /week	\$26,380 - \$0 \$26,380	Hybrid
Plug-in hybrid Honda CIVIC	575 km First 72 kn electric	Home: 6 hrs. n Work: –	25% of destinations	_	\$18 /week	\$30,180 - \$5,000 \$25,180	Plug-in Hybrid
Electric Only Honda CIVIC	200 km electric	Home: 6 hrs. Work: –	25% of destinations	None	\$10 /week	\$38,820 - \$5,000 \$33,820	Electric
Hydrogen fuel cell Honda CIVIC) 350 km hydrogen	5 min.	-	20% of gas stations	\$10 /week	\$41,230 - \$0 \$41,230	Hydrogen
F			Ner	at	Click <u>H</u>	ERE to access the Vehicle	Buyers' Guide

Latent-class choice model (LCM) 25

TABLE 5 Results for 5-Segment Latent Class Model (Canadian-wide sample, n=2124)

-	CV-	oriented	louti	HI	V-oriented	Tue	PHI	EV-oriented	21)	ZEV-curious		PEV-enthusiast	
Segment name													
Percentage of respondents in segment		23%			21%			22%		21%		13%	
Latent Class Model													
Measure of vehicle interest (s)													
HEV		-2.87	***		1.48	*		1.30	***	0.653	*	1.07	*
PHEV		-4.92	***		-1.47	***		0.567	**	-0.603	**	2.63	*
BEV		-8.93	***		-5.32	***		-2.90	***	0.0782		1.89	*
HFCV		-4.94	***		-4.19	***		-2.39	***	0.0842		-1.11	
Measure of preferences (coefficients)													
PHEV range (km)		0.001450			-0.000832			0.00263		0.00350	*	0.000578	
BEV range (km)		0.00598			0.00513			0.00265		-0.00277	***	0.00101	
HFCV range (km)		0.000252			0.00227			0.00220	**	0.000335		0.00150	
Vehicle price (CAD\$)		-0.000154	***		-0.000292	***		-0.000290	***	-0.000032	***	-0.000012	***
Fuel cost (CAD\$/week)		-0.000225			-0.0133	***		-0.0160	***	0.000069		-0.000105	
Incentive value (CAD\$)		0.000129	***		0.000133	*		0.000296	***	0.000079	*	0.000096	***
Home charging (Level 1 or 2)		-0.127			-0.249			0.650	***	-0.0172		-0.0422	
Workplace charging (Level 1 or 2)		-0.281			0.165			0.0519		0.117		0.188	
Public charging (% of destinations)		0.0120			0.00565			0.00260		0.00425		0.00194	
DC fast charging (access on major highways)		0.808			0.177			0.314	***	0.162		-0.240	
Hydrogen station availability (% of gas stations)		0.0171			0.0205			0.0156	**	0.00121		0.011	
Implied willingness-to-pay ^{a,b}													
Valuation of vehicle type (\$ CAD)													
HEV (all else held constant)	\$	(18,675)		\$	5,052		\$	4,476		\$ 20,598		\$ 87,981	
PHEV-60km (all else held constant)	\$	(31,977)		\$	(5,028)		\$	1,951		\$ (12,396)		\$ 215,907	
+ home charging							\$	4,188					
+ DC fast charging							\$	3,034					
BEV-220km (all else held constant)	\$	(58,104)		\$	(18,188)		\$	(9,991)				\$ 154,796	
+ home charging							\$	(7,755)					
+ DC fast charging							\$	(8,909)					
HFCV-500km (all else held constant)	\$	(32,107)		\$	(14,335)		\$	(4,443)					
10% gas stations							\$	(3,904)					
50% gas stations							\$	(1,750)					
100% gas stations							\$	943					
Valuation of vehicle type (\$ CAD)													
PHEV range (per km)										\$ 110			
BEV range (per km)										\$ (87)			
HFCV range (per km)							\$	8					
Fuel cost savings(per year)				\$	2,373		\$	2,876					
Incentive value (per \$1000 incentive)	\$	838		\$	454		\$	1,019		\$ 2,494		\$ 7,897	
Home charging (of Level 1 or 2)							\$	2,237					
Workplace charging (of Level 1 or 2)													
Public charging (per % of destinations)													
DC fast charging (for access on major highways)							\$	1,082					
Hydrogen stations (per % of gas stations)							\$	54					

(20-40yr + time horizon)

The respondent-based preference and constraint model (REPAC)

Thanks Amy Miele

The respondent-based preference and constraint model (REPAC)

Thanks Amy Miele

Latent demand and barriers to PEV sales

Comparing PEV policies

Demand-focused policy

- Purchase incentives
- Non-monetary incentives (HOV lane, etc.)
- Charger deployment

Supply-focused policy

- -ZEV mandate (sale requirements)
- Fuel efficiency standards
- Low-carbon fuel standards

32

"Weaker" demand-focused policies might get us to 1% to 10% new market share...

Continuing aggressive incentives and charger deployment could get up to ~20% by 2030 50% 40% PEV new 30% market share Stronger demand focused 20% (British \$5k, 15 years, +chargers Columbia) 10% Weaker demand focused policy \$5k subsidy, 5 years 0% 2015 2025 2030 2020

"Full" PEV supply needed to get up to 30% or higher

Multiple ways to push electric vehicles, but subsidies cost* 20-30 times more than ZEV mandate

Canada's Electric Vehicle Policy Report Card

Energy Policy 107 (2017) 381-393

Contents lists available at ScienceDirect

Energy Policy

journal homepage: www.elsevier.com/locate/enpol

Dr. Jonn Axsen Suzanne Goldberg Noel Melton

Sustainable Transportation Action Research Team Simon Fraser University November 2016 Evaluating plug-in electric vehicle policies in the context of long-term greenhouse gas reduction goals: Comparing 10 Canadian provinces using the "PEV policy report card"

Noel Melton^{a,b,*}, Jonn Axsen^b, Suzanne Goldberg^b

METCALF FOUNDATION

Social Sciences and Humanities Research Council of Canada Conseil de recherches en sciences humaines du Canada

Policy Goal:

To achieve long-term GHG mitigation targets, PEVs reach 40% of new vehicle market share by 2040 (IEA scenario) – that is an "A"

Ľ	—			

Identify electric vehicle supportive policies

Evaluate the effectiveness of each policy ABC

Assign letter grades to each province (based on the effectiveness of their policies)

Grades across Canada.... 7 provinces in the "D" or "F" range

Grades across Canada.... Ontario and BC in the "C" range

Grades across Canada.... Quebec is our inspiration at "B"

Adapted from: Axsen et al. (2017), Energy Policy

What are the most effectives climate policies in Canada?

Adapted from: Axsen et al. (2017), Energy Policy

2040 Goa

World-leading policy can raise all grades

Province	Current policies*	Current + proposed*	Current + proposed* + "Norway-like"	Current + proposed* + "California-like"
Canada	c-	с	B+	B+
British Columbia	c-	c-	В	B+
Alberta	D	D	В	B+
Saskatchewan	F	D	В	B+
Manitoba	F	D	В	B+
Ontario	C-	с	В	B+
Quebec	B-	в	Α	B+
New Brunswick	F	D	В	B+
Nova Scotia	F	D	В	B+
Prince Edward Island	F	D	В	B+
Newfoundland and Labrador	F	D	В	B+

Missing methods? historical case studies, stakeholder interviews, random experiments

Policy implications

- PEVs can play an important role in GHG mitigation
- "Latent" demand is there but widespread uptake isn't likely to happen without policy
- Strongly policy needed, likely supply-focused (e.g. ZEV mandate)
- Need improved understanding of supply side
- Other methods, theories