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energy direction of technical change, 1950-2012∗
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Abstract

Climate change mitigation challenges national economies to increase productivity while

reducing fossil energy consumption. Fossil energy-saving technical change has been as-

sumed to accomplish this, yet empirical evidence is scarce. This paper investigates the

long-run relationship between the rate and direction of technical change with respect

to fossil energy and labor in the world economy. Growth rates of labor productivity

and the fossil energy-labor ratio are examined for more than 95% of world output be-

tween 1950 and 2012. The average elasticity of the energy-labor ratio with respect to

labor productivity is close to one, implying highly energy-using technical change, but

no trade-off between factor productivity growth rates. This stylized fact suggests the

importance of a cheap, abundant energy supply for robust global growth, and a more

important role for renewable energy. Integrated assessment models do not incorporate

this restriction which may result in poorly specified baseline scenarios.

JEL: N10, O44, O47, Q43

Keywords: labor productivity, fossil energy productivity, energy-using technical change,

decoupling, long-run trends, stylized facts, direction of technical change

∗The author thanks Duncan Foley, Lance Taylor and Isabella Weber for many discussions on the topic;
and Roger Fouquet, Mariana Mazzucato, Codrina Rada, Armon Rezai, Paulo dos Santos, Steve Sorrell, an
anonymous referee from the SPRU WP series, and the participants of a SPRU Seminar at Uni Sussex and
a Grantham Research Institute Seminar at the London School of Economics for helpful feedback on earlier
versions. Any remaining errors are the author’s.
†Science Policy Research Unit, University of Sussex, g.semieniuk@sussex.ac.uk.

1



1 Introduction

Fighting climate change and stagnant economic growth are the biggest challenges currently

facing the world economy (Group of Twenty Major Economies 2015; United Nations 2015).

Responses to both challenges have identified technical change as an important component of

a solution. Mitigating greenhouse gas emissions is predicated on highly fossil energy-saving

technical change, that allows ‘decoupling’ of economic growth from fossil energy consump-

tion growth (Gillingham et al. 2008; Schandl et al. 2015). Growing the world economy is

predicated on fast per capita income growth, which in turns necessitates high labor produc-

tivity growth rates (Baumol 1986; Maddison 2006). What is unclear is the degree to which

labor productivity growth can be achieved at the same time as fossil energy-saving technical

change (Bowen and Hepburn 2014; Csereklyei et al. 2016).

Theories of factor-augmenting technical change are obvious candidates for answering how

labor and energy productivity hang together. In models of induced (Di Maria and Valente

2008) and directed (Acemoglu et al. 2012) technical change with fossil fuels, technical change

has both a rate and a direction, regulated by relative factor prices and scarcity.1 Although

this body of research has furnished impressive empirical evidence at the sectoral and micro-

level about the direction of technical change with respect to fossil energy, among others in

this journal (Sue Wing 2008; Noailly and Smeets 2015; Aghion et al. 2016), little empirical

research has been conducted into the aggregate relationship between different productivity

growth rates (Nordhaus 2002). One obstacle to aggregate empirical research appears to be

scarce data, especially on energy prices. Another theory, ecological macroeconomics (Rezai

and Stagl 2016), also predicts how rate and direction of technical change interact, but based

on biophysical rather than price considerations (Rezai et al. 2013). Although this theory

is operationalized more easily, no empirical studies have tested its predictions for the world

economy.

1Technical change, or equivalently technological change, refers to changes and improvements of produc-
tivity, represented by ratios of output over input(s), that are either single-factor productivities such as labor
productivity or fossil energy productivity, or cost-weighted multifactor productivities such as total factor pro-
ductivity. Technical change with two inputs, x and y, has a direction to input factor x if y-productivity grows
faster than x-productivity and x becomes a more important factor in production relative to y; equivalently,
this technical change is x-using and y-saving.
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Absent empirical studies informed by an explicit theory of production, a plethora of em-

piricist studies have searched the data for ‘Environmental Kuznets Curves’ and Granger cor-

relation based solely on GDP and energy consumption data. Yet, this literature has failed to

reach a consensus about the nature of the world economy’s long-run correlation between eco-

nomic growth and fossil energy consumption; this claim will be substantiated below through

a literature review. On balance, no extant empirical work seems able to satisfactorily inform

about energy’s role in world productivity growth. But this information is particularly relevant

because the results of integrated assessment models (integrating models of the climate and

global economic growth) regarding the compatibility of economic growth and climate change

mitigation are driven mainly by varying assumptions about labor productivity growth and the

evolution of fossil energy intensity at the global level (IPCC 2014, p. 426). A clearer un-

derstanding of the historical relationship of such basic magnitudes as labor productivity and

fossil energy productivity growth would help the parametrization of these forecasting models

as well as supply a stylized fact for any economic model of energy in economic growth.

This study investigates the long-term empirical correlation between the rate and direction

of technical change with respect to labor and fossil energy in the world economy. The

investigation is firmly rooted in a theory of production. The ecological macroeconomic

approach is used as a lens of analysis, for its easier operationalization, without necessarily

committing to its theoretical conclusions. Using only variables for output (X), employment

(L), and fossil energy (FE), aggregate fossil energy intensity (FE/X) is expanded by aggregate

employment

FE

X
≡ FE

X
× L

L
≡ X

L
×

(
FE

L

)−1

(1)

into the product of realized labor productivity – that is, the ratio of output to employment

(X/L) – and the fossil energy labor ratio (FE/L). Growth in realized labor productivity repre-

sents the rate of technical change, while the fossil energy-labor ratio represents its direction. A

functional relationship between labor productivity and the fossil energy-labor ratio is imposed,

which in turn determines fossil energy intensity or its inverse – realized energy productivity
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– by accounting identity. This approach thus analyzes the role of fossil energy in economic

growth as following from the rate and direction of technical change in production.

Long-term trends for the global economy made up of its component countries are con-

sidered since this is the relevant level to analyze ‘decoupling’, but individual countries’ and

regions’ trajectories are also considered. A long-run perspective is particularly important to

distinguish secular trends that are important for growth and development from cyclical fluc-

tuations and shorter-term disruptions such as the fall in crude oil output during two OPEC

crises.2 The study focuses on fossil primary energy supply. Not only can technical change

improve energy efficiency, but also substitute fossil with other, non-greenhouse gas emitting

energy sources.3 A dataset of compound annual growth rates is constructed from annual

national observations of fossil and non-fossil primary energy in production, output and em-

ployment for 1950-2012 for over 95% of world domestic product. Energy and output data are

from the International Energy Agency data and UN data before 1971, employment data is

from the Total Economy Database (IEA 2014b,a; Darmstadter et al. 1971; Conference Board

2014).4 The combination of length and coverage is more comprehensive than in previous

studies.

The analysis employs a combination of quantitative and qualitative methods. Both global

and regional level results are visually inspected, before the elasticity of the energy-labor ratio

with respect to labor productivity is estimated in cross-sections for global, and the and entire

panel, for regional and national growth. Outliers are explained in their economic-historic

context. The global level results will be discussed as providing a stylized fact about energy

and labor productivity for economic growth models and in particular for integrated assessment

model assumptions, the country-level results as pointing to the need for cheap, abundant

2In 1973, five years after crude oil overtook coal as the most important energy source, the Organization
of Petroleum Exporting Countries (OPEC) imposed an oil export embargo against the US and later other
Western countries that supported Israel in the 1973 Arab-Israeli War. In late 1978, the Iranian Revolution led
to a 10% drop in OPEC’s crude oil production (EIA 2002). The Iran-Iraq War that began in 1980 reduced
oil production also in other OPEC members and in 1981 OPEC crude output stood one quarter below its
pre-revolution 1978 level. Global crude production only recovered its 1978 level in 1989 (IEA 2014a).

3The fossil energy-labor productivity relationship will nevertheless be representative for energy in general
since more than 80% of global energy use has been supplied by fossil fuels during the period of analysis (IEA
2014a).

4Only 15% of global primary energy consumption in 2012 was due to non-production, ‘residential’ usage
for heating, lighting, and powering home appliances.
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energy for future rapid growth in developing countries.

The next section reviews the empirical literature on economic growth and fossil fuels.

Section 3 develops the study’s analytical framework and introduces the data. Section 4

presents results, and section 5 discusses their implications for modeling and policies supporting

fossil-energy saving productivity growth. Section 6 concludes and suggests avenues for further

research. Appendices provides details on estimation methods, data, and results.

2 The economic literature on energy and growth

2.1 Non-production studies

Most empirical contributions to the debate about the role of energy in economic growth have

considered the relationship between a measure of energy consumption and output, without

starting from a theory that explains energy use as an input into production. One strand of

this literature, called the energy-growth nexus, applies the Granger correlation test (Granger

1969) to national time series of output and energy in order to test the direction of causality

between the two series.5 The underlying assumption is that the role of energy in production

can be found from the structure of the two time series and without reference to a theory of

production.6

The literature began after the OPEC oil embargo of 1973, when scarce crude oil was

suspected to be a cause of a US productivity growth slowdown. Kraft and Kraft (1978) found

that in the post-war US economy (from 1947 to 1974), the Granger correlation ran only from

output to energy, but not the other direction. In the Granger interpretation of causality, this

implies that energy was not a causal factor in US economic growth and economic growth

would be unimpeded by lesser energy consumption. Subsequent studies found no Granger

5The Granger test regresses an observation of a random variable X on lags of itself and a random covariate
Y. If Y’s coefficient is zero, X is said to be exogenous with respect to Y. If, additionally, Y is not exogenous
with respect to X, then X is said to be causally prior to Y (Cooley and Leroy 1985).

6Implicit in the hypothesis of no causation is a growth model with a high elasticity of substitution between
energy and other inputs.
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correlation at all (Akarca and Long 1980; Hwang and Yu 1984), and also found a lack of

co-integration between energy, output, and employment (Yu and Jin 1992).

The 2000s saw an explosion in the number of nexus studies for countries other than

the United States. Although this literature continues to grow, it has failed to reach any

consensus on the existence and/or direction of causality. Ozturk (2010) surveyed 72 studies

of the energy-growth relationship in a variety of countries typically for periods after 1971

(International Energy Agency data) or 1980 (Energy Information Agency data) and found all

22=4 Granger causal patterns. In particular, all types of causation were found for almost every

country, which Ozturk attributed to the sensitivity of the results to time period and variables

included.7 Similar inconclusiveness is found in a review of studies considering electricity in

lieu of total energy (Payne 2010). Absent an economic theory underlying this approach, the

only recommendation that both reviews can offer is to use better econometric methods and

increase the number of covariates, without questioning the theoretical preconceptions.

Another strand of this literature, the ‘Environmental Kuznets Curve’ (EKC) for CO2 emis-

sions, examines the hypothesis that the sign of the change in CO2 intensity of production is

dependent on a country’s per capita income (Panayotou 1993). Because of the high positive

correlation between CO2 and fossil fuel use (Schmalensee et al. 2001), this translates into a

fossil energy EKC. This hypothesis has been discussed controversially (Dasgupta et al. 2002;

Stern 2004) and without leading to a consensus about its existence (Franklin and Ruth 2012;

Stern 2011). Out of 41 studies that have estimated the CO2/GDP per capita relationship,

one-quarter have found evidence for the hypothesis of an EKC, with turning points rang-

ing between $5,000 and $33,000 (in 2000 USD), while the other three-quarters have not

(Hervieux 2014). It has also been shown that EKC evidence is sensitive to country sample,

time period selection, and model specification (Yang et al. 2014).

Those studies that have examined energy directly have tended to find a nonlinear relation-

ship for national trajectories, some of which are of the EKC type. Schurr (1984) found the

7Nevertheless, individual studies make strong policy recommendations, including that India would grow
faster if it reduced its total energy consumption (Narayan and Popp 2012); at least one study has claimed
that, in the long-run, growth in general is independent of energy consumption, based on data only from
OECD countries (Coers and Sanders 2013).
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time series of aggregate energy intensity in the US between 1880 and 1980 to be an inverted

U-shape for GDP per capita, peaking in 1920. An EKC pattern was revealed for an energy-

material aggregate intensity for a panel of 31 European countries over the period 1970-1985

(Jänicke et al. 1989), and in cross-sections for energy for 100 countries by comparing the

change between 1975 and 1997 (Ang and Liu 2006). Evidence has also been furnished that

per capita energy consumption is an s-shaped function of per capita GDP in national time

series (Wolfram et al. 2012; Fouquet 2014). A general problem with time series findings is

that they cannot control for what part of changes in energy intensity are due to relocation

of sectoral activity to other countries.

2.2 Production studies

Studies explaining energy as an input into production start with an explicit theory of aggregate

production and factor productivity, which guides empirical measurement. A variety of theories

of growth with energy were developed in the late 1970s and 1980s, mainly as a reaction to

rising oil prices from the OPEC crises (Berndt 1990). The one most relevant for the question

of the direction of technical change is based on assuming a trade-off between augmenting

different factor-specific productivity such as labor and energy productivity. This is resolved by

assuming profitability guided behaviour of producers, where more expensive factors ‘induce’

faster factor- specific growth rates (Kennedy 1964). Originally developed to explain constant

factor shares in spite of labor-saving technical change in the US, the theory of price-induced

technical change was also used to explain why rising energy prices coincided with faster

energy productivity growth, but slowing overall productivity growth (Jorgenson 1984). A more

recent vintage of ‘directed’ technical change, starts from changes in relative factor supplies

that affect profitability (Acemoglu 1998). Both induced and directed technical change have

been modeled with fossil energy or ‘dirty inputs’ (Di Maria and Valente 2008; Acemoglu

et al. 2012, 2015).8 Although a recent study found a trade-off between productivity growth

8Di Maria and Valente are in the spirit of the induced innovation literature by assuming an elasticity of
substitution below one between fossil fuels and other inputs, whereas the papers by Acemoglu and co-authors
focus on the results with an elasticity no less than one. The latter enables a long-run upward sloping demand
curve for the more abundant factor, the ‘market size effect’.
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rates of energy and a capital-labor composite for the US after 1950 (Hassler et al. 2012),

this literature produced hardly any empirical work at the aggregate level (Nordhaus 2002;

Sue Wing 2006).

Endogenous growth theory has suggested mechanisms besides directed technical change

for endogenizing changes in the CO2 emissions’ (and hence fossil fuel) intensity. The most

common variants explain reductions in emission intensity as consequences of R&D or scale

effects from learning by doing (Gillingham et al. 2008). One challenge for empirical estimation

of the strength of these forces at the level of the world economy is a lack of data (Pizer and

Popp 2008), while results for the US or other advanced countries cannot be generalized due

to trade linkages. Therefore, most of the models that forecast world economic growth and

fossil energy consumption continue to rely on exogenous labor productivity growth and make

separate assumptions about the evolution of the energy intensity of output, as well as the

composition of the energy mix (IPCC 2014, p. 426).

The correlation between labor productivity and energy intensity has also been addressed

by theories based on ‘ecological macroeconomics’ (Rezai and Stagl 2016), which predicts

that rising labor productivity comes with increased energy use per worker, and therefore

constrains the ability of energy intensity to fall (Rezai et al. 2013). An elasticity of the

fossil energy-labor ratio with respect to labor productivity close to one was found for the

US economy in the period between 1905 and 1980 (Cleveland et al. 1984), and an elasticity

of 0.6 in a cross-section of compound annual growth rates from 1990-2004 for some three-

quarters of the world economy (Taylor 2009). Despite the comparatively modest demands

on data (no prices, no micro-data on R&D etc.), no empirical studies have followed up more

comprehensively on the correlation between labor productivity and the direction of technical

change.

8



3 Method and data

The above review shows that the variety of approaches have produced little consensus about

the relationship between productivity growth and fossil energy for the world economy. Em-

pirical studies that eschew a theory of production have reported contradictory types of cor-

relations and directions of causation, and econometric results are sensitive to sample and

model selection. Economic theories of growth can explain empirical regularities with techni-

cal change in specific countries, but have not yet examined the world economy as a whole.

The current study takes a production perspective, but examines a larger dataset in order to

reveal the long-term, global role of fossil energy in productivity growth.

3.1 Method

In order to investigate a global, long-term dataset, the study adopts the most easy to opera-

tionalize approach from ecological macroeconomics. This theory predicts a stable relationship

between rates of change in realized labor productivity, X/L = λ, and the fossil energy-labor

ratio FE/L = e. The proportional rate of change of labor productivity, denoted by a hat,

(∂λ/∂t)/λ = λ̂ represents the rate of productivity growth, while the proportional rate of

change of the fossil energy-labor ratio, ê, represents the direction of technical change. In

particular, technical change is fossil energy-saving when ê < 0 and labor becomes a more

important factor in production relative to fossil energy, and fossil energy-using otherwise.

With fossil energy being an input into production, the inverse of the fossil energy intensity is

the realized energy productivity, X/FE = φ. The relationship between λ̂ and ê determines

the change in the economy’s energy productivity by accounting identity as a result of the rate

and direction of technical change. To see this, expand fossil energy productivity with labor

X

FE
≡ X

L
× L

FE
equivalently φ ≡ λ× e−1 . (2)
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Taking logarithmic derivatives and rearranging gives

φ̂ ≡ λ̂− ê . (3)

Growth theories also determine a direction of causation. The assumption that causation

runs from higher λ̂ to higher ê arises theoretically when reasoning that economic agents

strive for higher output and labor productivity growth, but do not consciously attempt to

change the energy-labor ratio. Learning by doing and knowledge spill-overs (Arrow 1962;

Romer 1986), or increasing returns to output expansion from external economies of scale

(Young 1928; Kaldor 1961), all follow this view by explaining faster labor productivity growth

as a result of faster output growth. The growing energy-labor ratio is then a reflection of

the growing energy needs of the larger scale of production. Induced technical change also

assumes this direction as innovations geared at factor augmenting change lead to changes

in the input ratio. The alternative direction of causation – that changes to the energy-labor

ratio cause changes in labor productivity – sees productive activity as resulting from useful

energy inputs. This human ecology perspective dates back to shortly after the discovery of

the laws of thermodynamics in the 19th century (Martinez-Alier and Schlüpman 1990), and

its causal reasoning has recently been applied in a model of growth with greenhouse gases

(Taylor et al. 2016).

The literature review has shown that disentangling causality empirically is difficult with

aggregate data, and this study of empirical correlations cannot examine or justify a direction

of causation. Its purpose is to document the correlation between the rate and direction of

technical change with respect to energy for the world economy. Yet, where appropriate, results

will be interpreted through the lens of agents attempting to increase labor productivity, which

leads to changes in the aggregate energy-labor ratio. This view connects to the majority of

the theoretical literature. Hence, for purposes of plotting and regression, the analysis will

consider the rate of change in the energy-labor ratio as an increasing function, f , of that of
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labor productivity

ê = f(λ̂) (4)

which ecological macroeconomics predicts should be linear. Hence the analysis lends itself

to linear regression of the form ê = α + βλ̂, which is done both for multi-year cross-section

weighted least squares to estimate the global relationship of countries, complemented by

nonlinear local polynomial regression, and a country and time fixed effect estimate for national

growth rates. The role of non-fossil energy is also considered. Appendix A details the

specifications used.

The main objects of the study are elasticities, but as the literature on the energy-growth

nexus and the EKC has shown, the exact econometric relationship between changes in the

aggregate measures of output, energy, and labor is plagued by ambiguity. The present study

keeps the econometric analysis to a minimum and instead follows Hassler et al. (2012) and

Taylor (2009) to complement it with a visual analysis. This helps contextualize outliers by

locating them in their economic-historic period. Visual analysis is also particularly appropriate

because the analysis proceeds in two dimensions (λ̂ and ê). Recalling that identity (3) can

be rearranged as λ̂ ≡ φ̂+ ê, energy productivity growth is positive whenever ê < λ̂.

3.2 Data

A global, long-run dataset is constructed of annual observations of national output, em-

ployment, and fossil energy data in countries representing more than 95% of GDP for the

years 1950-2012, and compound annual growth rates of labor productivity and the energy

labor ratio are calculated. Fossil energy use data is from the International Energy Agency’s

World Energy Balances dataset for 1971-2012 (IEA 2014b,a).9 It excludes energy use for

residential purposes (home heating, lighting, and power for home appliances), to focus on

9One advantage of focusing solely on fossil fuels for the data construction is the ability to dispense with
an ambiguous conversion factor between thermal energy from fossil fuels and electricity from hydro or other
renewable energy (Martinot et al. 2007). Where renewable energy sources are considered, however, the IEA
conversion factor is used.
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the relationship between fossil energy and production.10 Non-residential non-fossil energy

estimates are also taken from the IEA. Fossil fuel consumption (including for residents, which

cannot be separated) for 1950 and 1960 is taken from tabulations of national fossil energy

use for 1950-1965 by adding solid, liquid, and gaseous fuels from the tables in section 10 of

by Darmstadter et al. (1971), which is based on UN data.

Employment data from the Conference Board’s (2014) Total Economy Database (TED)

is used, that counts average number of persons employed per year. Although the number

of hours worked per year would be a more accurate measure of employment, coverage for

this measure is only available for a subset of countries and time and is unsuitable for the

purpose of a long-term global analysis. Output is represented by GDP at market exchange

rates reported by the IEA. Prior to 1971, TED data is used, including GDP at Gheary-Khamis

conversion factors if no market exchange rate GDP is available. Since the bilateral Gheary-

Khamis (and other purchasing power parity measures) conversion factor is the same every

year, the growth rates of GDP, which will be used exclusively, do not differ between various

measures of GDP.

The calculation of compound annual growth rates for countries and regions is detailed in

Appendix B. Table I displays regional compound annual growth rates for the pre-IEA period

1950-1971 and the IEA period 1971-2012 typically used by extant studies. The summary

statistics reveals that, in this dataset, labor productivity growth was faster in the 1950s and

1960s on average than in the later decades, and technical change was more energy-using in

the earlier period. No regions displays energy saving technical change in the earlier period,

three do in the later period. The ‘Golden Age’ of capitalism, 1950-73 (Maddison 2006,

p. 125), coincided with highly energy-using technical change, which led to falling energy

productivity in seven out of ten regions. The results section of this paper will analyze how

these regional patterns hang together at the world level, and split up the two long 21 and

41 year intervals into shorter ones. This structures the data into decadal intervals starting

10Approximately 6% of fossil energy is used for non-energy purposes, such as feedstock in the chemical
industry or lubricants in refineries. To the extent that these products are incinerated after use, the fossil
fuels embodied in the material still emit carbon dioxide, approximately half of what would have been caused
by combustion (Weiss et al. 2009). Because of their carbon emissions, fossil fuels for non-energy use are
included in the dataset.
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1950 where interval endpoints are adjusted to reach the IEA starting data (1971), separate

the periods before and after the second oil crisis (1979) and accommodate the most recent

data (2012).

Table I: Regional compound annual growth rates of labor productivity λ̂, fossil energy-labor
ratio ê, and fossil energy productivity φ̂ during the pre-IEA and IEA data periods.

Region 1950–1971 1971–2012

λ̂ ê φ̂ λ̂ ê φ̂

North America (NAM) 0.024 0.015 0.009 0.014 -0.010 0.024

Western Europe (WEU) 0.043 0.035 0.008 0.016 -0.006 0.022

Pacific OECD (POECD) 0.063 0.076 -0.013 0.020 0.008 0.012

Economies in Transition (EIT) 0.032 0.043 -0.011 0.019 0.004 0.015

Latin America (LAM) 0.028 0.038 -0.010 0.006 0.005 0.001

Sub-Saharan Africa (SSA) 0.024 0.014 0.010 0.003 -0.001 0.004

Middle East & North Africa (MNA) 0.047 0.054 -0.007 0.007 0.036 -0.029

East Asia (EAS) -0.004 0.066 -0.062 0.066 0.043 0.023

Pacific Asia (PAS) 0.023 0.057 -0.034 0.031 0.040 -.0009

South Asia (SAS) 0.017 0.037 -0.020 0.027 0.040 -0.013

4 Results

This section shows visually and with regression analysis that labor productivity growth was

highly correlated with growth in the fossil energy-labor ratio for the world except after the

OPEC oil shocks and during the transition of planned economies to the market; the elasticity

was close to one. The results carry over to some extent to national growth experiences.

Low-carbon energy sources have substituted for fossil energy in the most recent decade.

4.1 The world economy’s energy direction of technical change

In any decade, national economies together form the world economy. Six plots of decadal

compound annual growth rates in Figure 1 show the entire dataset in cross sections and

trace the world economy’s growth. The most striking pattern is the south-west to north-

east direction of the data cloud in most plots. National differences in labor productivity

growth rates, λ̂, were associated with proportional differences in the fossil energy-labor ratio
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in production, ê. The proximity of many observations to the 45 degree line in most plots

indicates that faster labor productivity growth led to a similarly faster change in the direction

of technical change, where points above the 45 degree line imply that ê > λ̂, i.e. a falling

energy productivity. Quickly growing countries often find themselves in the northeast of the

plot, close to the 45 degree line (Japan in the 1960s, Korea in the 1970s-90s, China in the

2000s). As a consequence, national energy productivity remained nearly constant, regardless

of the corresponding national growth of labor productivity.

The one exception to this pattern is plot d. It shows that the correlation collapsed in the

1980s as a significant part of the world economy moved to stagnating growth with slightly

energy-saving technical change (below the horizontal dashed line). To put this in context, at

one point or another in this period, almost every part of the world found itself in an economic

crisis more severe than in the previous three decades (Kindleberger 1988; Maddison 2006;

Gourinchas and Obstfeld 2012), a trend that continued into the 1990s (Kindleberger and

Aliber 2005). As a result per capita income growth halved in the last quarter of the century,

compared with the golden age (Maddison 2006, Table 8b, p. 643). Few average national labor

productivity growth rates for this decade exceeded 2%; more will be said on the exceptional

performance of China below. The more energy-saving technical change than in previous

decades is typically attributed to price-induced technical change from the 1970s oil crises

(Berndt 1990). This plot emphasizes that the lower rate of productivity growth coincided

with less-energy using technical change.

The negative tail of the 1990s data cloud in plot e is also remarkable, as it achieves

unprecedented energy-saving technical change by countries mired in depression. A closer

look at the countries in the third quadrant shows that these are Russia, Ukraine, Belarus and

other former USSR republics in transition from planned production. China, the other country

in transition is an outlier on the positive side. Together, the countries in transition from plan

to market give this decade an uncommon pattern, too.

With a dataset starting in 1971 or even 1980, the most recent period in plot f might

appear as an exceptional correlation in lieu of the continuation of a pattern from the 1950
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Figure 1: Scatters of compound annual growth rates of labor productivity vs. energy-labor
ratios, marker area corresponds to share of global fossil fuel consumption in production during
plot period. Horizontal, vertical axes, and 45 degree line are dashed lines.
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to the 1970s that was interrupted in the 1980s. Indeed, such a short dataset might invite

concluding that no stable pattern exists in the relationship between λ̂ and ê. However, the

longer data series suggests that the 1980s are an exception, and the 1990s witnesses the

repercussions from a change in the mode of production of a significant part of the world

economy. Otherwise, the world economy displays a remarkably tight positive correlation

between labor productivity growth and the direction of technical change.

4.2 Elasticity in the world economy

A regression analysis makes this correlation more precise. Linear and loess fits to equations

(A.1) and (A.3) are estimated for every period, and superimposed on the scatters in Figure

2. The linear fits are solid lines, loess fits are points with 1.96 times standard deviation error

bars. The slope of the weighted linear fits, η, which is the elasticity of the energy-labor ratio

with respect to labor productivity, can be seen to be around unity in plots a-c and f . Plots d,

with data slightly shortened to the period 1981-1990 to exclude the oil price shock, and plot

e have a lower slope, and all are significant at the 99.9% confidence level.11 Seen as a whole,

the world economy operated with energy-using technical change that left energy productivity

growth nearly constant and near zero over a wide range of labor productivities, in the four

out of six decades that were also the most successful in terms of labor productivity growth

(Maddison 2006, p. 125). A rolling regression in Appendix C reports all ten year cross section

estimates and confirms the regular pattern and exceptions identified here.

Most linear fits leave a large part of the information in the data unexplained (low R2).

Loess fits help understand the residual information. Weighing neighboring datapoints more

heavily, the loess fits show that the vast majority of the data is aligned along the 45 degree

line, nearly linearly.12 Surprisingly, this is even true for the 1990s, as all major countries

11The slope coefficient is not significant for the period 1979-1990. Acting on the prior knowledge that the
anomalous correlation in the 1980s is related to the oil price shocks of 1979 (rather than the economic crises
occurring throughout the decade), and seeing that real US oil prices only started falling in 1983 (Berndt
1990), the period is shortened successively to recover the correlation in the 1980s. It is first shortened
to 1980-1990 and then to 1981-1990, at which point zero is excluded from the slope estimator’s 99.9%
confidence interval.

12The elasticity above one in the 1950s and 1960s may be partly caused by a substitution of traditional
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Figure 2: Scatters of compound annual growth rates of labor productivity vs. energy-labor
ratios. Linear fit represented by solid line, with slope and R2 estimate, loess fit represented
by dots with 95% confidence interval whiskers.
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but China followed the unit elasticity pattern. The important non-linearities occurred in the

1950s and 1980s. Apart from these two outliers, non-linearities dominate only at the left

and right fringes caused by small countries in deep depression or expectional growth spurts.

Hence, most of the world economy operated under a technical change regime that substituted

energy for labor at the same rate as it improved its labor productivity. The next subsection

examines whether this also held for individual regions and countries over time.

4.3 Regional and country experience over time

To examine trajectories over time, regional growth rates in the six decades are plotted, where

contemoraneous λ̂ − ê compound annual growth rate vertices are connected by edges. An

arrowhead indicates the time direction. Figure 3 displays time series for all regions and shows

that the positive elasticity holds not only cross-sectionally for the world, but also over time

for individual regions in plots a and c, where plot a represents more than half the world’s

economy until 2000.

The plots on the right-hand side, b and d, display exceptional patterns. One is East Asia, in

which China experienced large-scale introduction of fossil energy in the 1950s (Smil 2004); at

the same time China’s Great Leap Forward and the subsequent famine depressed output and

employment, miring the region in falling labor productivity for the period (Hobsbawm 1994).

This was followed by two regular decades until the end of the 1970s. The 1980s and 1990s

were characterized by high energy productivity growth from an initially very low level, which

took place in the context of a series of ‘exceptionally successful’ energy efficiency measures in

the course of that country’s economic reforms (Smil 2009; Sinton et al. 1998, p. 813), which

made it the most successful country in terms of productivity growth in the world (Hu and

Khan 1997). After 2000, growth in China returned to the energy-using growth of the 1960s

and 1970s based on heavily expanding manufacturing industry, large infrastructure projects

and growing net exports of embodied energy in products (Zeng et al. 2014).13

biomass with fossil fuels in fast growing economies, as the world share in biomass dropped from 25% to 10%
(data underlying Fouquet 2009).

13Given that the engineering energy efficiency of more decentralized final goods production tends to be
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Figure 3: Time series of regional λ̂ and ê couples.
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Plot b also displays the remaining economies in transition from planning, which is the only

region in the 1990s that moves to more energy-saving technical change.14 Unlike China, those

newly existing former Soviet republics experienced a deep depression in the 1990s. Russia’s

GDP in 1998, the year the government defaulted on its debt to the IMF (Boughton 2012),

was only 57% of its 1990 GDP in real terms, while Ukraine’s was only 41% of its 1990 value.

In the 2000s this region returned to its labor productivity growth rate of the 1970s with a

proportional increase in its energy-labor ratio, leading to neutral technical change.

The regions in panel d had a negative elasticity, η between at least two decades. South

Asia’s trajectory may be explained by pointing to net imports of energy intensive products or

a low resource service-driven growth, while the Middle East and North Africa consist mostly

of fossil fuel producers, which are expected to deviate from typical energy use patterns. The

figures on sub-Saharan Africa are especially difficult to interpret because the accuracy of

historical growth rate statistics for some countries included in the dataset are questionable

(Jerven 2010). Another reason for an irregular relationship in these regions may be that they

operated with inefficient energy productivity changes, which fell in most decades. In summary,

while some regions diverge from the near-unity elasticity, which can be partly explained by

their historic economic circumstances, the positive elasticity is pervasive also for individual

regions’ trajectories over time.

Finally, a country and time fixed effect estimate of equation (A.4) for the entire dataset

summarizes average developments at the national level, while controlling for decades’ different

growth environments. It does not weight countries for their share in total energy consumption

but treats each of them equally as a datapoint. Table II shows that the highly positive slope

coefficient is confirmed even by focusing on national growth rates and assuming a linear

relationship. This is also true for subsets of the world, the OECD, non-OECD countries and

the economies in transition (EIT). In the last column, excluding the 1980s from the estimate

confirms that this decade was a pervasive shock to national economies patterns of technical

lower than for highly concentrated industrial production, the fact that China’s move towards a ‘consumer
economy’ is unlikely to improve the ratio of λ̂ to ê in the near future (Brockway et al. 2015).

14All other regions rebounded from a drop in the energy-labor ratio growth rate from the 1970s to the
1980s, the third edge, in the aftermath of the OPEC oil crises.
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change. The panel also highlights that the 1950s and 60s display a higher intercept, relative

to the later periods, implying that in the later periods energy productivity growth tended to

be more positive for low rates of labor productivity growth.

In sum, the constantly high, positive elasticity of the fossil energy-labor ratio with respect

to labor productivity observed at the world level, is also reflected on average in national

development. Faster growth tends to require proportionately more energy, putting the onus

for reducing carbon emissions in growth on substituting fossil fuels with renewable sources,

as opposed to harnessing energy-saving technical change.

Table II: Panel country and time fixed effects estimates.

World OECD non-OECD EIT World−1980s

η 0.727 ** 0.868 ** 0.695 ** 0.627 ** 0.808 **

(0.067) (0.151) (0.080) (0.137) (0.079)

1950s 0.048** 0.030 ** 0.055 ** 0.073 ** 0.045**

(0.006) (0.007) (0.008) (0.018) (0.006)

1960s 0.022** 0.033 ** 0.016 * 0.042 * 0.021 **

(0.006) (0.007) (0.008) (0.018) (0.006)

1970s 0.014* 0.015 * 0.013 0.011 0.014

(0.005) 0.006 (0.007) (0.015) (0.005)

1980s 0.007 0.009 0.006 0.004

(0.005) (0.005) (0.007) (0.016)

1990s -0.003 0.009 -0.007 -0.034 * -0.002

(0.005) (0.005) (0.006) (0.011) (0.005

R-squared 0.404 0.693 0.388 0.669 0.420

Adj R-squared 0.308 0.542 0.288 0.395 0.302

N 550 138 412 88 455

** significant at the 99.9% confidence level.

* significant at the 95% confidence level.

4.4 Substitution with non-fossil energy

Before discussing the results’ implications, a brief estimate of the substitutability of fossil with

low carbon energy sources is made. It has been argued that the much higher energy density

(power per area) of fossil fuels compared to traditional biomass made them superior engines of
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Table III: Effects of changes in low carbon sources in the energy mix.

Dependent Variable Fossil ê2000−12 Total ê2000−12

λ̂ 1.029** 1.023**

(0.038) (0.037)

γ̃ (renewables -1.394** -0.226

percentage change) (0.287) (0.284)

Intercept -0.016** -0.016**

(0.002) (0.002)

N 112 112

Adj. R2 0.871 0.870

Log Likelihood 222.010 240.896

** Significant at the 99.9% confidence level

productivity growth (Sieferle 2001; Wrigley 2010); and their density is also higher than that of

new low-carbon alternatives (Smil 2010, ch. 4). This would suggest that although renewable

energy is now the preferred alternative energy source, it is not clear whether substitutes

perfectly for fossil fuels. To check whether low-carbon sources are qualitatively different from

fossil fuels, and have an impact on the total energy labor ratio, ê is additionally regressed

on the annual percentage change of the non-fossil energy, γ in the energy mix. In particular,

if they are less efficient at providing energy, increasing their share may have a significantly

positive effect on the total energy-labor ratio. Table III shows that this is not the case. It

reports the coefficient values and standard errors from equation (A.2) for the period 2000-

2012. Column 1 shows that that a 1 percentage point increase per year in non-fossil energy

for production is associated with an average of 1.39 percentage point less growth in fossil ê,

suggesting low-carbon sources are replacing fossil fuels when used. But they do not seem to

do so at the cost of an overall more energy using technical chnage, for an increased share

of low-carbon energy has no significant effect on the total energy-labor ratio, as column 2

shows. Where low-carbon energy has been implemented, it has led to more fossil-energy

saving technical change in recent years, without changing the correlation between overall

energy use and the rate of productivity growth.
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5 Discussion of results

The implications of the results for growth models and climate change mitigation policies are

discussed. The near unit elasticity at the global level suggests a stylized fact for energy in

economic growth that links the direction of technical change to (labor) productivity growth.15

This complements the fourth of Nicholas Kaldor’s stylized facts, that the capital output ratio

is constant (Kaldor 1961), and hence labor productivity growth is achieved by a growing

capital-labor ratio. Here, we have seen that growing labor productivity is also accompanied

by a rising fossil energy-labor ratio. While fossil energy output ratio has fallen at the global

level, this has happened predominantly in the 1980s and 1990s which were shown to deviate

from other periods due to shocks that were exogenous to the economy.

Can economic growth models with energy inputs explain this regularity? Growth models

that see a trade-off between different factor productivity growth rates, such as those with in-

duced technical change, are prima facie too ‘pessimistic’ about the simultaneous productivity

growth potential in labor and energy. Careful studies that incorporate factor shares would be

necessary in order to be more precise about the consequences for single-factor productivity

of changes in relative factor prices. Models of endogenous technical change with increasing

returns to scale, on the other hand, discussed in Section 2.2, can explain this relationship,

where the increased labor productivity from scale economies leads to a higher throughput

of energy resources. Similarly, the ecological economic growth models that see increases in

energy per worker driving labor productivity would predict this relationship. Models, on the

other hand, that assume simultaneously faster labor and energy productivity growth are likely

to overestimate the ability to ‘decouple’ growth from fossil energy.

Significantly, more than 95% of baseline scenarios in the integrated assessment models

of the IPCC or the IEA fall into this optimistic category. Baseline scenarios sketch future

developments in per capita GDP, driven by exogenous labor productivity growth, and energy

15Studies that have drawn a large part of their sample from these two decades - an inevitable procedure
if readily available data from the IEA (starting in 1971) or the EIA (starting in the 1980s) are used - run the
risk of missing this regularity. This may go some way to understanding the contradictory conclusions reached
by the studies reviewed in Section 2.1.
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intensity without mitigation policies (IPCC 2014, p. 426), and the IEA forecast does the same

(International Energy Agency 2014, p. 40). Future growth scenarios are ultimately based on

extrapolation of past trends; however, the median scenario for the years 2010-2050 assumes

both a 1.5 times faster labor productivity growth and a 1.5 times faster decline in the energy

intensity than the trend in the period 1970-2010. These are based ostensibly on separately

specifying labor productivity and energy intensity trends (IPCC 2014, p. 426). The results of

the present study suggest that while labor productivity growth rates may plausibly increase,

this will not be accompanied by significantly faster energy intensity decreases. The worrying

implication is that policy advice based on these scenarios may rest on a spurious empirical

basis for how labor productivity growth interacts with energy intensity through the direction

of technical change.

A second implication bears on national climate change mitigation policies. The results

show that the period of rapid growth in the world economy was predicated on highly fossil

energy-using technical change. The most recent period saw the most concerted efforts yet

to mitigate carbon emissions, and yet growth depended on increased fossil fuel consumption

for faster productivity growth, reminiscent of the ‘Golden Age’ of the 20th century. It is

clear that robust economic growth will require abundant and cheap energy supplies. Policies

aimed at decoupling should focus more on substituting the energy supply with low-carbon

alternatives rather than primarily on overall energy savings.

In the absence of sufficiently fast innovation in renewable energies or alternative low-carbon

energy supplies, however, attempting to achieve fast productivity growth and decoupling from

fossil fuels may prove frustrating. National economic development has relied on rapid increases

in the consumption of fossil fuels. In particular, few countries have sustained high rates of

growth of labor productivity with fossil energy-saving technical change anywhere in the data.

Often the successful growers – such as Thailand and South Korea in the 1990s and Japan

and Italy in the 1960s – had falling fossil energy productivities. The historical record is also

in sharp contrast to IPCC projections that see energy productivities of non-OECD countries

growing at 2-4% per year on average for the next four decades, while increasing their per
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capita growth rate relative to the 1970-2010 period (IPCC 2014, Figure 6.2, p. 426). The

need for continued growth in fossil energy consumption in countries that seek quick growth in

per capita income puts the confrontations between OECD and developing countries at recent

United Nations climate mitigation conferences in perspective (Financial Times 2015).

6 Conclusion

This study has investigated the long-run relationship between the rate and fossil energy

direction of technical change in the world economy. Growth rates of labor productivity and

the fossil energy-labor ratio were examined for more than 95% of world output and fossil

energy consumption in production in the period between 1950 and 2012. It was found that,

for an additional percentage point of labor productivity growth, the fossil energy consumed

per unit labor also grew by one percentage point on average, and left energy productivity close

to constant over a wide range of labor productivity growth rates. This near unit elasticity

was remarkably constant over time and regions, and deviations in the 1980s and to a lesser

degree the 1990s were shown in their historical context to be one-time exceptions that are

unlikely to reflect a change in the long-term technical change pattern. In recent years, low-

carbon sources have been used to substitute fossil energy without changing the relationship

between labor productivity growth and the direction of technical change with respect to

total energy inputs. The discussion about the implications emphasized that growth models

with increasing returns to scale may be useful for explaining the relationship, while policies

attempting to achieve fast, decoupled growth will likely have to ensure access to an abundant,

cheap non-fossil energy supply rather than aiming for overall energy savings.

Avenues for research using growth models are sketched. First, models of growth with

increasing returns to scale could incorporate the labor productivity elasticity of the fossil

energy-labor ratio and examine the plausibility of varying chains of causation. Second, inte-

grated assessment models could be re-run with a baseline informed by the historical correlation

between labor productivity and energy intensity. Third, embodied energy trade flows could
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be examined to determine in how far they can explain deviations from the unit elasticity

trend, and could be used to underpin input output results (Wiedmann et al. 2013) about the

interdependence of countries’ energy consumption with economic theory.
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Appendix A: Econometric specifications used

The regression techniques are straightforward linear and nonlinear cross section regressions

and a panel time and country fixed effects regression. For the global relationship, weighted

least square regression is applied in a cross section of N countries from year t to year s

êits = αts + ηtsλ̂its + νits for i = {1, ..., N} (A.1)

where ν is the i.i.d. normal standard error weighted by country i’s share of global fossil energy

consumption for production. The weights are used to estimate the role of fossil fuel in world

33



production, which is more heavily determined by large countries. Giving the same weight

to every country would lead to a summary of national experiences, without representing the

picture for the world as a whole. Using fossil fuels as a weight instead of GDP confers the

advantage that no ambiguous exchange rate - market or purchasing power weighted - has to

be selected.

In order to examine the impact of a changing share of non-fossil energy in the energy mix,

another regression adds the annual change in percentage points of non-fossil energy in the

mix, γ̃. Percentage points are used instead of growth rates of shares in order to give equal

weights to a marginal change to any energy mix composition. This leads to the equation

êits = αts + ηtsλ̂its + ρtsγ̃its + νits for i = {1, ..., N} (A.2)

Additionally, locally weighted regression, loess, (Cleveland 1979; Cleveland and Devlin

1988) captures nonlinearities in the conditional correlation estimated by the linear fit. loess

estimates the value of the fit at observation i as a polynomial fit that weighs neighboring

observations k by their distance from λ̂i, conditional on a weight function wk(λ̂i) for a share

ζ of the nearest observations to i, so that k = {1, ..., i, ..., n}. Setting ζ = 0.75, a polynomial

of degree two is estimated

êi = β0,λ̂i + β1,λ̂iλ̂i + β2,λ̂iλ̂
2
i + νits for i = {1, ..., N} (A.3)

where βλ̂i are the local estimators that arise from minimizing the distance using the neigh-

boring observations weighted by wk(λ̂i).

Finally, a country and time fixed effects model is estimated to control for unobserved

variable biases in the cross sections as

êits = αi + ηtsλ̂its + τts + νits for i = {1, ..., N}, t = {1, ..., T} (A.4)
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where α is the country-fixed effect and τ the time fixed-effect.16

Appendix B: Supplementary data information

Countries are indexed by i and years by t. Output and the measures of energy use are

divided by employment to yield annual observations of labor productivity λit and the non-

residential fossil energy-labor ratio, eit. The variables used in the analysis are then generated

by calculating compound annual growth rates, λ̂its and eits.
17 Indices are omitted in the main

text where unambiguous. Regional growth rates are computed for the ratios of the sums of

member countries’ labor, output and energy variables. Therefore, regional growth is weighted

by the member countries’ size and the growth rates for North America, for instance, reflect

mainly those of the United States.

Merging the IEA and TED datasets leaves 113 countries, some of which were part of

Yugoslavia or the Soviet Union before the 1990s. These countries comprise 98% of global

GDP at market exchange rates, more than 95% of global fossil fuel consumption, and 95%

(falling to 93%) of global population for the period 1971-2012, compared to the IEA world

estimate.18 Merging Darmstadter et al.’s energy data with TED output and employment

leaves 70 countries, for 1950 and 1960, which covers more than 95% of GDP and population

in the TED database. Using the intersection of countries in Darmstadter and IEA to com-

pute growth rates from 1960 to 1071 produces growth rates for 68 countries from 1960 to

1971. Table IV shows which countries belong to which region according to the IPCC Region

Categorization 10 (IPCC 2014, 1286).

16Fits were estimated in R using the functions lm(), loess() and plm().

17The compound annual growth rate of variable y at time t over s years is defined as
(

yi,t+s

yi,t

)1/s

−1 = ŷits.
18The IEA omits estimates of energy use if nationally reported data quality is judged unreliable. Since

this routine mostly excludes countries with low per capita GDP, the IEA data is biased to leaving out a larger
share of population than GDP (IEA 2014a).
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Table IV: Regions and their member countries. Country names are abbreviated with their
three letter codes (ISO 2014).

Region Member countries

North America USA, CAN

Western Europe AUT, BEL, DNK, FIN, FRA, DEU, GRC, ISL, IRL, ITA

(WEU) LUX, NLD, NOR, PRT, ESP, SWE, CHE, GBR , TUR

Pacific OECD (POECD) AUS, JPN, NZL

Economies in HRV, CYP, CZE, EST, LVA, LTU, MLT, POL, RUS, SVN

Transition (EIT) SVK, KGZ, KAZ, TJK, TKM ARM, GEO, UKR, UZB, ALB

AZE, BLR, BIH, BGR, HUN, MKD, ROU, SRB, MDA *

Latin America CHL, COL, CRI, TTO, URY, BOL, GTM, ARG, BRA, DOM

(LAM) ECU, JAM, MEX, PER, VEN †

Sub-Saharan COD, ETH, GHA, KEN, MOZ, NGA , SEN, TZA, ZMB, ZWE

Africa (SSA) CMR, AGO, ZAF †

Middle East & BHR, ISR, IRQ, IRN, JOR, KWT, TUN, DZA, EGY, MAR

North Africa (MNA) SDN, SYR, ARE, YEM, OMN, QAT, SAU †

East Asia (EAS) CHN, KOR, HKG **

Pacific Asia (PAS) SGP, KHM, MMR, IDN, PHL, VNM, MYS, THA

South Asia (SAS) BGD, IND, PAK, LKA

* until 1990: USSR ,YUGOS.

** until 1971: CHN is ‘Communist Asia’ and includes North Korea and North-Vietnam,

while separate data for Taiwan is available.
† Data for a subset of countries in this region is available only from 1971.

7 Appendix C: Linear fit endpoint variation

A rolling regression estimate of equation (A.1), where start t is increased by increments of

one year while the interval s is held constant at ten years from 1971 without exclusions of

any years, summarizes the linear estimate the elasticity over the entire data period. Periods

before 1971 are not rolled, due to data reported only every few years. Shown in Figure

4, the intercept estimate (left) and slope estimate (right) show an inverse u-shaped and u-

shaped pattern respectively, which indicate that in more recent years the relationship between

changes in labor productivity and the direction of technical change returns to its character

of the 1950s and 1960s, before it was shocked from the late 1970s through the early 1990s.
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Figure 4: Coefficients of a linear fit to cross-sections of growth rates: ten-year-moving aver-
ages of a rolling window regression with 95% confidence intervals. The vertial lines enclose
the estimates from 1974-1983 through 1989-1998, which show significantly higher intercept
and lower slope estimates.
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