

Voices and robots: Simulating auditory-verbal hallucinations (AVH) through robotically-induced self-other voice confusion

Pavo Orepić, SPRiG seminar, 27.04.2022

Pavo Orepić

PhD

OLAF BLANKE

Robotically-induced hallucinations Self-other voice discrimination

Auditory-verbal hallucinations (AVH)

- "hearing voices"
- >70% of people suffering from schizophrenia
- Highly distressing

Auditory verbal hallucinations (AVH) are thought to arise as a misattribution of internal self-voice towards other agents.

Auditory verbal hallucinations (AVH) are thought to arise as a misattribution of internal self-voice towards other agents.

Outline

Part I: Self-voice perception

Part II: Robotically-induced self-voice misperceptions

Outline

Part I: Self-voice perception

- Study 1: Behavioral aspects
- Study 2: Neural underpinnings

<u>Part II</u>: Robotically-induced self-voice misperceptions

- Study 3: Robotic sensorimotor stimulation alters self-voice perception
- Study 4: ...which is dependent on breathing
- Study 5: Inducing AVH in healthy individuals

Outline

Part I: Self-voice perception

- Study 1: Behavioral aspects
- Study 2: Neural underpinnings

Part II: Robotically-induced self-voice misperceptions

- Study 3: Robotic sensorimotor stimulation alters self-voice perception
- Study 4: ...which is dependent on breathing
- Study 5: Inducing AVH in healthy individuals

Self-voice perception

Pavo Orepić, SPRiG seminar

• (only) 3 imaging studies

- Self-voice activations
 - Right & left inferior frontal sulcus / gyrus
 - Right parainsular cortex
 - Right anterior cingulate gyrus

Self-voice: EEG

Confined to oddball paradigms & single-electrode analysis
Lower/higher P3 component on fronto-central sites

Pavo Orepić, SPRiG seminar

Conde et al., 2015, 2016, 2018; Graux et al., 2013, 2015; Liu et al., 2019

Difficulties in self-voice research

- "I don't sound like that"
- Unpleasantness
- More accuracy with other voices

- Lack of bone conduction

Audition + Vibrotactile excitation

Audition

- 1. Physical transformation of the sound of our voice
- 2. Multisensory excitation

Audition + Vibrotactile excitation

Audition

- 1. Physical transformation of the sound of our voice
- 2. Multisensory excitation

Audition + Vibrotactile excitation

Audition

The multisensory self

Pavo Orepić, SPRiG seminar

Study 1: Main finding

Bone conduction improves performance in self-related tasks.

Study 1: Summary

- Bone conduction improves self-other voice discrimination
- Self-voice is fundamentally a multimodal construct
 - …and not "just" an auditory percept
 - ...building up on the multisensory accounts of bodily self-consciousness

Cerebral Cortex, 2021;00: 1–15

https://doi.org/10.1093/cercor/bhab329 Original Article

ORIGINAL ARTICLE

EEG Spatiotemporal Patterns Underlying Self-other Voice Discrimination

Giannina Rita Iannotti^{1,2,†}, Pavo Orepic^{3,†}, Denis Brunet^{1,4}, Thomas Koenig⁵, Sixto Alcoba-Banqueri³, Dorian F. A. Garin², Karl Schaller², Olaf Blanke³ and Christoph M. Michel^{1,4}

GIANNINA RITA IANNOTTI

- High-density EEG setup

Microstate segmentation

Microstate segmentation

Map 4 occurs more often with self-voice.

EPFL

Map 4 as a self-referencing mechanism – comparing heard voice with the internal representation.

NT.

Air Bone 200 Dominant voice Other Map 4 occurrence (ms) 150 Self 100 50 0 60% 70% 80% 90% 100%50% 60% 70% 80% 90% 100% **Correct answers**

> Map 4 occurs more often with air conduction, where task is more difficult.

Air Conduction

Pavo Orepić, SPRiG seminar

- R insula
- R hippocampus
- o R & L amygdala
- R & L putamen
- Middle cingulum

Maximum of activation of Map 4 is localized in the right insula.

Case report: depersonalization

left frontal parasagittal meningioma

Case report: depersonalization

left frontal parasagittal meningioma

Pavo Orepić, SPRiG seminar

Case report: depersonalization

left frontal parasagittal meningioma

Pavo Orepić, SPRiG seminar

Part 1: Summary

• Self-voice is a multimodal construct

Use bone conduction in self-voice studies!

SOVD EEG pattern

- -345 ms post-stimulus
- maximal activation in the right insula
- clinical application reflects post-surgical personality alterations

AVH: bias to hear the other voice?

Robotically-induced self-voice misperceptions

Auditory verbal hallucinations (AVH) are thought to arise as a *misattribution* of internal *self-voice* towards other agents.

43

45

Auditory-verbal self-monitoring

Self-attenuation

BLANKE

EPFL

BLANKE

Passivity sensations

AVH

EPFL

Asynchronous stimulation

Contents lists available at ScienceDirect

Schizophrenia Research

journal homepage: www.elsevier.com/locate/schres

Sensorimotor conflicts induce somatic passivity and louden quiet voices in healthy listeners

Pavo Orepic^a, Giulio Rognini^a, Oliver Alan Kannape^a, Nathan Faivre^{b,1}, Olaf Blanke^{a,c,*,1}

^a Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Switzerland ^b Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France

^c Faculty of Medicine, University of Geneva, Geneva, Switzerland

Quiet voices are perceived as louder during asynchronous stimulation.

Breathing affects self-other voice discrimination in a bodily state associated with somatic passivity

Pavo Orepic¹ | Hyeong-Dong Park^{2,3} | Giulio Rognini¹ | Nathan Faivre⁴ | Olaf Blanke^{1,5}

Breathing affects cognition

Perl et al. 2019

4 cognitive tasks known to be improved during inspiration phase.

Breathing & self-voice

Inspiration improves self-other voice discrimination (SOVD).

Breathing & self-voice & somatic passivity

1

Inspiration improves SOVD only in participants reporting somatic passivity.

BLANKE

ED21

Study 5: Robotically-mediated sensorimotor stimulation induces identity-specific auditory-verbal hallucinations in healthy individuals

Pavo Orepic, Fosco Bernasconi, Melissa Faggella, Nathan Faivre, Olaf Blanke, *In preparation*

- Hypotheses

• More false alarms in asynchronous condition

- Especially for other-voice blocks
- No differences in hits

- Hypotheses

• More false alarms in asynchronous condition

- Especially for other-voice blocks
- No differences in hits

False alarm (FA) rate

 $N_1 = N_2 = 24$

FA- Stimulation * Voice (A > S) p₁ = 0.039 p₂ = 0.027

FA- Stimulation * Voice p₁ = 0.013 p₂ = 0.003

Asynchronous stimulation increased othervoice FAs, and synchronous self-voice FAs.

Hit rate was unaffected by experimental manipulation.

Hit rate

– Delusional ideation

PDI is a self-rating questionnaire that measures <u>delusion proneness</u> in a <u>healthy</u> population

Delusional ideation

- PDI is a self-rating questionnaire that measures <u>delusion proneness</u> in a <u>healthy</u> population
- Related to self-monitoring deficits

 $N_1 = N_2 = 24$

BLANKE

FA- Stimulation * PDI

FA- Stimulation * PDI

FA increase associated with delusion proneness.

EPFL

Study 5: Discussion

- AVH (FA) in a controlled laboratory environment
 Prevolus work: conditioning paradigms
- Identity (self/other) reflected in the type of stimulation
 Asynchronous -> otherness -> other-voice FAs
- Link to delusional ideation
 suggestive of top-down effects

Part II: Summary

- Robotically-mediated sensorimotor stimulation that impairs bodily self-monitoring
- ...can cause a cross-modal effect on voice perception (Study 3)
- ...which is related to breathing (Study 4)
- ...and lead to identity-specific AVH (Study 5)

– Impact

Methodological

- Increasing auditory self-identification
- Inducing AVH in controlled environment
- Scientific
 - Elucidating self-voice phenomenon
 - Associating sensorimotor processing, self-voice perception and interoception
- 🔘 Clinical
 - Post-surgical personality alterations
 - Addressing AVH etiology

Outlook

- Active self-voice perception (voice production)
- Computational modeling
- Self-voice perception & network in voice-hearers

OLAF BLANKE

NATHAN FAIVRE

GIULIO

ROGNINI

oliver Alan Kannape

GIANNINA RITA IANNOTTI

FOSCO BERNASCONI

HYEONG-DONG PARK

Pavo Orepić, SPRiG seminar