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Abstract

With the growing interest in the world of cryptocurrencies from investors
and researchers, there has been a need to investigate the risk measures to
open the door to institutional investing in the market. Cryptocurrencies are
currently unregulated by financial authorities and much of the investing in
the markets is undertaken in a speculative manner. This unregulated and
speculative manner of investing causes an extremely volatile nature to cyrp-
tocurrency prices and even one of the least volatile cryptocurrencies, Bitcoin,
has been known to be more volatile than the most volatile regulated finan-
cial assets available on standard markets. Previous literature has investigated
into Bitcoin volatility dynamics and found that GARCH models perform the
best at forecasting the volatility for both in-sample and out-of-sample data.
We look to fill a gap in the literature through investigating which model per-
forms the best over in-sample hourly data points using using a parity with
bitcoin as the numeraire for our cyrptocurrency data, instead of the much
investigated USD parity. We backtest both VaR estimates at the 95% and
99% confidence levels and ES at the 97.5% confidence level across four of the
most liquid cryptocurrencies. Our findings are in line with current literature
that GARCH models perform the strongest for VaR estimates, but we find
that E-GARCH model outperforms the vanilla GARCH and GJR-GARCH
model at the 99% confidence level for VaR and 97.5% confidence level for
ES.
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1 Introduction

In recent years, there has been a growing interest in the world of cryptocur-
rencies from investors and researches alike, leading to a large growth in de-
velopment in the market. Bitcoin was the first decentralized cyrptocurrency
to be introduced using blockchain technology by Nakamoto 2008 . The pur-
pose of the development of bitcoin was to make payments from peer to peer
without using a centralized third party, hence the decentralization aspect of
bitcoin.

Since the introduction of bitcoin, there has been much development in
different forms of cryptocurrency, with some working on their own decentral-
ized system such as Ethereum (Buterin 2013), Ripple (Schwartz, Youngs, and
Britto 2014) and EOS (Larimer 2017), others as extensions of the original
bitcoin like Litecoin. The constant development in the market has lead to a
plethora of options in the cryptocurrency market. According to CoinMarket-
Cap! there are over 6000 cryptocurrencies with a total market capitalisation
of over $371bn and bitcoin making up just over 59% of the total capitalisation
as of July 2020. The other most liquid coins like Ethereum, Litecoin, Ripple
and EOS making up much of the rest. In fact, the top 23 cryptocurrencies
listed on CoinMarketCap have a market capitalisation of over $1bn.

High returns and the fact that cryptocurrencies can be used for different
purposes have attracted many new investors, with individual investors, banks
and funds all looking at ways to utilise cryptocurrencies. They can be used
as an alternative for foreign exchange as an instrument for international
purchases and transactions of goods due to their low transaction costs and
high liquidity. Cryptocurrencies can also be used an alternative asset for
hedging purposes, as the they’re extremely liquid and easily diversifiable.
This property arises from the fact that cryptocurrencies, like bitcoin, aren’t
affected by market movements and have a low correlation with market traded
assets and instruments. This would suggest that cryptocurrencies could be
used to hedge market risk.

Two of the biggest exchanges, the Chicago Mercantile Exchange and
Chicago Board Options Exchange have investigated futures trading on bit-

thttps://coinmarketcap.com/all /views/all/



coin, just emphasising the huge interest in investment in the area of cryp-
tocurrency. The current state of cryptocurrencies is that they are currently
an unregulated market, but due to the development of interest it poses the
question to central banks if and how they should be regulated. The unreg-
ulated and decentralized nature leads to cryptocurrencies being used more
as a speculative instrument for investment at the current time. This spec-
ulative form of investment leads to bubbles and extreme volatility in most
cryptocurrency prices. Hence the need to estimate the financial risk involved
through appropriate risk models to prevent the potential sizeable losses one
could face through exposure to the cyrptocurrency market.

Since the mid 1990’s, regulators and banks have adopted value-at-risk
measurement as the premier risk metric for estimating the capital risk of
investing in an asset after it was made public to use after being created by
JP Morgan. After the 2008 financial crisis, financial institutions have had to
follow a set of rules under the Basel III regulatory framework, putting into
place a framework of capital requirements and risk management procedures.
Basel II, also introduced after the 2008 financial crisis, put into place a
regulation for banks to use risk models to estimate the capital required from
risk up to the 99th percentile of a one tailed confidence interval.

Value-at-risk (VaR) measures the highest amount of money that may
be lost within a range of confidence (or put in other words, not exceed at
certain confidence) on an investment in a financial asset or a portfolio of
assets within a time interval. The attractiveness of VaR as a risk metric is
its relative ease in computation and how it can be compared across different
assets as a quantifier for risk with a single number.

Related to VaR is expected shortfall. Due to inadequacies in some VaR
calculations, practitioners and researchers have started to use an alternative
to the popular measure. Expected Shortfall, which may also be called ex-
pected tail loss or conditional VaR, is a spectral risk measure which is used
for measurement when the the expected value becomes negative. In other
words, this means expected shortfall looks to answer the question of when
things get bad, how much are we expected to lose?

The focus of this paper is to examine the risk measures of four of the most
liquid cryptocurrencies that are part of the MVIS CryptoCompare Digital



Assets 10 Index? and investigate which risk model performs the best through
various backtesting procedures. Firstly, the returns are analysed using vari-
ous GARCH models on a rolling window basis to investigate the econometric
properties of the data. Secondly, various VaR methods are implemented on
the data and the the performance of the methods are assessed using various
backtesting criteria. Thirdly, an expected shortfall model is implemented
on the data and again the performance of the model is asses using various
backtesting criteria.

Zhttps:/ /www.mvis-indices.com /indices/digital-assets /mvis-cryptocompare-digital-
assets-10



2 Literature Review

The research literature relevant to the work in this paper can be categorised
into two sections. The first section outlines the important literature on cyrp-
tocurrency in general, to provide the basis on why research into risk analysis
on cyrptocurrency is important for financial research. The second subsection
investigates the literature of risk measures on cyrptocurrency, this includes
volatility analysis and the use of spectral risk measures. As such, this liter-
ature review shall follow these two subsections.

Much of the research into cryptocurrencies has been conducted mainly on
BTC. Bitcoin is the most popular cryptocurrency in literature and in the fi-
nancial world in general due to its liquidity and market capitalisation, which
was stated previously in the introduction to this paper. Price formation in
the BTC market has been researched by various groups and is an important
topic to understand the motivation of conducting risk analysis on cryptocur-
rency markets. One of the first papers looking into BTC price dynamics was
conducted by Buchholz et al. 2012, where they determined that BTC price
is driven by supply and demand interaction. The work of Baek and Elbeck
2015 also agrees with the theory that Bitcoin prices are driven by supply
and demand concluding that bitcoin is a highly speculative instrument. This
simple supply and demand explanation may now be complicated as there is
now a crowded field for cyrptocurrency competition. Recent research into the
price dynamics of BTC by Kjaerland et al. 2018 suggest that Bitcoin prices
are affected by the S&P500 index and Google searches which is line with pre-
vious literature in this topic. More recently, Blau 2017 conducted research
into the area of bitcoin price dynamics arguing that Bitcoin’s large volatil-
ity spikes and value are not determined by speculative trading. Research in
price bubble formation in the cyrptocurrency market is also another impor-
tant subject area for volatility analysis. Phillips, Shi, and Yu 2013 found
two price bubbles of BTC/USD through their research which were formed in
2013. Their research was conducted using generalized ADF test. Cheung,
Roca, and Su 2015 went on to extend the work of Phillips, Shi, and Yu 2013
through using the same generalized ADF test. The group used a data range
of daily returns from 2010-2014, finding three large bubbles in the periods of
2010-2013 where these bubble lasted from 66-106 days. The largest of these
bubbles was the demise of Mt. Gox, which was a bitcoin exchange that was



hacked, resulting in huge financial losses for any participant keeping currency
in the exchange. These findings have obvious financial risk implications for
investors. An investor could find themselves with severe losses if caught by
one of these large bubbles. It has has implications for financial risk mod-
elling with multiple structural breaks appearing in the data, where standard
forecasting models struggle to quickly account for these structural breaks.

Much of the current literature investigating risk measures of cryptocur-
rency focuses on Bitcoin and testing the performance of GARCH models.
GARCH models can be applied in-sample or out-of-sample and most of the
literature focuses on in-sample data. Katsiampa 2017 conducted research
on in sample BTC data in a time period of 2010-2016, testing the perfor-
mance on some of the most popular GARCH models. The GARCH models
tested being; GARCH(1,1), E-GARCH, T-GARCH, A-PARCH, CGARCH
and AR-CGARCH. Through the descriptive statistics a non-normal distri-
bution was found in the BTC returns. Furthermore, when comparing the
GARCH models through log-likelihood testing and information criteria, the
AR-CGARCH model came out as being the most appropriate for modelling
bitcoin volatility. Chu et al. 2017 extended the studies of Katsiampa 2017
by testing 12 different GARCH family models on 7 of the most popular
cryptocurrencies available on exchanges; Bitcoin, Dash, Dogecoin, Litecoin,
Maidsafecoin, Monero and Ripple. The first step of the group was to con-
duct a maximum likelihood estimation for the parameter estimation of each
GARCH model then performing testing criteria to each of the models and
finally conducting unconditional and conditional coverage value-at-risk ex-
ceedance tests to evaluate which models performed the best. Evidence of
volatility clustering is found in the returns suggesting that GARCH family
models are most appropriate for modelling cyrptocurrency volatility for in-
sample data. From the testing it was concluded that both the I-GARCH
and GJR-GARCH models performed best out of the GARCH family models
for the most popular coins. The I-GARCH model outperforming the other
models could be due to a structural change in the data that effects multiple
cryptocurrencies, and the GJR-GARCH model is a vanilla GARCH model
containing asymmetric effects which are common in financial return series
which would be no surprise if cyrptocurrency returns contained these effects
too.

Ardia, Bluteau, and Riiede 2019 also looked to extend the work of Kat-



siampa 2017 by testing whether Markov-switching GARCH (MS-GARCH)
models outperform single regime GARCH models for bitcoin volatility dy-
namics and VaR forecasting. The volatility dynamics were performed on in-
sample data and found that regime switching models performed better over
this in-sample period as an inverted volatility effect is observed in all volatil-
ity regimes of bitcoin. The MS-GARCH models also outperformed all single
regime models for 1 step ahead VaR forecasting. Employing a rolling window
method for the 1 day step ahead VaR forecasting a two-regime MS-GARCH
model performed more accurately than the no-regime GARCH model and the
three-regime more accurately once again overall performing the best. The
fact that regime switching models perform more accurately would suggest
that structural breaks frequently within the data.

Trucios 2019 looked to fill a gap in the literature through using out-of-
sample forecasting on BTC daily log returns. Firstly, the group set out to
test the performance of several classical GARCH family models on an out-of-
sample basis to evaluate which one is most adequate fore forecasting bitcoin
volatility. Secondly they addressed the presence of outliers on the data to test
whether volatility can be forecast more accurately with these effects. The
group performed thorough testing on the forecasting procedures and found
the AV-GARCH model to perform best out of the classical GARCH family
models for forecasting of returns, but was outperformed in comparison to
the robust GARCH model including outliers. When using VaR estimation
with the non-robust approach, all models including the best performer AV-
GARCH reported a large proportion of fails, whereas the robust approach
did not and non of the test rejected the null-hypothesis. From the results
it can be concluded that it is important to include outliers when forecasting
bitcoin volatility. Although this paper only focused on bitcoin, it is likely
that other major cryptocurrencies have the similar effects of outliers and
should be forecast considering such effects.

Another section of the current literature focuses on comparing the spectral
risk measures of cryptocurrencies against other popular assets. Two papers,
Stavroyiannis 2017 and Stavroyiannis 2018, both published from the same
author, focused on comparing the value-at-risk and expected shortfall met-
rics of different cryptocurrencies against the S$P500 index. The first paper,
published as an electronic journal, compared the likes of Bitcoin, Ethereum,
Litecoin and Ripple against the index using GARCH modelling followed by



filtered historical simulation. The GARCH model used is the GJR-GARCH
(1,1) which accounts for leverage effects. The filtered historical simulation is
a method for calculating VaR and expected shortfall which combines monte
carlo simulation and historical simulation via bootstrapping on standardized
residuals. Testing at different confidence levels; 90%, 95%, 97.5% and 99%
over a 10 day horizon it was found that each of the cryptocurrencies had a
significantly higher measure of VaR and ES at each confidence level when
compared to the index. This has obvious implications for an investor as one
would need much a much higher capital requirement when investing in any
of the major cryptocurrencies. The second of the papers (Stavroyiannis 2018
looks to compare bitcoin to three popular assets; the S&P500, Brent crude
oil and gold. Again using the GJR-GARCH model and this time employing
more rigorous back testing on the measurements when compared to the last
paper. The author employs the Kupiec likelihood-ratio test, Christofferson
unconditional coverage test and the Christoffersn and Pelletier conditional
coverage test finding that bitcoin has more VaR failures. As with the pre-
vious VaR tests, bitcoin performed the worst when it came to the expected
shortfall testing. Again this shows the obvious implications for investing in
bitcoin as a significantly higher capital requirements would be needed under
the current regulations for financial risk management.

Although the likes of bitcoin and other major cryptocurrencies are defined
as digital currencies, they are mostly traded as speculative assets unlike the
major tangible currencies of the world. If bitcoin and other major curren-
cies are to be considered in the same light as other major currencies it is
important to compare the risks involved between them. Uyar and Kahra-
man 2019 set out to compare the conventional currencies of the world to
bitcoin through VaR methods. The major currencies the author looked to
compare the bitcoin against are; Swiss Franc, Euro, UK Pound, Japanese
Yen, Australia Dollar, Canadian Dollar and New Zealand Dollar with all,
including bitcoin, including US Dollar as numeraire. Using both historical
simulation and monte carlo simulation methods to calculate the VaR at 95%
and 99% confidence levels it’s found that bitcoin has a much higher level
than the tangible currencies. This study again agrees with previous litera-
ture that bitcoin is a highly risky financial asset when compared with other
mainstream financial assets.

One of the most extensive studies into the research of risk metrics in
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cryptocurrencies was conducted by Kopytin, Maslennikov, and Zhukov 2019.
As has been stated, most of the current literature has been conducted on
bitcoin and some branching into including other major cryptocurrencies. To
fill the gap in the literature, Kopytin, Maslennikov, and Zhukov 2019 per-
formed 1-day non-parametric VaR and expected shortfall measures on 283
cryptocurrencies at 99% confidence level and compared these metrics to 61
popular assets (including stocks, indices, commodities, bonds and curren-
cies) in the financial markets. From their analysis, only Tether and Bitusd
came out as less risky assets than bitcoin, with all other cryptocurrencies
being riskier than the most popular bitcoin. Extending their analysis, the
authors created portfolios of top-30, top-20 and top-5 cryptocurrencies by
market capitalisation to test what additional risk an investor would take on
by adding different cryptocurrencies to a portfolio including bitcoin. As is
expected an equally weighted portfolio is riskier than one weighted by mar-
ket capitalisation as bitcoin has the highest market cap. All the portfolios
carry more financial risk than bitcoin alone, but less risky than the popular
Ripple and Ethereum. When comparing the risk metrics of the most volatile
assets to that of the cryptocurrencies, even the least risky cyrptocurrency
bitcoin had a higher risk measure than the most volatile asset natural gas.
Also conducting correlation clustering analysis on the cryptocurrencies it’s
found that an investor can diversify their risk through including Stellar and
Monero in their cryptocurrency portfolios as these have the most prominent
footprints after Bitcoin.

All of the current literature points to Bitcoin and cryptocurrencies in gen-
eral being highly volatile assets and having obvious implications for financial
risk management. Current literature also points to GARCH family models
as the most capable for volatility modelling whether it be for in-sample mod-
elling or out-of-sample forecasting, with the GARCH models that are more
equipped to react to structural breaks in the data as the most accurate.
There is an obvious gap in the literature to investigate the risk measures of
more than just bitcoin and to look deeper into the data than daily time steps
for spectral risk measurement. Many hedge funds and financial institutions
will perform VaR analysis on hourly trading data due to high volume trad-
ing. Many cyrptocurrency speculators whom use algorithmic trading will
also perform high volume trading so VaR at an hourly window is an impor-
tant area to investigate and as such, hourly data points shall be analysed
in this paper. The work in this paper is a natural extension to the work of

11



Katsiampa 2017 and Chu et al. 2017, with a look into which model is the
most accurate at in-sample analysis of VaR and ES measures using hourly
data points in the time period of 16/11/2017 to 20/07/2020 and using BTC
as the numeraire, instead of the popular USD.

12



3 Data

The data of the cryptocurrencies included in this study was accessed from
CryptoDataDownload?® which has a database from all the main cryptocurren-
cies exchanges from around the world. All the data accessed from this site for
this study was from the Binance exchange®. As cryptocurrencies are traded
every time of every day, 7 days of data are used per week, with hourly data
points. The data range of the sample is from 6/11/2017 to 20/07/2020, this is
to include the tokens that were not trading on an exchange until the starting
data of the sample range. We analyse the cryptocurrencies in parity of BTC
as the numeraire as a lot of the cryptocurrency traded is exchange based,
where the investor will trade often for cyrptocurrency to cyrptocurrency in-
stead of a major national currency after their initial investment. There is
also a gap in the literature to investigate this parity as much, if not all the
current literature investigates cryptocurrency as USD as the numeraire.

The price data is converted into returns data for each cyrptocurrency
through using the method of logarithmic returns as is the most popular
method in financial literature in this area. The first step in our analysis of
the data is to compute the descriptive statistics of the log returns of each
cryptocurrency.

All of the cryptocurrencies exhibit excess kurtosis, suggesting the distri-
bution of the returns are non-normal. This information is verified by the
Jarque-Bera test for normality, where the test will return 0 for a normal dis-
tribution and 1 to reject the null hypothesis and indicate non-normality. For
all the cryptocurrencies we reject the null hypothesis of normality in favour
of the alternate hypothesis of non-normality. LTC and XRP in particular
have very high skewness, which would indicate more extreme outcomes in
the data. Both skewness and kurtosis are indicators of the extremeness of
the data, this would suggest that XRP has the most extreme changes in
hourly returns from glancing at the descriptive statistics alone.

3https://www.cryptodatadownload.com/data/
4https://www.binance.com/en
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Statistics ETH/BTC | EOS/BTC | LTC/BTC | XRP/BTC
Mean -1.84e-05 4.28e-05 -3.79e-05 -9.80e-06
Median 0.0000 0.0000 0.0000 -1.91e-04
Maximum 0.0949 0.1712 0.1749 0.5916
Minimum -0.0931 -0.1348 -0.0963 -0.4136
Std. Dev. 0.0069 0.0108 0.0081 0.0120
Skewness 0.5451 0.9678 1.9705 5.5431
Kurtosis 26.9059 28.5725 40.7661 372.2476
Jarque-Bera 1 1 1 1
Observations 23687 23687 23687 23687

Table 1: The descriptive statistics of our cyrptocurrency data. A 1 in the
Jarque-Bera test indicates non-normality in the returns data.

From the figures of the price paths over time of each cyrptocurrency it’s
clear to see the volatile nature of each one. The hourly prices vary drastically
over time. The figures of the returns data also shows a clear picture of
how volatile each cyrptocurrency is, with each one exhibiting sharp spikes
in volatility and volatility clustering on a regular basis. We can also observe
similar spikes in the returns data across all four cryptocurrencies with a
major volatility cluster at the start of 2018. Some of the volatility dynamics
might be driven by the fact that we use Bitcoin as the numeraire, and this
might explain the joint volatility characteristics that can be seen.
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4 Methodology

To investigate which VaR model performs the best over our data range of
cryptocurrencies, we carry out various forms of popular VaR and ES meth-
ods and then backtest each method through various VaR and ES backtesting
methods. These VaR and ES models are; Historical Simulation, Paramet-
ric Normal, Exponentially Weighted Moving Average, GARCH(1,1), GJR-
GARCH(1,1) and E-GARCH(1,1). All programming has been performed in
the MATLAB environment. A test window starting at January 1st 2018 up
until the end of the data is used as our in-sample forecast range for the VaR
calculations.

4.1 Econometric Models

Before the VaR calculations, a rolling window analysis is conducted on the
GARCH models. Through the parameters estimated in the rolling window
analysis, we can analyse what effects might be occurring in each of the cryp-
tocurrency hourly return series.

Exponentially Weighted Moving Average (EWMA)

The EWMA model is one of the simplest models for predicting a security’s
(or portfolio’s) volatility to then be used in VaR calculations, and has been
popular ever since it was introduced by JP Morgan’s RiskMetrics in 1996.
The main concept of the model is that a security’s past volatility can be used
to predict its future volatility through a weighted average of its past returns,
exponentially declining through history.

The following is the equation for calculating volatility at time t through
the EWMA model:

o7 =Y (1= NN (rimi — 7)°

=0
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Or more generally:

JtQ =(1- A)€§—1 + )‘03—1
Where:

e )\ = The smoothing factor (0 < A < 1) which can be estimated from
the data through maximum likelihood estimation. The lower the value
of A\, the more reactive the volatility is to market shocks and events.
The value for A\ is commonly set to 0.94 as quoted by RiskMetrics
(J.P.Morgan 1996) and for the purpose of this study this is the value
that we use.

e ¢;_1 = The unexpected return at time t-1.

e 0, 1 = The volatility at time t-1.

Past literature and tests have shown that the EWMA model is inaccurate
when compared to the more sophisticated volatility models available to use.
i.e GARCH family models. Due to it’s simplicity in application, it is still
one of the most widely used and popular models for VaR application within
financial institutions. It is important to test whether the EWMA model can
accurately cope with the volatile nature of cyrptocurrency data.

GARCH(p,q)

The GARCH family models are were specifically designed to model volatil-
ity clustering in financial returns, as this is something the commonly used
EWMA model does not account for. Volatility clustering is the behaviour of
volatility being exceptionally high or exceptionally low for periods of time,
and this has obvious implications for risk management. The models also
accounts for fat tails in the distribution of returns. Fat tails are when the
the probability distribution moves 3 or more standard deviations more than

17



a normal distribution, meaning that more extreme outcomes in the returns
are likely. Fat tails are seen more in times of crisis, so again have obvious
implications for risk management. The strength in GARCH models is the
fact that they can provide short-medium term volatility forecasts based on
an accurate econometric model. (Alexander 2008)

The ’vanilla” GARCH(1,1) model estimates the volatility of of returns
through the following equation:

2 2 2
0y =w+ a1 + Bioy_;

Where:

a = The error term of the equation and accounts for the reaction of
conditional volatility to market shocks. This is also called the news
term.

e 3 = The lag term of the equation and measures the persistence of
conditional volatility. This is also called the memory term.

e w = The mean reversion drift in the model and is a constant.

e When the sum of o and f is relatively large, the volatility term
structure becomes relatively flat. This sum also tells us how fast the
predictability of the model dies out. If o + 3 is close to zero then
predictability of the process will die out quickly and if the sum is
close to one then the process will die out slowly.

Since the model is for conditional variance, two conditions of the models
are covariance stationarity and non-negativity (o7 > 0). These can be simply
tested through the model estimation. In the GARCH model, the covariance
stationary condition is satisfied when the summation of @ and £ is less than 1.
The non-negativity of the model is satisfied when each parameter is greater
than zero, i.e w, B, a > 0. If either of these constraints are violated, the the
GARCH model being used is deemed inadequate for the modelling purpose.

18



GJR-GARCH(p,q)

The GJR-GARCH model was proposed by Glosten, Jagannathan, and
Runkle 1993 as an extension to the vanilla GARCH model. The model
extends the vanilla GARCH model through adding a leverage factor. The
leverage effect is empirically observed in financial returns where a negative
shock at time t-1 has more of an impact on volatility at time t than positive
shocks do. The leverage effect is named as such as it was thought that the
increased volatility was caused by the increased leverage from the negative
shock which nowadays is known not to be true so is called the asymmetric
effect.

The GJR-GARCH(1,1) model is expressed by the following equation:

2 2 2 2
o =w+ae;_ |+ PBo; + 1€,

The equation is similar to the equation for GARCH(1,1) with added terms
to account for the leverage effect. If v is positive (> 0) then we observe a
leverage effect in the data series. The indicator term [;_; will be equal to 1
when €;_; is negative and will equal 0 if positive. The volatility persistence
is given by oo+ +/2 and must be less than 1 for covariance non stationary
to be satisfied. As with vanilla GARCH, we require the parameters «, 5 and
w with the addition of a+ 7 to be positive for non negativity of the variance
equation.

E-GARCH(p,q)

Another extension of the vanilla GARCH model is the Exponential- GARCH
(E-GARCH) model proposed by Nelson 1991. It looks to address the volatil-
ity clustering in a time series, or heteroscedasticity. Much like the GJR-
GARCH model before, it also tries to account for the leverage effect. The
model also has the same parameters as the vanilla GARCH with the added
leverage parameter as in GJR-GARCH. The conditional volatility is given
by the following equation:
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In(07) =w+ fIn(o7) + fyq—_; +
Ot-1
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VvV i 7T

As can be seen from the equation the conditional volatility will always
provide a positive output from the model with he use of the natural logarithm

in the left hand-side volatility term. For a leverage effect to be observed we
would see v <0.

4.2 VaR Models and Calculations

Historical Simulation

One of the simplest methods of calculating VaR is through the method
of historical simulation. This methods operates on the assumption that all
future volatility events have happened in the previous data. To find the VaR
through historical simulation method, the returns are sorted from lowest to
highest which can be illustrated in a histogram. Taking 1-a multiplied by
the sample size, e.g 1000 sample size and o = 99%, the VaR would then be
the 10th (10th data point in the lower quantile of the tail) worst return from
the sample. To calculate this for each day, this would be applied on a rolling
window basis. The obvious implications with this method is that it relies
heavily on the size of the sample being used in the rolling window, too small
a sample size would not include enough data points in the lower quantile of
the distribution to accurately forecast the VaR.

Parametric VaR

Often called the variance-covariance method, with this method an as-
sumption on the distribution is made. With the assumption of normal dis-
tribution, the mean and standard deviation is found for a rolling sample size.
That is for time t, the standard deviation is found for say the previous 250
days and is assumed to be the standard deviation at time t. To find the
VaR, the standard deviation is multiplied by the z-score of the one-sided
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confidence interval. In this paper, to set up the parametric normal method,
we use an estimation window size of 250 data points, as with the historical
simulation. To find the positive value of VaR, we use the following calculation
and multiply it by -1:

VaR,(X) =@ (1 —a)o+p

Where:

e « = The confidence level e.g o = 95%.
e &' = The inverse cumulative standard normal distribution.
e 0 = The standard deviation.

e ;, = The mean which we can assume to be zero.

For calculating the VaR using the EWMA and GARCH family models
methods, the volatility is found through the model and using the same calcu-
lation as in the parametric normal method for VaR above, the value of VaR
at each data point is found using a loop within the MATLAB environment.

Expected Shortfall

Expected Shortfall (ES for short) is the value that is expected to be lost
on an investment if VaR is breached and is more sensitive to the tail shape
of the distribution. For this reason, it’s seen as a more robust measure than
VaR itself. When finding the ES, it must be found together with the VaR
as ES depends on VaR estimate being exceeded. The new Basel regulations
propose using 97.5% ES for 99% VaR confidence estimates. ®> To find the ES
under normal distribution and quote it as a positive value we multiply the
value gained from using the following equation by -1:

5Basel Committee on Banking Supervision. ”Minimum Capital Requirements for Mar-
ket Risk.” January 2016, https://www.bis.org/bcbs/publ/d352.htm
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Where:

e ¢ = The probability density function.

4.3 Backtesting Procedures

VaR Backtesting

A number of backtesting methods are used to test the performance of our
VaR models:

e Traffic Lights Test® - One of the most basic ways of testing VaR per-
formance. Based on a binomial distribution where N is the number of
observations, p = 1 - VaR level and x is the number of failures that
occur. F(z | N,p) is the cumulative distribution of observing up to x
failures.

Green: F(x | N,p) <0.95
Yellow: 0.95 < F(z | N,p) < 0.9999
Red: 0.9999 < F(z | N, p)

Probability = Probability (X < x| N,p) = F(x | N,p)

e Bin Test” - A test to see whether the number of failures is consistent
with the VaR confidence level. The test statistic for the Bin test is:

6Basel Committee on Banking Supervision, Supervisory Framework for the Use of
‘Backtesting’ in Conjunction with the Internal Models Approach to Market Risk Capital
Requirements. January, 1996, https://www.bis.org/publ/bcbs22.htm.

"Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.
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(z — Np)
Np(1 —p)

The p-value is defined as two times the tail probability as this is not a
one-sided tail test. The p value is:

Z ScoreBin =

PValueBin = 2 x TailProbability < alpha

Where:

TailProbability = 1 — F(| ZScoreBin |)

Proportion of Failures (POF) Test - A likelihood ratio test proposed
by Kupiec 1995. As with the Bin test, it test whether the proportion
of failures is in line with the VaR confidence level but this time using
a likelihood ratio test with an asymptotically distributed chi-square
distribution with 1 degree of freedom test statistic:

_ N—z T
LRatioPOF = —2log <<1 pVZR])V_I p;/iﬁ’ )
t-%)" "

., {(N ) log (mN_—f‘;‘lR)) +zlog <NpVaR)]

And a p-value:

PValuePOF =1 — F(LRatioPOF)

Where F is an asymptotically distributed chi-square distribution. The
test is accepted if F(LRatioPOF) < F( TestLevel ) and rejected if
otherwise.

Time Until First Failure (TUFF) Test - Another test proposed by Ku-
piec 1995, for testing if the periods until failure are consistent with the
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VaR confidence level. The asymptotically distributed as a chi-square
distribution with 1 degree of freedom test statistic is given by:

_ n—1
LRatioTUFF = —2log (p VaR(1 —pVaR) )

PIED

= —2(log(p VaR) 4+ (n—1) log(1—p VaR)+nlog(n) — (n—1)log(n—1))

And a p-value:

PValueTUFF = 1 — F(LRatioTUFF)

Where F is an asymptotically distributed chi-square distribution. The
test is accepted if F(LRatioTUFF) < F(TestLevel) and rejected if
otherwise.

Conditional Coverage Independence (CCI) Test - A likelihood ratio
test proposed by Christoffersen 1998 for assessing the independence of
failures on consecutive time periods. The test statistic is given by:

1— N00+N10 NO14+N11

(1 — pOl)N00p01N01(1 _ pll)NlopllNll
Where:

(NO1 + N11)
(NOO + NO1 4 N10 + N11)

pUC =

"NO0’: Number of periods with no failures followed by a period with no
failures.

'N10’: Number of periods with failures followed by a period with no
failures.

'NO1: Number of periods with no failures followed by a period with
failures.
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'N11’: Number of periods with failures followed by a period with fail-
ures.

And a a p-value that is given by the probability that a chi square
distribution of 1 degree of freedom exceeds the likelihood ratio.

PValueCCI = 1 — F(LRatioCCI)

Where F is an asymptotically distributed chi-square distribution. The
test is accepted if F'(LRatioCCI) < F(TestLevel) and rejected if oth-
erwise.

Conditional Coverage (CC) Mixed Test - A test proposed by Christof-
fersen 1998, combining the CCI and POF tests to asses the indepen-
dence of failures on consecutive time periods. The test statistic is given
by the sum of likelihood ratios of the two tests:

LRatioCC = LRatioPOF 4 LRatioCCI
And a P value:

PValueCC =1 — F(LRatioCC)

Where F is an asymptotically distributed chi-square distribution with 2
degress of freedom. The test is accepted if F/(LRatioCC) < F(TestLevel)
and rejected if otherwise.

Time Between Failures Independence (TBIF) Test - Proposed by Haas
2001 as a test for failure independence and is an extension of Kupiec’s
time until first failure test. It tests the time between all failures, not
just the time until the first failure. Using the same test statistic as in
the TUFF test, but with n; instead of n, where n; is the number of
periods between failure i — 1 and failure i. We then use the sum of the
individual likelihood for all times between failures:

LRatioTBFI = Z LRatioTBFI;

=1
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And a a p-value that is given by the probability that a chi square
distribution of x (where x is the number of failures) degrees of freedom
exceeds the likelihood ratio.

PValueTBFI = 1 — F(LRatioTBFI)

Where F is an asymptotically distributed chi-square distribution with x
degrees of freedom. The test is accepted if F'(LRatioTBFI) < F(TestLevel)
and rejected if otherwise.

e Time Between Failures (TBF) Mixed Test - A test that combines both
the Kupiec 1995 POF test and Haas 2001 TBFI test. With test statistic
that has an asymptotically distributed chi-squared distribution with
x+1 (with x being the number of failures) degrees of freedom:

LRatioTBF = LRatioPOF -+ LRatioTBFI

And a a p-value that is given by the probability that a chi square dis-
tribution of x+1 (where x is the number of failures) degrees of freedom
exceeds the likelihood ratio.

PValueTBF =1 — F(LRatioTBF)

Where F is an asymptotically distributed chi-square distribution with x
degrees of freedom. The test is accepted if F'(LRatioTBF) < F(TestLevel)
and rejected if otherwise.

ES Backtesting

e Conditional Test - Proposed by Acerbi and Szekely 2014, a simulation
based test and the test statistic is based on a conditional relationship
where a distribution is assumed:

ESt = _Et [Xt | Xt < —VaRt]

X; represents the portfolio profit or loss at time t, VaR; the VaR at
time t and E.S; the expected shortfall at time t. The number of failures
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is given by NumFailures = Zi\i 1 It, where I, is the indicator function
and N the number of periods in the test window. The test statistic is
then given by:

N
1 X1
Zuncond = o +1
Npvar <= ES,

This test is only accepted if the both the VaR test passes and the
conditional test ES passes. When the model underestimates the risk,
a negative value will be produced and the test will fail and will also
reject the test if the p-value is less than 1 minus the confidence level.
The p-value for the ES tests is given by:

1 M
Patwe = M ZI (ZS < ZObS)

s=1

Where M is the amount of simulated scenarios (in our case 1000) and
Z°® the test statistic. The critical value is the minimum simulated test
statistic with P-Value greater than Pjest.

Unconditional Test - Proposed by Acerbi and Szekely 2014, a simulation
based test and based on the unconditional relationship:

X1
ESt:—Et|: tt:|

PvaR

Where py,r is the probability of a VaR failure and is given by 1 minus
the VaR level. The p-value for the unconditional test is the same as
above in the conditional test and the test statistic is given by:

N
1 X1
Zuncond = e +1
Npvar <= ES;

The test can be run under a normal or t distribution assumption.

Quantile Test - Proposed by Acerbi and Szekely 2014 utilises a sample
estimator for the Expected shortfall and is another simulation based
test, where the expected shortfall for sample y is given by:
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ﬁq(Y) - LNpVaRJ

The process for computing the sample test statistic is to convert the
portfolio outcome into ranks and invert them, compute the sample esti-
mator and then to compute the expected value of the sample estimator.
The test statistic is given by:

1 &L BS(FMU))

Zuanie:__ —
e =N 2 BS (P(V))]

Where the denominator is given by:

_ﬁ /0 Ly (N = [Nyvar) » [Novar]) P (p)dp

The p-value is the same as for the other two simulation based tests
above.
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5 Empirical Results

5.1 GARCH Rolling Window Analysis

Using a rolling window analysis on each GARCH model on the different
cyrptocurrency time series, we are able to gain an insight into how well the
models cope with the data. The rolling window for each model is set up with
an observation window of 2 months (1344 data points) and the window moves
along weekly. The alpha, beta and omega parameters are saved a graphically
shown for the rolling window to investigate these change throughout the time
series of each cyrptocurrency.

In the figures showing the alpha estimations under rolling window analysis
it is clear to see that ETH, LTC and XRP all experience a spike in the
GARCH alpha value in the middle of data to as high as 0.9 in the case of XRP.
In fact for much of the time series the alpha value is above 0.1, meaning that
the volatility of each cyrptocurrency is incredibly sensitive to market events.
This is in line with previous literature stating that cyrptocurrency markets
are very sensitive to supply and demand and over market interactions. Each
of the graphs show frequent spikes in the alpha value to above 0.2. The beta
values for ETH and XRP especially are persistently high (above 0.9) for much
of the analysis, meaning the volatility in sensitive to crisis in the market
and indicates the presence of volatility clustering. Literature has stated the
presence of bubbles in the market which can cause market crashes.

The rolling window analysis is also conducted using the GJR-GARCH
model, plotting the leverage coefficient, gamma. Each of the cryptocurrencies
experience a spike in the leverage coefficient at the midway point of the data,
with ETH experiencing a positive spike, LTC, EOS and XRP experiencing
a negative spike in the value of the leverage coefficient. This spike might
be caused by an effect in the cyrptocurrency market effecting the major
liquid cryptocurrencies at the same time. From the plotting of the leverage
coefficient, it’s clear to see an asymmetric effect happening in the data, where
a positive shock effects the volatility more for XRP and LTC on average
throughout the analysis and a negative shock effects the volatility of ETH
and EOS more. The apparent presence of the asymmetric effects in the each
of the time series would suggest that a GJR-GARCH or E-GARCH model
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would perform better at modelling the volatility of cyrptocurrency returns

than vanilla GARCH.

Alpha (ETH/BTC)

Figure 9: The values of al-
pha using GARCH(1,1) model
rolling window analysis for
ETH/BTC.

Figure 11: The values of al-
pha using GARCH(1,1) model
rolling window analysis for

EOS/BTC.
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Figure 10: The values of al-
pha using GARCH(1,1) model
rolling window analysis for

XRP/BTC.

Figure 12: The values of al-
pha using GARCH(1,1) model
rolling window analysis for

LTC/BTC.



Figure 13: The values of
beta using GARCH(1,1) model
rolling window analysis for

ETH/BTC.

Beta (EOS/BTC)

Figure 15: The values of
beta using GARCH(1,1) model
rolling window analysis for

EOS/BTC.
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Figure 14: The values of
beta using GARCH(1,1) model
rolling window analysis for

XRP/BTC.
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Figure 16: The values of
beta using GARCH(1,1) model
rolling window analysis for

LTC/BTC.
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Figure 17: The leverage coeffi-
cient using GJR-GARCH(1,1)
model rolling window analysis

for ETH/BTC.
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Figure 19: The leverage coeffi-
cient using GJR-GARCH(1,1)
model rolling window analysis

for EOS/BTC.
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Figure 18: The leverage coeffi-
cient using GJR-GARCH(1,1)
model rolling window analysis

for XRP/BTC.
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Figure 20: The leverage coeffi-
cient using GJR-GARCH(1,1)
model rolling window analysis

for LTC/BTC.



5.2 VaR Model Analysis

Six different models were used and backtested for the VaR estimation of four
cryptocurrencies. The VaR models used are Parametric Normal, Historical
Simulation, EWMA, GARCH, GJR-GARCH and E-GARCH. The VaR is
tested at the 95% confidence level (often used by day traders) and 99% (the
VaR level set by Basel accords). Using the various backtesting models, we see
that the models struggled to cope with the volatility dynamics of the cryp-
tocurrency data. From the models, the E-GARCH and Historical Simulation
methods outperform the rest, with them having the lowest violations, as can
bee seen in Table 2. The EWMA model, the simplest of the volatility fore-
casting models consistently performed the worst across the cryptocurrencies,
with the most VaR violations. A VaR violation is when the an observation
breaks the border specified by the VaR confidence level. This may be due
to the persistent volatility clustering that appears within the returns times
series. The performance of E-GARCH at modelling the volatility may be due
to the absence of linearity restrictions on the model.

The traffic light test is a simplistic model that doesn’t provide p-values
for us to analyse, instead it provides the lights system. From the Table 3 we
can see how well the models performed using the traffic lights test, with the
E-GARCH model performing best overall.

The p-values for the test across the cryptocurrencies indicate that the
models aren’t performing accurately (which can be found in Tables 4-7), in
fact we can see that the models performs very poorly with extremely low p-
values for a lot of the tests. We can also see from the p-values for each of the
tests that E-GARCH has a larger p-value than the other volatility models for
99% VaR across the cryptocurrencies under all the test apart from the CCI
test. This indicates fewer VaR test violations by the E-GARCH model. The
E-GARCH model with the historical simulation model both have the lowest
violation ratios too. When we examine the p-values of the CCI test, we
can see that the GJR-GARCH model had marginally higher p-values than
the E-GARCH model for 3 out of the 4 cryptocurrencies. This indicates
that the VaR violations didn’t cluster together as much as the other models,
which could be due to the leverage coefficient. Interestingly, the historical
simulation method actually had the largest P-Values of all for the tests, but
using an Historical Simulation method is not always advisable as it doesn’t
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properly model the shape of the volatility dynamics - this can be seen by the
plots of VaR model estimations found in the appendix.

Failures (99%)

Ratio (99%)

Failures (95%)

Ratio (95%)

ETH/BTC
Normal
Historical
EWMA
GARCH
GJR-GARCH
E-GARCH
LTC/ TC
Normal
Historical
EWMA
GARCH
GJR-GARCH
E-GARCH
EOS/BTC
Normal
Historical
EWMA
GARCH
GJR-GARCH
E-GARCH
XRP/BTC
Normal
Historical
EWMA
GARCH
GJR-GARCH
E-GARCH

426
275
466
337
388
310

362
284
404
309
310
297

379
280
437
312
312
298

377
276
421
263
262
203

1.91
1.23
2.09
1.51
1.74
1.39

1.62
1.27
1.81
1.38
1.39
1.33

1.69
1.25
1.96
1.39
1.39
1.33

1.69
1.24
1.88
1.18
1.17
0.91

901
1196
1026

780

885

746

866
1206
983
715
719
691

802
1182
910
656
659
645

860
1148
928
604
614
929

0.81
1.07
0.91
0.69
0.79
0.67

0.78
1.08
0.88
0.64
0.64
0.62

0.72
1.06
0.81
0.59
0.59
0.58

0.77
1.03
0.83
0.54
0.55
0.47

Table 2: VaR failures and the ratio of VaR failures at the 99% and 95%
confidence levels, where the ratio is the actual Var failures divided by the
expected VaR failures. We can see that in this respect, the E-GARCH model
outperforms the other parametric models.
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TL (99%) | TL (95%)

ETH/BTC
Normal red green
Historical yellow yellow
EWMA red green
GARCH red green
GJR-GARCH red green
E-GARCH red green

LTC/ TC

Normal red green
Historical red yellow
EWMA red green
GARCH red green
GJR-GARCH red green
E-GARCH red green

EOS/BTC
Normal red green
Historical yellow yellow
EWMA red green
GARCH red green
GJR-GARCH red green
E-GARCH red green

XRP/BTC
Normal red green
Historical yellow green
EWMA red green
GARCH yellow green
GJR-GARCH | yellow green
E-GARCH green green
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Table 3: The results of the traffic lights test conducted on the 99% VaR
models and 95% VaR models.

The backtesting of the 95% VaR estimates was a little more inconclusive
which just a glance at the p-values is would seem as though many of the
models performed around the same level with mixed results as which one
performed the most accurately across the tests. A closer look reveals that



the GJR-GARCH model performed the best out of the GARCH models at
this level, but was out-performed in the tests by the simpler models like
EWMA and the Historical Simulation. For VaR estimation at 95% a lower
level of accuracy is needed so this could be the case as to why the simpler
models are performing better.

From looking at the currencies individually, we can see that the VaR
for XRP/BTC was most accurately estimated. This might seem unusual
as through out descriptive statistics we found that XRP exhibits the most
extreme outcomes. In this case, the E-GARCH model out-performed the
other models with a higher p-value across the tests.
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99% POF CcC CCI
ETH/BTC
Normal 9.927¢-34 | 2.201e-39 | 2.005e-08
Historical 0.0008 | 3.182e-10 | 1.167e-08
EWMA 5.629¢-46 | 2.77e-45 0.108
GARCH 8.039¢-13 | 1.107e-12 0.051
GJR-GARCH | 1.276e-23 | 7.914e-23 0.231
E-GARCH | 3.846e-08 | 1.588e-08 0.017
LTC/ TC
Normal 1.245e-17 | 8.106e-24 | 8.070e-09
Historical 9.318e-05 | 2.994e-09 | 9.717e-07
EWMA 1.094e-27 | 1.649e-29 | 0.0002
GARCH 5.405e-8 | 2.125e-08 0.016
GJR-GARCH | 3.846e-08 | 1.588e-08 0.017
E-GARCH | 2.494e-06 | 1.841e-08 | 0.0002
EOS/BTC
Normal 1.851e-21 | 4.245e-25 | 3.124e-06
Historical 0.0003 | 6.288e-06 0.001
EWMA 6.128e-37 | 1.099¢-38 | 0.0002
GARCH 2.729e-08 | 4.679e-09 0.006
GJR-GARCH | 3.846e-08 | 6.242¢-09 | 0.0059
E-GARCH 1.845e-06 | 1.023e-06 | 0.0279
XRP/BTC
Normal 5.435e-21 | 1.377e-33 | 2.105e-15
Historical 0.0007 | 3.210e-17 | 1.049e-15
EWMA 2.598e-32 | 1.801e-35 | 7.926e-06
GARCH 0.0097 0.0008 0.0056
GJR-GARCH | 0.0116 0.0025 0.0175
E-GARCH 0.1628 0.0186 0.0141

Table 4: P-values from the Proportion of Failures, Conditional Coverage and
Conditional Coverage Independence tests conducted the 99% confidence VaR

models.

37




99% TUFF | BIN TBFI TBF
ETH/BTC

Normal | 0.45604 0 1.152e-59 | 1.158¢-79
Historical | 0.45604 | 0.0005 | 1.242¢-31 | 7.403¢-33
EWMA | 0.45604 0 20-23 | 1.781¢-45
GARCH | 0.45604 | 2.243¢-14 | 2.424¢-10 | 1.477e-14
GJR-GARCH | 0.45604 0 9.11e-12 | 1.145¢-20
E-GARCH | 0.45604 | 5.887¢-09 | 5.992¢-08 | 3.329¢-10
LTC/ TC

Normal | 0.44509 0 6.9850-44 | 2.894¢-53
Historical | 0.44509 | 4.665¢-05 | 6.189¢-23 | 1.621e-24
EWMA | 0.44509 0 8.277e-17 | 1.389¢-28
GARCH | 0.44509 | 8.782¢-09 | 1.535¢-07 | 1.065¢-09
GJR-GARCH | 0.44509 | 5.887¢-09 | 1.101e-07 | 6.548¢-10
E-GARCH | 0.44509 | 7.58¢-07 | 3.534¢-12 | 4.299¢-14
EOS/BTC

Normal | 0.45604 0 3.319e-37 | 2.458¢-48
Historical | 0.45604 | 0.0001 | 2.908e-19 | 1.453¢-20
EWMA | 0.45604 0 3.8620-22 | 2.0856-39
GARCH | 0.45604 | 2.609¢-09 | 1.616¢-08 | 6.103¢-11
GJR-GARCH | 0.45604 | 2.609¢-09 | 1.616¢-08 | 6.103¢-11
E-GARCH | 0.45604 | 5.356¢-07 | 2.816¢-08 | 5.572¢-10
XRP/BTC

Normal | 0.98385 0 2.734e-59 | 1.950e-71
Historical | 0.98385 | 0.0004 | 2.068¢-37 | 9.657¢-39
EWMA | 0.45604 0 1.238¢-19 | 3.825¢-34
GARCH | 0.45604 | 0.0078 | 0.0002 | 7.298¢-05
GJR-GARCH | 0.45604 | 0.0095 | 0.0048 | 0.0027
E-GARCH | 0.45604 | 0.1694 | 0.0317 | 0.0291

Table 5: P-values from the Time Until First Failure, Bin Test, Time Between
Failures Independence and Time Between Failure Mixed Test conducted the

99% confidence VaR models.
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95% POF CcC CCI
ETH/BTC
Normal 6.997e-12 | 2.049¢-22 | 3.599¢e-13
Historical 0.0167 1.097e-17 | 1.777e-17
EWMA 0.0046 1.121e-09 | 8.444e-09
GARCH 9.275e-28 | 6.004e-30 | 9.030e-05
GJR-GARCH | 1.529¢-13 | 8.233e-16 | 0.00011
E-GARCH 1.115e-33 | 1.406e-35 | 0.00016
LTC/ TC
Normal 1.108e-15 | 8.538e-24 | 9.094e-11
Historical 0.0070 3.695e-12 | 1.608e-11
EWMA 2.649e-05 | 1.203e-06 | 0.0019
GARCH 1.113e-39 | 9.446e-40 | 0.0147
GJR-GARCH | 7.146e-39 | 4.355¢-39 | 0.0102
E-GARCH 9.762e-45 | 5.977e-46 | 0.0007
EOS/BTC
Normal 2.772e-24 | 8.283e-31 | 3.043e-09
Historical 0.0486 | 2.505e-10 | 2.146e-10
EWMA 5.287e-11 | 9.138e-15 | 3.386e-06
GARCH 8.783e-53 | 6.651e-53 | 0.0109
GJR-GARCH | 4.627e-52 | 1.328e-52 | 0.0037
E-GARCH 1.757e-55 | 7.422e-57 0.005
XRP/BTC
Normal 2.141e-16 | 1.549e-31 | 6.329¢-18
Historical 0.3465 3.654e-20 | 4.771e-21
EWMA 2.299e-09 | 1.859e-13 | 1.684e-06
GARCH 2.735e-66 | 7.717e-70 | 2.108e-06
GJR-GARCH | 1.529¢-63 | 2.421e-65 | 0.00014
E-GARCH 2.472e-89 | 3.359¢-91 | 0.00010

Table 6: P-values from the Proportion of Failures, Conditional Coverage and
Conditional Coverage Independence tests conducted the 95% confidence VaR
models.
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95% TUFF BIN TBFI TBF
ETH/BTC
Normal 0.7153 | 3.216e-11 | 1.381e-62 | 1.262e-67
Historical 0.7153 0.0156 8.447e-70 | 2.983e-70
EWMA 0.37075 0.0051 1.225e-17 | 4.342e-18
GARCH 0.37075 0 8.859¢e-20 | 1.619e-29
GJR-GARCH | 0.37075 | 1.022e-12 | 1.433e-14 | 3.852¢-18
E-GARCH 0.37075 0 1.891e-21 | 3.722e-34
LTC/ TC
Normal 0.7153 | 1.243e-14 | 5.122e-53 | 9.919e-60
Historical 0.7153 | 0.00641 3.133e-54 | 8.559e-55
EWMA 1 3.8e-05 4.089-10 | 5.485e-11
GARCH 1 0 3.73e-17 1.018e-31
GJR-GARCH 1 0 2.797e-17 | 1.6905e-31
E-GARCH 0.38769 0 7.875e-22 | 4.637e-40
EOS/BTC
Normal 0.37075 0 5.453e-61 | 6.715e-50
Historical 0.50568 | 0.04669 | 6.033e-49 | 1.043e-48
EWMA 0.37075 | 2.017e-10 | 6.109e-19 | 4.379e-16
GARCH 0.37075 0 6.010e-50 | 2.748e-26
GJR-GARCH | 0.37075 0 2.1979e-50 | 5.692e-27
E-GARCH 0.37075 0 7.8273e-57 | 1.297e-30
XRP/BTC
Normal 0.37075 | 2.887e-15 | 9.677e-73 | 1.662e-80
Historical 0.37075 0.3445 5.790e-80 | 6.572e-80
EWMA 0.37075 | 6.339e-09 | 9.070e-17 | 3.959e-19
GARCH 0.37075 0 1.528e-38 | 3.355e-73
GJR-GARCH | 0.37075 0 7.473e-31 | 5.113e-62
E-GARCH 0.37075 0 3.763e-44 | 4.681e-96

Table 7: P-values from the Time Until First Failure, Bin Test, Time Between
Failures Independence and Time Between Failure Mixed Test conducted the

95% confidence VaR models.
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5.3 Expected Shortfall Analysis

For the Expected Shortfall backtesting the cyrptocurrency data was split
up into 6 month time periods starting from January 1st 2018 through until
December 31st 2019 as the expected shortfall backtesting models can only
accurately cope with up to 5000 data points of data. This analysis also al-
lows a deeper looks into how the models perform as different periods in the
data may be more volatile than others. The first two backtests, the Uncon-
ditional Normal and Unconditional T Distribution tests can be performed
on all the models, but the simulated tests (Conditional, Unconditional and
Quantile tests) can not be performed on the historical simulation model as a
distribution is assumed about the data. The simulated tests are performed
assuming a normal distribution and t distribution. The normal distribution
tests are stricter than the t distribution tests which have fatter tails and allow
for more extreme outcomes. The simulated unconditional test is the same
test as the unconditional normal and t test, but using critical values instead
based on a simulation with the mean and standard deviation provided from
the data with either a normal distribution or a t distribution with 5 degrees
of freedom. This simulation approach provides more precision than the non
simulated unconditional tests.

When we examine the figures including the observed and expected sever-
ity, we can see the observed severity of the volatility models is much higher
than that of the expected severity and this is the case across the cryptocur-
rencies and all time periods. The observed severity ratio is the average ratio
of loss to VaR when VaR is violated. The expected severity ratio is the
average ratio of ES to VaR for the violation periods.

ETH/BTC

From the figures Of the expected failures against observed failures, it’s
clear to see that the E-GARCH model performed consistently well with less
failures than expected in three of the 4 data ranges, outperforming the other
models in this aspect. The E-GARCH model also had the least test rejections
from out backtesting procedures. Conversely, the EWMA model consistently
had more failures observed than expected, with it being the worst performing
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model in this aspect. The worst time period for failures is the July2018-
Dec2018 data range.

UnconditionalNorm | UnconditionalT
Jan2018-June2018
Historical Reject Accept
Normal Reject Reject
EWMA Reject Reject
GARCH Reject Reject
GJR-GARCH Reject Reject
E-GARCH Accept Accept
July2018-Dec2018
Historical Reject Reject
Normal Reject Reject
EWMA Reject Reject
GARCH Reject Reject
GJR-GARCH Reject Reject
E-GARCH Reject Reject
Jan2019-June2019
Historical Reject Reject
Normal Reject Reject
EWMA Reject Reject
GARCH Accept Accept
GJR-GARCH Reject Accept
E-GARCH Accept Accept
July2019-Dec2019
Historical Reject Accept
Normal Reject Reject
EWMA Reject Reject
GARCH Accept Accept
GJR-GARCH Reject Reject
E-GARCH Accept Accept

Table 8: The results of the Unconditional Normal and Unconditional T tests
for ETH/BTC in the four time periods we tested on.
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Figure 21: Histogram of the average severity ratio and number of VaR failures
for Jan 2018 to June 2018 for ETH/BTC.
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Figure 22: Histogram of the average severity ratio and number of VaR failures
for July 2018 to Dec 2018 for ETH/BTC.
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Figure 23: Histogram of the average severity ratio and number of VaR failures
for Jan 2019 to June 2019 for ETH/BTC.
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Figure 24: Histogram of the average severity ratio and number of VaR failures
for July 2019 to Dec 2019 for ETH/BTC.
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t Dist. Conditional | Unconditional | Quantile
Jan2018-June2018
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Accept Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Accept Accept Reject
July2018-Dec2018
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Accept Accept Reject
GJR-GARCH Accept Accept Reject
E-GARCH Accept Accept Reject
Jan2019-June2019
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
July2019-Dec2019
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject

Table 9: The test results for the Conditional, Unconditional and Quantile ES
backtests simulated under the assumption of t-distribution for ETH/BTC.
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Normal Dist. Conditional | Unconditional | Quantile
Jan2018-June2018
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Accept Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Accept Accept Reject
July2018-Dec2018
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
Jan2019-June2019
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
July2019-Dec2019
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject

LTC/BTC
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Table 10: The test results for the Conditional, Unconditional and Quan-
tile ES backtests simulated under the assumption of normal distribution for
ETH/BTC.

The GARCH family models performed the best when tested with the Un-
conditional Normal and Unconditional T test, with each one passing at each
time period, whilst the Historical, Normal and EWMA models performed
much worse. As with the ETH/BTC data sets, the EGARCH model had the
lowest violation ratio with EWMA having the highest violation ratio. When



using the simulated tests, only the EWMA and GARCH model passed the
conditional test in the first time period, with every model failing this test
for the other time periods. In the first time period, every model passed the
quantile test, and failing the quantile test for the other three time periods.

UnconditionalNorm | Unconditional T
Jan2018-June2018
Historical Reject Reject
Normal Reject Reject
EWMA Reject Accept
GARCH Accept Accept
GJR-GARCH Accept Accept
E-GARCH Accept Accept
July2018-Dec2018
Historical Reject Reject
Normal Reject Reject
EWMA Reject Reject
GARCH Accept Accept
GJR-GARCH Accept Accept
E-GARCH Accept Accept
Jan2019-June2019
Historical Reject Reject
Normal Reject Reject
EWMA Reject Reject
GARCH Accept Accept
GJR-GARCH Accept Accept
E-GARCH Accept Accept
July2019-Dec2019
Historical Accept Accept
Normal Reject Reject
EWMA Reject Reject
GARCH Accept Accept
GJR-GARCH Accept Accept
E-GARCH Accept Accept

Table 11: The results of the Unconditional Normal and Unconditional T
tests for LTC/BTC in the four time periods we tested on.
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Figure 25: Histogram of the average severity ratio and number of VaR failures
for Jan 2018 to June 2018 for LTC/BTC.
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Figure 26: Histogram of the average severity ratio and number of VaR failures
for July 2018 to Dec 2018 for LTC/BTC.
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Figure 27: Histogram of the average severity ratio and number of VaR failures
for Jan 2019 to June 2019 for LTC/BTC.
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Figure 28: Histogram of the average severity ratio and number of VaR failures
for July 2019 to Dec 2019 for LTC/BTC.

49



t Dist. Conditional | Unconditional | Quantile
Jan2018-June2018
Normal Reject Accept Reject
EWMA Accept Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
July2018-Dec2018
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
Jan2019-June2019
Normal Reject Accept Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
July2019-Dec2019
Normal Reject Accept Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject

Table 12: The test results for the Conditional, Unconditional and Quantile
ES backtests simulated under the assumption of t-distribution for LTC/BTC.
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Normal Dist. Conditional | Unconditional | Quantile
Jan2018-June2018
Normal Reject Accept Reject
EWMA Accept Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
July2018-Dec2018
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
Jan2019-June2019
Normal Reject Accept Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
July2019-Dec2019
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject

EOS/BTC

51

Table 13: The test results for the Conditional, Unconditional and Quantile
ES backtests simulated under the assumption of normal for LTC/BTC.

For EOS/BTC we can see that the GARCH family models performed
best over first half of both 2018 and 2019, with the historical simulation
performing the best of the second half of these years, when tested with the
unconditional normal and t tests. When it comes to the failure ratios, the
E-GARCH model marginally performs better than the GARCH and GJR-
GARCH models. For the simulation based tests all models passed every test



for the first time period under the assumption of a t distribution and only
the normal model failing under the assumption of normal distribution. We
could assume there is less volatility clustering exhibited in this time period.

UnconditionalNorm | UnconditionalT
Jan2018-June2018
Historical Reject Reject
Normal Reject Reject
EWMA Reject Reject
GARCH Accept Accept
GJR-GARCH Accept Accept
E-GARCH Accept Accept
July2018-Dec2018
Historical Accept Accept
Normal Reject Reject
EWMA Reject Reject
GARCH Reject Reject
GJR-GARCH Reject Reject
E-GARCH Reject Reject
Jan2019-June2019
Historical Reject Reject
Normal Reject Reject
EWMA Reject Reject
GARCH Accept Accept
GJR-GARCH Accept Accept
E-GARCH Accept Accept
July2019-Dec2019
Historical Accept Accept
Normal Reject Reject
EWMA Reject Reject
GARCH Reject Reject
GJR-GARCH Reject Reject
E-GARCH Reject Reject

Table 14: The results of the Unconditional Normal and Unconditional T
tests for EOS/BTC in the four time periods we tested on.
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Figure 29: Histogram of the average severity ratio and number of VaR failures
for Jan 2018 to June 2018 for EOS/BTC.
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Figure 30: Histogram of the average severity ratio and number of VaR failures
for July 2018 to Dec 2018 for EOS/BTC.
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Figure 31: Histogram of the average severity ratio and number of VaR failures
for Jan 2019 to June 2019 for EOS/BTC.
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Figure 32: Histogram of the average severity ratio and number of VaR failures
for July 2019 to Dec 2019 for EOS/BTC.
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t Dist. Conditional | Unconditional | Quantile
Jan2018-June2018
Normal Accept Accept Accept
EWMA Accept Accept Accept
GARCH Accept Accept Accept
GJR-GARCH Accept Accept Accept
E-GARCH Accept Accept Accept
July2018-Dec2018
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
Jan2019-June2019
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
July2019-Dec2019
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject

Table 15: The test results for the Conditional, Unconditional and Quantile
ES backtests simulated under the assumption of t-distribution for EOS/BTC.
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Normal Dist. Conditional | Unconditional | Quantile
Jan2018-June2018
Normal Reject Reject Reject
EWMA Accept Accept Reject
GARCH Accept Accept Reject
GJR-GARCH Accept Accept Reject
E-GARCH Accept Accept Reject
July2018-Dec2018
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
Jan2019-June2019
Normal Reject Accept Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
July2019-Dec2019
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject

Table 16: The test results for the Conditional, Unconditional and Quan-
tile ES backtests simulated under the assumption of normal distribution for
EOS/BTC.
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XRP/BTC

It is much the same narrative for XRP as it is for the other cryptocurren-
cies with the GARCH family models passing the non simulated unconditional
tests for each time period. E-GARCH was again had much less violations
when compared to the other models, where it has consistently performed
better in this aspect across all cryptocurrencies and time periods. When it
comes to the simulated tests, interestingly the EWMA model was accepted
for every time period under the t distribution assumption for the conditional
test but this isn’t the case under the stricter assumption of normal distribu-
tion.

It is clear to see from the backtesting results, that the GARCH family
models are superior to the other models tested at modelling the volatility of
hourly cryptocurrency returns and providing VaR and expected shortfall es-
timations. From these GARCH models, the E-GARCH model outperformed
the rest, with passing the various back tests and providing less violations in
the data than the other models across the 4 different cryptocurrencies and
time periods.
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UnconditionalNorm | Unconditional T
Jan2018-June2018
Historical Reject Reject
Normal Reject Reject
EWMA Reject Reject
GARCH Accept Accept
GJR-GARCH Accept Accept
E-GARCH Accept Accept
July2018-Dec2018
Historical Reject Reject
Normal Reject Reject
EWMA Reject Reject
GARCH Accept Accept
GJR-GARCH Accept Accept
E-GARCH Accept Accept
Jan2019-June2019
Historical Reject Reject
Normal Reject Reject
EWMA Reject Reject
GARCH Accept Accept
GJR-GARCH Accept Accept
E-GARCH Accept Accept
July2019-Dec2019
Historical Reject Accept
Normal Reject Reject
EWMA Reject Reject
GARCH Accept Accept
GJR-GARCH Accept Accept
E-GARCH Accept Accept

Table 17: The results of the Unconditional Normal and Unconditional T
tests for XRP/BTC in the four time periods we tested on.
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Figure 33: Histogram of the average severity ratio and number of VaR failures
for Jan 2018 to June 2018 for XRP/BTC.
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Figure 34: Histogram of the average severity ratio and number of VaR failures
for July 2018 to Dec 2018 for XRP/BTC.
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Figure 35: Histogram of the average severity ratio and number of VaR failures
for Jan 2019 to Jun 2019 for XRP/BTC.
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Figure 36: Histogram of the average severity ratio and number of VaR failures
for July 2019 to Dec 2019 for XRP/BTC.
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t Dist. Conditional | Unconditional | Quantile
Jan2018-June2018
Normal Accept Accept Accept
EWMA Accept Accept Accept
GARCH Accept Accept Accept
GJR-GARCH Accept Accept Accept
E-GARCH Reject Accept Accept
July2018-Dec2018
Normal Reject Reject Reject
EWMA Accept Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
Jan2019-June2019
Normal Reject Reject Reject
EWMA Accept Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
July2019-Dec2019
Normal Reject Reject Reject
EWMA Accept Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject

Table 18: The test results for the Conditional, Unconditional and Quan-
tile ES backtests simulated under the assumption of t-distribution for
XRP/BTC.
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Normal Dist. Conditional | Unconditional | Quantile
Jan2018-June2018
Normal Reject Accept Reject
EWMA Accept Accept Reject
GARCH Accept Accept Reject
GJR-GARCH Accept Accept Reject
E-GARCH Reject Accept Reject
July2018-Dec2018
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
Jan2019-June2019
Normal Reject Accept Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject
July2019-Dec2019
Normal Reject Reject Reject
EWMA Reject Accept Reject
GARCH Reject Accept Reject
GJR-GARCH Reject Accept Reject
E-GARCH Reject Accept Reject

Table 19: The test results for the Conditional, Unconditional and Quan-
tile ES backtests simulated under the assumption of normal distribution for
XRP/BTC.
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6 Conclusions

We looked to extend the work of Katsiampa 2017 and Chu et al. 2017 with
testing six different VaR and Expected Shortfall models (Historical Simula-
tion, Normal Parametric, EWMA, GARCH(1,1), GJR-GARCH(1,1) and E-
GARCH(1,1)) through using in-sample analysis on past returns data of four
of the most liquid cryptocurrencies across a range of over two years. As much
of cyrptocurrency trading is conducted 24/7 by speculative traders on cryp-
tocurrency exchanges we chose to study hourly data with BTC as numeraire.
Through statistical analysis on the data we found that the cryptocurrency
prices are extremely volatile with heavy skew and kurtosis pointing to more
extreme outcomes in the return which is in line with all previous literature
into the area of cryptocurrencies.

Using a VAR confidence level of 99% (in line with the Basel accords for
estimating value-at-risk values) and 95% (often the confidence level used by
risk managers overseeing day trading activities) we conducted thorough back-
testing on the models at these levels. Through the backtesting of the models
we find that the E-GARCH model has the largest p-values for the tests of
99% VaR. The tests on 95% confidence VaR were more inconclusive with
GJR-GARCH marginally outperforming the other GARCH models, but was
outperformed by the simpler models such as EWMA and Historical Simu-
lation when it came to the backtests. Despite this, the E-GARCH model
consistently had the lowest VaR violations and lowest violation ratio across
all cryptocurrencies.

For Expected Shortfall estimation, we used the 97.5% confidence level
which is in line with the new regulation on capital risk management proposed.
For testing the ES measurements from the models, we had to split the data
up into 4 half yearly time periods ranging from the start of 2018 to the end
of 2019. Over these time periods we found the GARCH family models to
outperform the other models. Out of the GARCH models, the E-GARCH
model once again has the lowest amount of violations, indicating it forecast
the cryptocurrency volatility more accurately than the other models. Our
findings are in line with previous literature, with being that GARCH models
are superior at modelling VaR and ES estimates for cyrptocurrency data, but
we find that the E-GARCH model is the most accurate out of the models
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we analysed. Although we omitted 5 other cryptocurrencies that make up
the MVIS MVIS CryptoCompare Digital Assets 10 Index, our results would
suggest that the E-GARCH model would too supply the most accurate results
for the other cryptocurrency constituents.

The E-GARCH model is absent of non-linearity constraints unlike the
other GARCH models, due to it’s exponential term within the model. No
matter the value of the estimated parameters, the volatility dynamics will
return positive. This nature could be the reason why it outperforms the
other models, as the constraints on the parameters could cause inaccuracies
in highly dynamic data like cryptocurrencies.

This analysis could be extend further to use more complex GARCH mod-
els that contain regime switches that cope with the extreme volatility of cryp-
tocurrencies which have been examined by Ardia, Bluteau, and Riiede 2019,
and this would be a natural extension to further our work with these models.
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Appendix

alpha beta omega gamma
ETH/BTC
GARCH 0.08674 | 0.90843 | 4.8207e-07 N/A
GJR-GARCH | 0.094435 | 0.87717 | 7.7629¢e-07 | 0.003395
E-GARCH 0.19602 | 0.97892 | -0.19277 | -0.013276
LTC/ TC
GARCH 0.098913 | 0.8888 | 1.1321e-06 N/A
GJR-GARCH | 0.098065 | 0.88945 | 1.1264e-06 | -4.8431e-05
E-GARCH 0.19391 | 0.96842 | -0.29173 0.010015
EOS/BTC
GARCH 0.095608 | 0.89759 | 1.4018e-06 N/A
GJR-GARCH | 0.097082 | 0.89906 | 1.3676e-06 | -0.0054102
E-GARCH 0.20553 | 0.9707 | -0.24907 | 0.0082805
XRP/BTC
GARCH 0.12959 | 0.87041 | 1.2933e-06 N/A
GJR-GARCH | 0.092714 | 0.87197 | 1.2906e-06 | 0.070623
E-GARCH 0.24181 | 0.98558 | -0.093562 -0.02182

Table 20: GARCH model parameters from the estimation using the cyrp-

tocurrency data.
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Figure 37: Comparison of VaR models to returns for ETH/BTC
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Figure 38: Comparison of VaR models to returns for LTC/BTC
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Figure 39: Comparison of VaR models to returns for EOS/BTC
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Figure 40: Comparison of VaR models to returns for XRP/BTC
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