Ion quantum technology opportunities at Sussex

We are expanding our team! We are looking for outstanding individuals to fill multiple Prize PhD studentships and Postoctoral Fellowship in Quantum Device Engineering as well as a position as an Electrical Engineer in Quantum Device Engineering. If you think you have got what it takes to operate a trapped-ion quantum computer, develop quantum computing microchips, develop a practical quantum simulation engine or develop portable quantum sensor, please get in touch. Here are the position descriptions:

Graduate positions


We are recruiting an Electrical Engineer in Quantum Device Engineering.

Please contact Prof. Winfried Hensinger for more information. Applicatinon deadline is July 10.


PhD positions


We have also four PhD positions in Quantum Device Engineering with the following topics:

Developing a trapped-ion quantum computer demonstrator device (more information here).

Quantum algorithms on a trapped-ion quantum co-processor (more information here).

Advanced microchips for quantum technology devices (more information here).

Developing a portable quantum sensor (more information here).

Dan Hunt PhD studentship: Quantum technology for finance and other commercial applications (more information here).

Please contact Prof. Winfried Hensinger for more information. Application deadline is August 15, however, please apply as soon as possible.


Postdoctoral positions


We also have three positions as Research Fellow in Quantum Device Engineering in:

Quantum Logic Implementation

Quantum Computing Operations

Manufacturing Quantum Microchips

Please contact Prof. Winfried Hensinger for more information. Application deadline is July 10.


Undergraduate research projects / Research placements


1. Laser cooling of ytterbium ions

Trapping single atoms is being described as one of the most demanding experiments in atomic physics. This project includes experimental work in trapping and cooling single ions towards the realization of an ion trap quantum computer. You will learn about laser cooling of ytterbium ions. Furthermore, you will study ways how to cool the ions to the quantum mechanical ground state. This project includes both theoretical and experimental parts. You will learn how to align lasers onto the ion trap, operation of a laser locking scheme, and the handling of a complicated imaging system as well as studying the theoretical foundations of how to manipulate ions using lasers. Your work should leads towards the experimental realisation of ground state cooling with trapped ions.

2. Lasers and laser locking for trapping ytterbium ions

Trapping ytterbium ions requires a number of lasers all operating at the required frequency to perform cooling and trapping of ytterbium ions. As part of this project you learn about the lasers required and construct a new laser that will be used for the ion trapping experiments. You will also learn about laser locking and build a laser locking scheme that allows for much higher laser stability. This is a prerequisite for efficient entanglement and detection capabilities.

3. Advanced ion chips

For large scale quantum computing to occur large scale ion trap arrays need to be designed that allow optimal storage, shuttling and entanglement operations to be performed. The arrays are constructed within an integrated microchip. In this project you will study how to add advanced features to ion chips such as digital signal processing, on-chip cavities, fibre connects along with on-chip resistors and capacitors. In addition, you will devise recipes for the application of microwaves on the chip and the implementation of magnetic field gradients. You will identify important issues in nanofabrication of ion traps and address such challenges with advances in condensed matter physics.

4. Exploring optimal ion trap geometries

At Sussex, we are actively researching optimal in trap geometries for the implementation of large scale ion trap chips. This project will investigate different ion trap geometries and model different ion trap junction types. The aim is to find optimal geometries for shuttling, storing and manipulating single ions. Shuttling of single atomic ions that are used as quantum bits for a quantum computer is a complicated process and we need to understand how single ions can be efficiently separated from another, turn corners and be decelerated using optimal geometries for this purpose. Electromagnetic field simulations will determine the ion trapping characteristics of different trap geometries. In this project you will research such optimal ion trap geometries and find scaling laws to understand such geometries in depth.

5. Shuttling trapped ions inside arrays

In our group we develop advanced ion trap arrays on a chip. In order to transport ions through such an array of electrodes the motion of the ion has to be carefully controlled. This project investigates how ions can be carefully shuttled in such an ion trap array without changing their motional quantum state. You will investigate optimal ways to transport individual ions and develop voltage sequences that are applied to multiple electrodes in order to move ions along a line, transport them through a junction or separate ions that are part of an ion string.

6. Entanglement creation and quantum simulators

Quantum technology, particularly quantum computing relies on the ability to entangle ions. Entanglement has been referred by Einstein as “spooky” and is one of the most counterintuitive predictions of quantum physics. In order to create ion entanglement here at Sussex optimal ion quantum gates must be identified and the ion trap experiment must be modified to allow for entanglement gates. This may involve some theory, programming and experimental work. You will also evaluate how to increase gate fidelities in order to reduce error rates within quantum computing operations.

7. Communicating quantum technology

A famous quantum physicist once proclaimed that the only physicists who understand quantum physics are the ones who know that they don’t understand it. Within this project you will analyze the factors that lead to the difficulty in obtaining an intuitive understanding of quantum physics. Once these factors become clear, you will devise strategies to circumvent such problems and create a strategy to communicate quantum technology research to a number of different target groups such as the general public, A-level Students and undergraduate physics Students. You will then create appropriate materials such as websites, simulations, applets, handouts and hand-on demonstrations in order effectively communicate quantum technology research. You will also measure the efficiency of the created strategy and materials by analyzing its effect on various target groups. Experience in making websites and interactive simulations would be very useful.

8. Ion quantum technology                                                                                 

Open topic, anything that you would want to investigate which falls under the general heading of ion quantum technology. 

Please contact Dr.Winfried Hensinger for more information. A number of scholarship schemes are available for Students from the University of Sussex and its Sepnet partners (University of Kent, Queen Mary / University of London, Royal Holloway / University of London, University of Southampton, University of Surrey). Note that there is no financial support available for Students who do not carry out their undergraduate program at the University of Sussex or any of the SEPnet partner universities