PhD position in quantum technologies with trapped ions: Microwave quantum logic, University of Sussex, Brighton, UK

A 3.5 year PhD position is available in the Ion Quantum Technology Group in the Department of Physics & Astronomy at the University of Sussex. The position consists of current UK/EU fees, a yearly stipend of £13,863 which can be supplemented by tutoring. The position includes a yearly travel allowance. You should have a physics or related degree.

Application deadline: Please apply preferentially by 1 August 2014. A second round of applications may be considered until September 1, 2014 for an additional position.

Research in novel quantum technologies will likely lead to step changing innovations which will affect many areas of modern sciences. Implementing such technologies with trapped ions quantum bits has been widely accepted as one of the most promising pathways. The aim of this studentship is to develop a microwave ion trap quantum computer and quantum simulator.

Quantum gates with trapped ions may be classed in two different categories, namely gates involving optical radiations and gates that utilize microwave radiation. In order to build a large scale ion trap quantum computer, it is critical to develop entanglement methods that are easily scalable to a large number of quantum bits. Large-scale quantum computers may require in excess of millions of individual quantum bits. It is quite obvious that creating the required number of laser beams to entangle the ions may indeed entail significant engineering and come at a significant cost. By contrast, the use of microwave radiation for the same purpose would be much easier and would make the construction of an actual large-scale ion-trap quantum-information processor much simpler. At Sussex, we are developing both a new generation of ion chips and coherent manipulation methods to develop fault-tolerant quantum gates with microwave radiation. Outcomes of your PhD project will include a new fault-tolerant quantum gate for trapped ions, the theoretical foundation and experimental demonstration of various quantum algorithms, and the efficient implementation of quantum simulation. You will participate in the construction of a fully scalable ion-trap quantum computer demonstrator device.

You will learn all the experimental skills and theoretical background needed in this emerging field of science. Some of the skills you will acquire include nano-fabrication, lasers and optics, ultra-high vacuum techniques, quantum information science, electronics and many other skills.

The city of Brighton & Hove has everything - sun, sea, brilliant clubs, great places to eat, fabulous shops, a truly cosmopolitan vibe and is located only 50min from central London. Located on the beach, Brighton boasts beautiful seaside views and beaches, boating, sports and beach activities. The South Downs provide breathtaking views, tranquil walks and plenty of opportunities for mountain biking, hiking or picnics.

You can find out more about the group here (including a BBC documentary about our research group): http://www.sussex.ac.uk/physics/iqt/
The 'Research' section of the website features specific information for prospective PhD students. You can also take a virtual lab tour.

Detailed reading about some of our research directions can be found here (full text available here: http://www.sussex.ac.uk/physics/iqt/publications.html):

- Microfabricated Ion Traps, Marcus D. Hughes, Bjoern Lekitsch, Jiddu A. Broersma and Winfried K. Hensinger, Contemporary Physics 52, 505 (2011)

For more information, please email the head of group, Dr Winfried Hensinger (Reader in Quantum, Atomic and Optical Physics) 
(w.k.hensinger@sussex.ac.uk).

To apply please email a CV, and your degree results preferentially before 1/8/2014 or the latest by 1/9/2014 to the email address above. Note in order to qualify for this position you must have resided in the UK or Europe for three years prior to the start of the position. If you are from outside Europe, you may apply for a non-funded position in the group, however, you will need to have a funding source for tuition fees and living expenses.