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Coherent Atomic Beam Splitter Using Transients of a Chaotic System
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A coherent atomic beam splitter can be realized using the transient dynamics of a chaotic system. We
have experimentally observed such an effect using ultracold rubidium atoms. Our experimental results
are in good agreement with numerical simulations of the Schrödinger equation for the system.

PACS numbers: 03.75.Be, 32.80.Lg
Atomic beam splitters are essential elements in the field
of atom optics. As in classical optics, it is necessary to
be able to split atom waves in order to measure coherence
effects. The applications of such devices are wide rang-
ing and include atom interferometry [1,2], input /output
couplers for atomic cavities [3], and state selective ele-
ments [4]. To date, successful splitting of an atomic wave
function has been achieved using Raman pulses [2], a
magneto-optical beam splitter [5,6], diffraction from an
optical standing wave [7–9], adiabatic population trans-
fer [10], optical Stern-Gerlach effect [11], and freestand-
ing transmission structures [12]. More recently, coherent
splitting of a Bose-Einstein condensate (BEC) has been
achieved with optically induced Bragg diffraction [13] and
with a pulsed standing light wave [14].

In this paper we show that the transient dynamics of
an atom in a modulated standing wave (a chaotic system)
can be used to split a cold atomic ensemble. Our beam
splitter exhibits an unusual property, in that the resulting
narrow outputs are highly dependent on the dynamics of
the atoms themselves. For an ultracold sample of rubidium
atoms prepared in a magneto-optic trap (MOT) we have
achieved splittings of up to 670 photon recoils. Quantum
mechanical simulations show that, for a source of atoms
cooled to the recoil limit, the beam splitter outputs have
the same velocity width as the source and contain up to
30% of the original atoms. Furthermore, the potential used
is far detuned and is present only for a few microseconds
so decoherence due to spontaneous emission is negligible.
Since the atom-light interactions are conservative, and only
one level of the atom is significantly populated, the beam
splitting process is coherent.

To understand how a time dependent potential can split
an atomic wave function into discrete momentum states, it
is informative to consider the well known effect of diffrac-
tion of an atomic beam from a standing wave [15]. In
such experiments, atoms with a small transverse velocity
spread impinge on an optical standing wave and are dif-
fracted into different momentum states. For diffraction to
occur the interaction time must be small or oscillations of
the atoms in the potential become relevant, a phenomenon
sometimes called channeling. All diffraction experiments
of this nature are thus restricted to the Raman-Nath region
in which the change in kinetic energy of the atom under
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the influence of a potential V is much smaller than V . For
an optical standing wave, the potential near the bottom of
a well can be approximated by a harmonic potential. In
such a case the interaction time would need to be much
less than a quarter of the classical period of oscillation for
the system to be in the Raman-Nath regime. An alternative
to such a scheme is to use an atomic ensemble with almost
zero average momentum and pulse on an optical standing
wave for a very short time (much less than a quarter of the
classical period of oscillation). In either case the resulting
atomic momentum distribution exhibits many broad peaks.

In contrast to the above beam splitter, ours operates
outside the Raman-Nath regime and directly relies on the
atomic motion during the interaction interval to split the
atomic wave function. Also, we sinusoidally modulate
the intensity of the optical standing wave as opposed to
pulsing the standing wave. The end result is a robust beam
splitter which is simple to achieve experimentally and has
outputs with momentum spread of the same order as that
of the input.

The system can be modeled by considering a two level
atom, rubidium in our case, in a far detuned standing
wave. For a sufficiently large detuning (dL ¿ G�2p �
6.0 MHz) the excited state can be adiabatically eliminated,
resulting in a Hamiltonian for the ground state given by

H � P2
x�2m 2 �"Veff�8� �1 1 2´ sinvmt� cos�2kLx� ,

where the effective Rabi frequency is Veff � V2�dL,
V � G

p
I�Isat is the resonant Rabi frequency,

Isat � 1.65 mW�cm2 is the saturation intensity of
the transition, G is the natural linewidth of the transition,
´ is the depth of the modulation, vm is the modula-
tion angular frequency, and kL is the laser light wave
number. To get an understanding of our beam splitter
we first turn to a classical description of the dynamics.
Applying Hamilton’s equations from the above Ham-
iltonian gives the trajectories of atoms through phase
space. For beam splitting to occur the effective Rabi
frequency of the system is adjusted so that the harmonic
frequency of atomic oscillations is approximately 0.6 of
the driving frequency. The harmonic frequency is given
by vh � Gk

p
�"I�Isat��2mdL. Under such conditions

the phase space trajectories of an atom initially at rest
as a function of its starting position are shown in Fig. 1
2000 The American Physical Society 4023
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FIG. 1. Phase space trajectories of atoms that interact with a
modulated standing wave. The interaction time of the atom
with the potential is 1.75 cycles of the modulation period and
we have used vm�2p � 450 kHz, dL�2p � 44.5 GHz, I �
38.1 W�cm2, and ´ � 0.3. The initial positions of the atoms
in phase space are marked with circles, the positions after
1 cycle are marked with triangles, and the final positions af-
ter 1.75 cycles are marked with squares.

(for clarity we have plotted only the atomic trajectories
for negative starting positions). The interaction time of
the atom with the potential is 1.75 cycles of the modu-
lation period and we have used vm�2p � 450 kHz,
dL�2p � 44.5 GHz, I � 38.1 W�cm2, and ´ � 0.3.
The initial positions of the atoms in phase space are
marked with circles, the positions after 1 cycle are marked
with triangles, and the final positions after 1.75 cycles are
marked with squares. From Fig. 1 it is clear that after one
period of the modulation there is a large group of atoms
that have arrived at a maximum of the potential. Also,
since one modulation cycle has passed the potential has
returned to its original height and is about to rise again.
Thus this group of atoms is in the perfect position to
“surf” the potential, which results in the atoms gaining a
large amount of kinetic energy. In fact, by the end of the
interaction these atoms have traveled almost one and a
half periods of the potential. More importantly, their final
velocities form a narrow band in velocity space. Although
we have examined the case of an atom initially at rest to
describe the beam splitting process, it turns out that the
phase space trajectory map for atoms starting with up to
six photon recoils of velocity looks very similar to that of
Fig. 1, the only notable difference being a larger spread
in final velocity for the group of atoms that escape from
the initial potential well. It should also be noted that the
beam splitting process is destroyed for longer interaction
times, due to the nonlinearity of the system.

Until this point our analysis and discussion have been
entirely classical, while atomic beam splitting is a quantum
mechanical effect. To quantum mechanically simulate the
system we solve Schrödinger’s equation for a state vec-
tor of the form jc� �

P
n�2m,m cnj2nh̄kL�. This yields
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a set of coupled differential equations in the momentum
probability amplitudes cn. In the absence of spontaneous
emission the proportion of atoms in the nth momentum
state is given by jcnj

2. In the regime studied we estimate
the chance of an atom absorbing a photon to be less than
1 part in 100, thus neglecting spontaneous emission is a
reasonable approximation.

An excellent test of the beam splitter is to apply it to
an ensemble of atoms prepared in a MOT. By loading an
optical standing wave with the MOT output and applying
the correct intensity modulation it should be possible to
split the initial velocity distribution of the atomic cloud.

Our experimental setup consists of about 106 rubidium
atoms prepared in a MOT. The 1�e velocity full width of
the MOT distribution is approximately 13 recoil velocities.
After the final cooling stage, the MOT is turned off but
the repumping beam is left on, forcing the accumulation
of atoms in the F � 3 ground state. We allow an optical
pumping period of approximately 500 ms after which the
interaction potential is switched on. A frequency stabilized
titanium sapphire (Ti-S) laser is used to produce the opti-
cal standing wave. The output of the Ti-S laser is spatially
filtered using a polarization preserving single mode optical
fiber and intensity stabilized to better than 1%. Temporal
modulation of the optical potential is achieved using an
acousto-optic modulator which is driven by a voltage sig-
nal from an arbitrary wave form generator. After the inter-
action the atoms undergo a free expansion interval, until
the molasses beams are once again turned on, freezing the
atoms’ positions and allowing detection [16,17]. We used
a standing wave with a 1�e Gaussian width of 2.2 mm in
these experiments, which when combined with the initial
width of the MOT of 400 mm gives a maximum variation
in intensity of 4% over the spatial extent of our cloud.

To determine the momentum of the beam splitter
outputs, we plot their position versus ballistic expansion
time, for a series of increasing ballistic intervals up to
12 ms. Linear regression on this line provides an estimate
of their momentum to better than 3%. This value is
assigned to the center of the peaks and thus scales the
momentum axis. Figure 2 shows the experimental
momentum distribution (solid line) of atoms that have
interacted with 1.75 cycles of a vm�2p � 450 kHz,
I � 40.6 6 5 W�cm2, dL�2p � 44.5 GHz interaction
potential. Also shown in Fig. 2 is the predicted momentum
distribution based on a quantum mechanical simulation
(dotted line) of the system. To obtain theoretical momen-
tum distributions we convolve the calculated momentum
distribution with the appropriately scaled MOT initial
spatial distribution. As is seen in Fig. 2 our experimental
results are in good agreement with theoretical simulations.
The momentum of the beam splitter outputs, as well as
the number of atoms in each output, is predicted well by
our quantum mechanical model. Interestingly, numerical
calculations show that the 1�e velocity width of the beam
splitter outputs, for these parameters, is approximately
five photon recoils, almost a factor of 3 colder than the
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FIG. 2. Experimental momentum distribution (solid line) of
atoms that have interacted with 1.75 cycles of a vm�2p �
450 kHz, I � 40.6 6 5 W�cm2, dL�2p � 44.5 GHz interac-
tion potential. Also shown is the predicted momentum distribu-
tion based on a quantum mechanical simulation (dotted line) of
the system.

beam splitter input. Experimentally we can estimate the
velocity spread of these outputs by plotting their widths
versus ballistic expansion time, for a series of increasing
ballistic intervals. Using this method we have confirmed
that the beam splitter outputs are colder than the MOT
input. However, this time of flight technique is limited
by the initial spatial width of the outputs and cannot give
an accurate measure of the velocity spread of the beam
splitter outputs.

By varying the modulation frequency and subsequently
correcting the effective Rabi frequency to observe beam
splitting, we have been able to create side peaks travel-
ling at velocities up to 670 photon recoils. We recorded
the laser detuning required to maximize the number of
atoms in the beam splitter output for a given modulation
frequency and intensity. The number of atoms was sensi-
tive to changes in detuning of around 200 MHz. The error
bars shown are determined from the estimated errors in
the laser intensity and detuning. The results of these mea-
surements are plotted in Fig. 3 in the form of vh versus
vm. The slope of this graph gives the ratio of the harmonic
frequency to the modulation frequency at which the beam
splitting effect occurs. Our measurements show that beam
splitting occurs when the system is driven at 0.57 6 0.02
of its harmonic frequency, in agreement with our model.

It should be noted that the beam splitter presented here
uses a completely different effect than the recently reported
phase space resonances [18]. Such resonances are long
term effects (usually taking 4 or 5 cycles of the modulation
to appear) and occur when the harmonic frequency is ap-
proximately equal to the driving frequency of the system.
Most importantly, phase space resonances are localized in
both position and momentum and thus have a relatively
large momentum spread.
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FIG. 3. Graph of vh versus vm. The slope of this graph gives
the ratio of the harmonic frequency to the modulation frequency
for which beam splitting occurs.

We now turn our attention to analyzing our beam split-
ter’s performance. In particular, we want to consider the
case for which the input to the beam splitter is coherent,
i.e., an ensemble of atoms cooled to the recoil limit.
For our simulations we choose the following modulation
parameters: vm�2p � 250 kHz, I � 35.9 W�cm2,
dL�2p � 141.5 GHz, ´ � 0.35, and we set the interac-
tion time to be 1.75 cycles of the modulation frequency.
For comparison we also simulate a beam splitter that uses
an unmodulated standing wave which is only turned on
for a short period of time and operates in the Raman-Nath
regime, as was described earlier. The results of these
simulations are shown in Figs. 4(a) and 4(b), respectively.
For the parameters used both the resulting momentum
distributions are peaked around 622 photon recoils.
However, for the case of the transient beam splitter the
outputs are much narrower and contain around twice the
number of atoms. In fact, the width of the transient beam
splitter output is about one photon recoil, i.e., the same
as the input width. Clearly the transient beam splitter
has better output characteristics than simple diffraction
from a periodic potential. Furthermore, the outputs of the
transient beam splitter are easily tunable. By choosing
the appropriate modulation frequency the momentum of
the beam splitter outputs can be varied. For higher modu-
lation frequencies the beam splitter outputs have much
larger momentum. This increase in output momenta comes
at the cost of efficiency. An example of this is shown
in Fig. 4(c) where we have simulated the system for the
following modulation parameters: vm�2p � 650 kHz,
I � 33.9 W�cm2, dL�2p � 20.7 GHz, ´ � 0.4. For
such a modulation the momentum distribution is peaked
around 658 recoils and contains around 10% of the input
atoms in each output. We show the corresponding case
for an unmodulated standing wave in Fig. 4(d).
4025
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FIG. 4. Theoretical momentum distributions obtained from
simulating the following systems: (a) a transient beam split-
ter with parameters vm�2p � 250 kHz, I � 35.9 W�cm2,
dL�2p � 141.5 GHz, ´ � 0.35, and an interaction time of 1.75
modulation cycles; (b) an unmodulated standing wave which is
turned on only for a short period of time and operates in the
Raman-Nath regime; (c) a transient beam splitter
with parameters vm�2p � 650 kHz, I � 33.9 W�cm2,
dL�2p � 20.7 GHz, ´ � 0.4; and (d) corresponding unmodu-
lated standing wave case of (c).

A natural question to ask is if this novel beam splitter
could be used to construct an atom interferometer. Since
the transient beam splitter relies on the dynamics of the
atoms, the effect is dependent on the input momentum
distribution. While this beam splitter can split any single
component momentum distribution, it cannot split a com-
plicated superposition of momentum states in the same
way as diffraction from a matter grating [12]. How-
ever, the transient beam splitter can be applied “back-
wards,” by reversing the phase of the modulation. We
have modeled this effect, and our simulations show that
when the beam splitter with modulation phase reversed
is applied to the original outputs after a time delay, the
outputs return to the zero momentum state. This means
that we now have two outputs with zero momentum that
are spatially separated, opening up the possibility for atom
interferometry.

In summary, we have demonstrated an atomic beam
splitter that uses a mechanism completely different from
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all previously studied, namely, the transients of a chaotic
system. The method is simple to implement experimen-
tally, relying only on accurate control of the light intensity.
When the scheme is applied to a MOT distribution we find
that up to 30% of the atoms are in each beam splitter out-
put, in good agreement with theoretical simulations. We
have also theoretically studied the case for which the beam
splitter acts on recoil cooled atoms. For such a case we
find that the beam splitter outputs are also recoil limited
and each contain up to 16% of the original atoms. More-
over, by changing the modulation parameters one can tune
the momentum of the outputs. Finally, the method may be
suitable for manipulating BEC. In particular, it might be
useful as an output coupler for an atom laser.

This work is supported by the Australian Research
Council.

[1] D. W. Keith, C. R. Ekstrom, Q. A. Turchette, and D. E.
Pritchard, Phys. Rev. Lett. 66, 2693 (1991).

[2] M. Kasevich and S. Chu, Phys. Rev. Lett. 67, 181 (1991).
[3] D. E. Pritchard, Atom Optics, Proceedings of the Twelfth

International Conference on Atomic Physics (AIP, New
York, 1990).

[4] M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi,
and S. Chu, Phys. Rev. Lett. 66, 2297 (1991).

[5] T. Pfau, C. Kurtsiefer, C. S. Adams, M. Sigel, and J.
Mlynek, Phys. Rev. Lett. 71, 3427 (1993).

[6] C. S. Adams, T. Pfau, C. Kurtsiefer, and J. Mlynek, Phys.
Rev. A 48, 2108 (1993).

[7] P. E. Moskowitz, P. L. Gould, S. R. Atlas, and D. E.
Pritchard, Phys. Rev. Lett. 51, 370 (1983).

[8] P. L. Gould, G. A. Ruff, and D. E. Pritchard, Phys. Rev.
Lett. 56, 827 (1986).

[9] M. K. Oberthaler, R. Abfalterer, S. Bernet, C. Keller, J.
Schmiedmayer, and A. Zeilinger, Phys. Rev. A 60, 456
(1999).

[10] M. Weitz, B. C. Young, and S. Chu, Phys. Rev. Lett. 73,
2563 (1994).

[11] T. Sleator, T. Pfau, V. Balykin, O. Carnal, and J. Mlynek,
Phys. Rev. Lett. 68, 1996 (1992).

[12] D. W. Keith, M. L. Schattenburg, H. I. Smith, and D. E.
Pritchard, Phys. Rev. Lett. 61, 1580 (1988).

[13] M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak,
K. Helmerson, S. L. Rolston, and W. D. Phillips, Phys. Rev.
Lett. 82, 871 (1999).

[14] Yu. B. Ovchinnikov, J. H. Müller, M. R. Doery, E. J. D. Vre-
denbregt, K. Helmerson, S. L. Rolston, and W. D. Phillips,
Phys. Rev. Lett. 83, 284 (1999).

[15] P. J. Martin, P. L. Gould, B. G. Oldaker, A. H. Miklich, and
D. E. Pritchard, Phys. Rev. A 36, 2495 (1987).

[16] F. L. Moore, J. C. Robinson, C. F. Bharucha, Bala Sun-
daram, and M. G. Raizen, Phys. Rev. Lett. 75, 4598 (1995).

[17] A. G. Truscott, D. Baleva, N. R. Heckenberg, and H.
Rubinsztein-Dunlop, Opt. Commun. 145, 81 (1998).

[18] A. G. Truscott, W. K. Hensinger, M. Hug, M. E. J. Friese, H.
Rubinsztein-Dunlop, N. R. Heckenberg, and G. J. Milburn
(to be published).


