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Simulating an environment

Measurement-free QEC

Repeated quantum error correction is a necessity for a  large-scale 
quantum computer.

A popular error-correction protocol is the quantum repetition code 
[1]. It encodes a qubit in a multipartite entangled state and utilizes 
majority voting for error detection and correction.

We implement up to three subsequent correction steps of the 3 
qubit phase-flip repetition code.

Motivation

Measurements disturb the motional state thus complicating 
repeated error correction.

Measurement-free QEC has realistic demands on the quality 
and speed of the preparation/measurement.

The fault tolerant threshold does not decrease significantly [2].
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Outlook 

Creating the pulse sequence

Adapted quantum 
repetition code

Optimization 
procedure

Experimental results

The quantum repetition code

The algorithm corrects for single phase-flips but in a 
realistic environment, also two and three-qubit phase-flips 
occur.

An error model can be described by defining the error 
probabilities     that an n-qubit phase-flip occurs.

If the     are known depending on of the single-qubit error 
probability p the behavior of the algorithm can be 
reconstructed.
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Neglect the state of 
the ancilla qubits 
after the correction 
stage.

A single entangling gate 
implements the encoding 
stage.

p +(1-p)

Our optimization procedure allows us to implement  
complicated algorithms.

Useful error correction will need a protocol that protects 
also for correlated noise.

Use the dissipative toolbox to perform dissipative driven 
quantum computation.
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Optimizing the algorithm

Pulse sequence:

Modified gradient ascent pulse engineering (GRAPE) algorithm [3]

Performance function    that has maximum for exact algorithm. 

Optimize pulse length with gradient:

Repetition code and 
noise  correlation.

Encoding:

Decoding and correction:

single-qubit 
error

Resetting the qubit

Experimental SystemOur algorithm

++ +

Mølmer Sørensen type 
entangling operations

single qubit z rotations

collective local operations F=99%

F=99%

F=98%

No interferometric 
stability between 
paths needed.
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Heating 0.014 phonons/reset

(i) Shelve population of 
ancilla ions from      to

(ii) Optical pumping from       to 

Add random pulses        from time to time.

identity process
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   ... Measurement vector for a 
single-qubit process tomography.
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With errors: Data taken 
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possible single qubit 
errors.


