

Experimental repetitive quantum error correction

P. Schindler¹, J. Barreiro¹, T. Monz¹, M. Chwalla¹, D. Nigg¹, V. Nebendahl², M. Hennrich¹, R. Blatt^{1,3}

¹ Institut f. Experimentalphysik, Universität Innsbruck, Technikerstr. 25, A-6020 Innbruck ² Institut f. Theoretische Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innbruck ³ Institut f. Quantenoptik u. Quanteninformation, Österreichische Akademie der Wissenschaften

K	<u> </u>

AG Quantenoptik und Spektroskopie

	: 1 :	
IVIOU	ivati	on

Repeated quantum error correction is a necessity for a large-scale quantum computer.

A popular error-correction protocol is the quantum repetition code

Measurement-free QEC

Measurements disturb the motional state thus complicating repeated error correction.

The quantum repetition code

Encoding: $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$ $\alpha|000\rangle + \beta|111\rangle$

Simulating an environment

The algorithm corrects for single phase-flips but in a realistic environment, also two and three-qubit phase-flips occur.

An error model can be described by defining the error probabilities p_n that an n-qubit phase-flip occurs.

If the p_n are known depending on of the single-qubit error probability p the behavior of the algorithm can be reconstructed.

Outlook

Our optimization procedure allows us to implement complicated algorithms.

Useful error correction will need a protocol that protects also for correlated noise.

Use the dissipative toolbox to perform dissipative driven quantum computation.

References

[1] Nielsen, Chuang, Quantum Computation and Quantum Information

[2] G. A. Paz-Silva et al. Phys. Rev. Lett. **105**, 100501 (2010).

[3] V. Nebendahl et. al. Phys. Rev. A 79, 012312 (2009).