

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

• 5 linear traps tested in 3 different groups with Ca⁺ and Yb⁺ [arXiv:1008.0990v1].

4 level metal

Development - Four metal layer process:

- Routing of RF and Crossing of DC electrodes is required away from trapping regions
- Allows for interior RF/DC electrodes to be wired (e.g. ring trap)
- Simplifies simulations by eliminated need to model effect of leads

On chip capacitors

• Higher capacitance density for trench capacitors (94.3 $fF/\mu m^2$ vs. 1.3 fF/ μ m²).

• Capacitors are located within microns of DC electrode.

• 1nF trench capacitor is about

the size of an electrode

Microfabricated Surface Electrode Ion Traps

D. L. Moehring, M. G. Blain, F. Benito, R. Cook, A. A. Cruz-Cabrera, A. R. Ellis, L. Fang, K. M. Fortier, W. L. Gordy, R. A. Haltli, C. Highstrete, J. J. Hudgens, S. A. Kemme, T. L. Lindgren, C. Y. Nakakura, M. E. Smith, J. E. Stevens, D. L. Stick, B. Tabakov, C. P. Tigges, M. Descour Sandia National Laboratories, PO Box 5800 MS 1082, Albuquerque, NM 87185-1082

Precision dielectric set-back

bonding minimize interference with lasers

- Trapped single and multiple ions
- Shuttled ion single axis (830 μm) 10⁵ repeat fidelity
- Shuttled to each leg of junction 10⁶ times without ion loss
- Successful junction shuttling in two different Y-junction models

Time lapse image in the junction - a single ion moving up each leg

Ring Traps and Cavity QED – MQCO collaboration

- Can realize transmissive and/or reflective integrated optics
- Off-axis capability \rightarrow dense optic arrays with 100% fill factor
- Entire lens set is aligned to ions and in-vacuum fiber connector
- Maximum photon interaction in a simple, robust configuration

- loading hole is illuminated by the oven

Integrated Diffractive and Micro Optics

Sandia DOE array in fused silica with 100% fill-factor **Optical microscope (L) and SEM (R) images**

Milestones

• Fabricated 8-level F/1 lenses with focused spot diameters < 1micron at 397 nm Multi-fiber feed-throughs and in-vacuum connectors survive bake-out and maintain ultra-high vacuum

With 4 metal levels, all electrode routing will be invisible to ion.

designed for cavity thru-hole Mount registered to Si chip • Goal of $C_1 > 0.2$ for Yb⁺ and 10% light collection efficiency

Existing Sandia Capabilities

• Diffractive Optical Element (DOE) arrays in fused silica with 100% fill factor Fused silica and lithium fluoride polarizers with extinction ratios > 100:1 Microwaveplates with 9.4° rms variation across broad MWIR band

G.R. Brady et al. arXiv:1008.2977v1