

Trapping and cooling large Sr⁺ ion clouds

Samuel Guibal

Laboratoire Matériaux et Phénomènes Quantiques Paris, France

Laboratoire Matériaux et Phénomènes Quantiques

A young (5 years old) lab devoted to Materials and Quantum Phenomena, from fondamental concepts to devices. Research area :

- Nanomaterials
- Low dimensionality electronics
- Quantum Photonics
- ullet

Tech Facility :

- Clean-room for nano-technology
- High resolution electronic microscopy

www.mpq.univ-paris-diderot.fr

Trapped lons and Quantum Information Team

- T. Coudreau S. Guibal L. Guidoni J.-P. Likforman
- S. Rémoville R. Dubessy Q. Glorieux B. Dubost

Trapped lons and Quantum Information Team

From plastic dust particles to Sr⁺ ions

Research activities

Large ion Coulomb crystals in a linear Paul trap

... towards a quantum memory in the continuous variables regime

Microfabricated ion traps

... towards scalable devices for quantum information processing

4-wave mixing in an atomic Rb vapour

... generation of a pair of quantum correlated light beams at 422nm

Long-range interaction N-body problem : numerical simulations ...Trap design ...Trapped ions dynamics study

Theory and new schemes for Quantum Information

...Feasibility of a quantum memory for continuous variables based on trapped ions : from generic criteria to practical implementation J. Phys. B: At. Mol. Opt. Phys., 2007, 40, pp. 413-426

... Topologically Decoherence-Protected Qubits with Trapped Ions *Physical Review Letters*, 2007, 99, 2, pp. 020503

...Quantum intensity correlation in 4-wave mixing To appear in Physical Review A

Quantum light-matter interaction in large atomic ensembles

Thermal atomic vapour

Experimental Demonstration of quantum memory for light Julsgaard B et al. Nature 432 482, 2004

Laser-cooled neutral atoms

ICFO Barcelona, LKB Paris...

Trapped ions Aarhus(cavity), Paris...

Continuous variables

Stockes operator describing a coherent laser beam

Total spin of an *atomic ensemble*

 $egin{aligned} [\hat{J}_x, \hat{J}_y] &= i \hat{J}_z \ [\hat{J}_y, \hat{J}_z] &= i \hat{J}_x \ [\hat{J}_z, \hat{J}_x] &= i \hat{J}_u \end{aligned}$

Requirements

- Large ion ensemble > 10⁵ ions
- Optimal coupling to laser (trap geometry)
- Laser cooling → Coulomb cystal
- Long trapping time
- Long coherence time of internal degrees of freedom
- Sympathetic cooling

Linear Paul trap

RF 3-7 MHz / 100-1500 V

Trapping characteristics (ion cloud dynamics)

Programme de lickle (Mr) 190 200 400 100 800 100 Promotiones Pr

lon counting

Sr⁺ fluorescence

Photoionization trap loading fs laser pulses

• Compared to electron beam ionization :

+++

- No uncontrolled electric charges
- Low pressure loading
- Fluorescence detection during loading
- Specie selectivity
- Spatial selectivity

Cost and complexity

...and still no isotope selectivity

Strategy : 2 photons at 431 nm towards an auto-ionizing level above threshold

laser : frequency doubled fs Ti:Sa (home made)

Compared ionization efficiency

Sample purity (mass spectrum)

Current loading rate : 100-1000 ions/s

Loading efficiency

Sr⁺ laser cooling

Energy levels involved

Laser cooling : Rb absolute frequency reference

Diagnostic : Fluorescence imaging from µm to cm scale

Loading of an ion cloud

Sr⁺ isotope detection

Sr isotopes relative abundances

- 88 : 82.6%
- 87 : 7%
- 86 : 9.9%
- 84 :0.56%

Trigger type

External trigger

Arguisition Mod

Single Frame Multiple Frame

Free Run External trigger

⁸⁸Sr⁺-⁸⁶Sr⁺ isotope shift measurement

Spatially resolved fluorescence IR-laser spectroscopy

Work in progress : Accuracy to be improved and ⁸⁴Sr⁺ to be adressed

5td: 4269.

Mean2 13098 877

Mean Mean ROU

Mean ROD

⁸⁸Sr⁺ purification

⁸⁸Sr⁺ cooling laser

the pacman endcap

Left endcap voltage pulses + radial trap opening (RF)

⁸⁶Sr⁺ enrichment

Outlook

- A cm-scale linear Paul trap for Sr⁺ ions
- Optimized loading by fs photo-ionization
- Laser-cooling to Coulomb-crystal transition
- Sr⁺ Isotope Sympathetic cooling
- Selective isotopic enrichment
 - Next :
- Spin lifetime measurement
- absorption
- ...SrH⁺ molecules

Microfabricated ion trap

- Scalable QIP device
- Tight confinement
- Q-bits demonstration in micro-traps
- The ion motion heating problem (patch potential) Our goal (short term) : Correlated ion heating measurement

AFM measurement of the electrode surface

Microfabricated ion trap

•	Previous design			
	Si substrate	Thermal oxydation	SiO2 etching	
	Au deposition upper-face + lift	Au deposition lower-face + lift	Si etching (ICP) lower-face	

• Next generation : surface trap

Research activities

Large ion Coulomb crystals in a linear Paul trap

... towards a quantum memory

Microfabricated ion traps

... towards scalable devices for quantum information processing

4-wave mixing in an atomic Rb vapour

... generation of a pair of quantum correlated light beams at 422nm

Long-range interaction N-body problem : numerical simulations ...Trap design ...Trapped ions dynamics study

Theory and new schemes for Quantum Information

...Feasibility of a quantum memory for continuous variables based on trapped ions : from generic criteria to practical implementation J. Phys. B: At. Mol. Opt. Phys., 2007, 40, pp. 413-426

... Topologically Decoherence-Protected Qubits with Trapped Ions *Physical Review Letters*, 2007, 99, 2, pp. 020503

...Quantum intensity correlation in 4-wave mixing

Publications

Feasibility of a quantum memory for continuous variables based on trapped ions : from generic criteria to practical implementation

T. Coudreau et al

J. Phys. B: At. Mol. Opt. Phys., 2007, 40, pp. 413-426

Topologically Decoherence-Protected Qubits with Trapped Ions P. Milman et al Physical Review Letters, 2007, 99, 2, pp. 020503

Photoionisation loading of large Sr+ ion clouds with ultrafast pulses S. Removille et al Applied Physics B, Volume 97, Issue 1, pp.47-52 (2009)

Trapping and cooling of Sr+ ions: strings and large clouds S. Removille et al Journal of Physics B: Atomic, Molecular, and Optical Physics, Volume 42, Issue 15, pp. 154014 (2009).

Electric field noise above surfaces: A model for heating-rate scaling law in ion traps R. Dubessy et al Phys. Rev. A 80, 031402(R) (2009)

Double- Λ microscopic model for entangled light generation by four-wave mixing Phys. Rev. A 82, 033819 (2010)