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Abstract

We present a systematic theoretical approach for construc-
tion of an arbitrarily flat excitation profile in a two-level sys-
tem using composite pulses. These consist of a sequence
or pulses having specific relative phases. If the phases are
chosen appropriately, they nullify the first few terms in an
expansion versus a desired parameter. In such way a flat
profile is accomplished.

1. Introduction

A two-state coherently-driven quantum system is described
by the Schrödinger equation

i~
d
dt

c(t) = H(t)c(t),

where c(t) = [c1(t), c2(t)]T is a vector-column containing the
two probability amplitudes of the two states. The Hamilto-
nian is

H(t) =
~
2

[
0 Ω(t) e−iD(t)

Ω(t)∗ e iD(t) 0

]
,

with D(t) =
∫ t
ti

∆(t′) dt′, where ∆ = ω0 − ω is the detuning
between the laser carrier frequency ω and the Bohr transi-
tion frequency ω0. The Rabi frequency Ω(t) = −d.E(t)/~
parameterizes the coupling between the electric field with
an envelope E(t) and the transition dipole moment d of the
system.
The evolution of the amplitudes is usually described by the
propagator U, which is defined as the operator, connecting
the initial amplitudes c(ti) with the final c(tf ),

c(tf ) = U(tf , ti)c(ti).

Resonance model
On resonance the Schrödinger equation has a solution for
arbitrary shape of the pulse, and the propagator is

U(t,−∞) =

[
cos (A(t)/2) −i sin (A(t)/2)
−i sin (A(t)/2) cos (A(t)/2)

]
,

where

A(t) =

∫ t

−∞
Ω(t′) dt′

and the transition probability is P = |U21|2 = sin2 (A/2) . For
A = π we have complete population inversion (CPI), P = 1.
However, if the pulse area deviates from π with α, we have

P = 1− α2/4 +O(α4).

2. Composite pulses

We introduce a constant phase shift φ in the Rabi frequency
Ω(t)→ Ω(t) e iφ and the amplitudes in the Schrödinger
equation change like c(t)→ Φc(t) , with

Φ =

[
e iφ/2 0

0 e−iφ/2

]

Then the phase shifted propagator will be

Uφ = Φ†UΦ =

[
a b e−iφ

−b∗ e iφ a∗

]

We consider a composite pulse consisted of a sequence
of three resonant pulses, each with a pulse area equal to
π + α, and a phase φi (i = 1, 2, 3). We demand a symmet-
ric excitation profile which leads to φ1 = φ3, and since the
global phase has no physical meaning, we will take these
for zero: φ1 = φ3 = 0. The phase in the second pulse is
φ2 = φ.
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Figure 1: A sequence of three pulses, the second one hav-
ing a relative phase φ.

We calculate the total propagator by multiplying the phased
propagators for each pulse,

Utot = U0UφU0 =

[
atot btot
−b∗tot a

∗
tot

]
,

where

atot = sin(α/2) [cosφ + cosα (1 + cosφ)]

btot = i cos(α/2) [i sinφ− 1 + cosα (1 + cosφ)]

We expand atot around α = 0 and nullify the first term in the
expansion:

atot =
(

1
2 + cosφ

)
α +O(α3) =⇒ φ = ±2π/3

The transition probability for φ = 2π/3 is

Ptot = 1− α6/64 +O(α8) ,better than Psingle = 1− α2/4 +O(α4)

We can apply the same procedure for a sequence of N
pulses and we obtain the following phases:

Table 1: Phases, measured in π/N , for different number of
pulses N .

N = 1 0
N = 3 0 2 0
N = 5 0 4 2 4 0
N = 7 0 6 4 8 4 6 0
N = 9 0 8 6 12 8 12 6 8 0
N = 11 0 10 8 16 12 18 12 16 8 10 0
N = 13 0 12 10 20 16 24 18 24 16 20 10 12 0

... ... ... ... ... ... ... ... ... ... ... ... ... ...

The relative phases fulfill the following formula (in units
π/N ):

φNk = φN−1
k + 2

⌊
k

2

⌋
The symmetric-profile condition imposes

φNk = φNN−k+1, φN1 = φNN = 0
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Figure 2: Transition probability for a single hyperbolic-
secant pulse and for a sequence of five and nine pulses
versus (a): pulse area deviation, with relative phases
as given in Table 1 and (b): detuning, where the rel-
ative phases for five pulses are (0, 1,−2, 1, 0)π/6, and
for nine pulses have the approximate numerical values
(0,−2.72, 4.49, 3.73, 1.30, 3.73, 4.49,−2.72, 0). Frames (c) and
(d) show the common logarithm of (1−P ), which is an esti-
mate of the error of the corresponding sequence of pulses.

3. Non-resonant excitation

We can apply the same method for non-resonant models to
obtain excitation profile, which is flat versus the detuning.
For instance, we consider the Rosen-Zener model, where

Ω(t) = Ω0 sech (t/T ), ∆(t) = ∆0 = const

The parameters in the propagator for this model are

a =
Γ2
(

1
2 + iδ

)
Γ
(

1
2 + iδ − α

)
Γ
(

1
2 + iδ + α

)
b = −i

sinπα

coshπδ

The transition probability is

P =
sin2 πα

cosh2 πδ
= 1− π2δ2 +O(δ4)

For a sequence of three pulses, with φ = ±π/3, we obtain

P = 1− (4π2 ln2 2)δ4 +O(δ6)

This method allows also obtaining a profile, which is insen-
sitive both to pulse area and detuning. In this case we need
to nullify terms in the Taylor expansion in respect to both
parameters.
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Five pulses: φ = (0,5,2,5,0)π/6

Figure 3: Transition probability versus detuning and pulse
area deviation for a single pulse (upper frame) and for a five-
pulses sequence (lower frame), where the relative phases
are (0, 5, 2, 5, 0)π/6.

The described technique can be applied for any pulse
shape. If we do not have an exact solution for the propa-
gator, than a numerical interpolation is used.

4. Excitation with chirped composite pulses

Chirped pulses are usually used in order to obtain complete
population inversion (CPI) by adiabatic following (RAP). Ex-
amples of chirped models are:

Ω(t) = Ω0 sech (t/T )
∆(t) = B tanh(t/T )

Ω(t) = Ω0 e−t
2/T 2

∆(t) = Ct

Figure 4: Transition probabilities for chirped pulses.

References

[1] M.H. Levitt, Prog. NMR Spectrosc. 18, 61 (1986).

[2] S. Wimperis, J. Magn. Reson. 109, 221 (1994).

[3] N. Rosen and C. Zener, Phys. Rev. 40, 502 (1932).

[4] B.T. Torosov and N.V. Vitanov, to be published.


