Smooth composite pulses in coherent atomic excitation
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‘ Abstract I

We present a systematic theoretical approach for construc-
tion of an arbitrarily flat excitation profile in a two-level sys-
tem using composite pulses. These consist of a sequence
or pulses having specific relative phases. If the phases are
chosen appropriately, they nullify the first few terms in an
expansion versus a desired parameter. In such way a flat
profile is accomplished.

1. Introduction |

A two-state coherently-driven quantum system is described
by the Schrodinger equation

- d
ih—c(t) = H(t)c(t).

where c(t) = [¢;(t), ca(t)]! is a vector-column containing the
two probability amplitudes of the two states. The Hamilto-
nian is
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H(t) =

with D(t) = [ A(')dt’, where A = wy — w is the detuning
between the laser carrier frequency w and the Bohr transi-
tion frequency wy. The Rabi frequency Q(t) = —d.E(¢)/h
parameterizes the coupling between the electric field with
an envelope E(t) and the transition dipole moment d of the
system.

The evolution of the amplitudes is usually described by the
propagator U, which is defined as the operator, connecting
the initial amplitudes c(¢;) with the final c(t ),

C(tf) = U(?ff, ti)c(t;).

Resonance model
On resonance the Schrodinger equation has a solution for
arbitrary shape of the pulse, and the propagator is

cos (A(t)/2) —isin(A(t)/2)

Ult, —o0) = [—isin (A(t)/2) cos(A(t)/2) |’

where

Alt) = / t Q(t") dt’
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and the transition probability is P = |Uy|> = sin® (4/2) . For
A = m we have complete population inversion (CPIl), P = 1.
However, if the pulse area deviates from = with o, we have

P=1-—a%/4+0O(a?).

‘ 2. Composite pulses |

We introduce a constant phase shift ¢ in the Rabi frequency
Q(t) — Q(t)e'?| and the amplitudes in the Schrédinger
equation change like (c(t) — $c(t)|, with

_ei¢/2 0
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Then the phase shifted propagator will be
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We consider a composite pulse consisted of a sequence
of three resonant pulses, each with a pulse area equal to
™+ a, and a phase ¢; (i = 1,2,3). We demand a symmet-
ric excitation profile which leads to ¢; = ¢3, and since the
global phase has no physical meaning, we will take these
for zero: ¢;1 = ¢3 = 0. The phase in the second pulse is
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Figure 1: A sequence of three pulses, the second one hav-
Ing a relative phase ¢.

We calculate the total propagator by multiplying the phased
propagators for each pulse,
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where

atot = sin(a/2) [cos ¢ + cos a (1 4 cos ¢)]
biot = 1 cos(a/2) lising — 1 4+ cosa (1 + cos @)]

We expand aiot around o = 0 and nullify the first term in the
expansion:

atot:(%+cos¢)oz+0(oz3) — ¢ =+271/3

The transition probability for ¢ = 27 /3 is

Pt = 1 — a’/64 + O(a) , better than | Pgingie = 1 — /4 + O(a*)

We can apply the same procedure for a sequence of N
pulses and we obtain the following phases:

Table 1: Phases, measured in = /N, for different number of

pulses N.
N = 0
N = 0 2 0
N = 0 4 2 4 0
N =7 O 6 4 8 4 6 0
N =9 O 8 6 12 8 12 6 8 0
N =11 0 10 8 161218 12 16 8 10 O
N =13/012 10 20 16 24 18 24 16 20 10 12 O

The relative phases fulfill the following formula (in units

m/N):
_ k

The symmetric-profile condition imposes

N _ N N _ N
Pp = ON—k+1> ¢ =N =0
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Figure 2: Transition probability for a single hyperbolic-
secant pulse and for a sequence of five and nine pulses
versus (a): pulse area deviation, with relative phases
as given in Table 1 and (b): detuning, where the rel-
ative phases for five pulses are (0,1,—2,1,0)x/6, and
for nine pulses have the approximate numerical values
(0,—2.72,4.49,3.73,1.30, 3.73,4.49, —2.72,0). Frames (c) and
(d) show the common logarithm of (1 — P), which is an esti-
mate of the error of the corresponding sequence of pulses.

‘ 3. Non-resonant excitation |

We can apply the same method for non-resonant models to
obtain excitation profile, which is flat versus the detuning.
For instance, we consider the Rosen-Zener model, where

Q(t) =Qgsech (t/T), A(t) = Ay = const

The parameters in the propagator for this model are
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The transition probability is

sin2 T

P=—"0—=1-7%"+0("
cosh® o

For a sequence of three pulses, with ¢ = £7/3, we obtain
P=1—(4r’In*2)6* + O(6Y)

This method allows also obtaining a profile, which is insen-
sitive both to pulse area and detuning. In this case we need
to nullify terms in the Taylor expansion in respect to both
parameters.

Single pulse

1

O | -
21
c) .
g Five pulses. ¢ = (0,5,2,5,0)n/6
S5 1 '
[
&)

1

0 1
Pulse Area Deviation (in units )

0.3
06
0.
0 -
-1
1

Figure 3: Transition probability versus detuning and pulse
area deviation for a single pulse (upper frame) and for a five-
pulses sequence (lower frame), where the relative phases
are (0,5,2,5,0)w /6.

The described technique can be applied for any pulse
shape. If we do not have an exact solution for the propa-
gator, than a numerical interpolation is used.

‘ 4. Excitation with chirped composite pulses |

Chirped pulses are usually used in order to obtain complete
population inversion (CPI) by adiabatic following (RAP). Ex-
amples of chirped models are:

Qt) = Qgsech (t/T)
A(t) = Btanh(t/T)

Qt) = Qpe —*/T"
At) = Ct
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Figure 4: Transition probabilities for chirped pulses.
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