Sympathetic cooling of rotationally and vibrationally state-selected molecular ions

Xin Tong

Department of Chemistry

University of Basel

ECTI2010, Durham

Motivation

Localized (translationally cooled) molecular-ions in <u>well-</u> defined internal states are of broad interest for physics and chemistry

- State-selected ultracold collision studies
- Precision spectroscopy on single molecular ions
- Quantum computing/molecular-ions qubits
- Molecular internal state control experiments
- Ultracold molecular plasmas

Sympathetic Cooling and bi-component Coulomb Crystal

Fluorescence images of a Ca^+/N_2^+ bi-component Coulomb Crystal.

- The N_2^+ ions are only indirectly visible as a dark core.
- Image contains 925±25 Ca⁺ and 24±1 N₂⁺ ions with averaged thermal energies of 8±1 mK for Ca⁺; 11±1 mK for N₂⁺ determined by Molecular Dynamics simulation.
- Ions sympathetically cooled from a "warm" sample are translationally cold, but not quantum-state selected.

First approach: Optical pumping of translantionally cold, internally warm molecular ions

Staanum et al., Nature Physics 6, 271-274 (2010).

Schneider et al., Nature Physics 6, 275-278 (2010).

Second (our) approach: Sympathetic cooling of state-selected lons (example: N₂⁺)

Rovibrational state selection in the cation was achieved by **resonance-enhanced [2+1'] threshold photoionization.**

- Rotational propensity rule: $\Delta N = N^+ J' = 0, \pm 2$.
- Photoionization slightly above the desired ionization threshold.

S. Willitsch et al., Int. J. Mass Spectrom. 245, 14-25 (2005).

S.R. Mackenzie et al., Mol. Phys. 86, 1283-1297 (1995).

Experimental Setup

Quantum-State Diagnostics of the sympathetically cooled N₂⁺ ions

Rotational-state population was probed using **laser-induced charge-transfer (LICT)** with Ar atoms.

S. Schlemmer, Int. J. Mass Spectrom. 185-187, 589-602 (1999).

Quantum-State Diagnostics

 $N^{+} = 0$

 $N^{+} = 1$

 $N^{+} = 2$

- ▶ LICT efficiency: $51 \pm 6\%$ (averaged over five experiments). Max.: 55%
- \blacktriangleright N₂⁺ ions are fully state selective (ground-state population 93±11%).
- No evidence of population observed in $N^+ = 1$ and 2 rotational states.
- The population is preserved in $N^+ = 0$ during the sympathetic cooling process.

Generation of Rotationally Excited N₂⁺ lons

- ▶ The LICT efficiencies: $27 \pm 7\%$ for F₁ and $28 \pm 7\%$ for F₂ (five experiments).
- Both components are produced with equal probability.
- ▶ The total LICT efficiency out of N^+ = 3 amounts to 55±9%. (Maximum: 55%)

Quantum-State Diagnostics

- There is no evidence of population observed in N⁺ = 0, 1, 2 and 4 rotational states.
- The population is preserved in N⁺ = 3 during the sympathetic cooling process.

State Lifetimes

Conclusion

- Generation of quantum state-selected and translationally cold molecular ions.
- The population is preserved during the sympathetic cooling process.
- States lifetime is on order of 15 minutes limited by collisions with background gas.

X. Tong, A. H. Winney, and S. Willitsch, Phys. Rev. Lett. In print (2010). (arXiv 1006.5642)

Outlook

- Molecular ions in selected spin-rotation levels.
- Sympathetic cooling of state-selected polar molecular ions in a cryogenic environment (possible issues: blackbody radiation, dipole collisions)
- State-selected cold chemistry.
- Many others

Acknowledgement

- Prof Stefan Willitsch
- Group members

Alexander H. Winney, Matthias Germann

Dr Iulia Georgescu

Felix Hall

Funding

Swiss National Science Fundation

University of Basel

Thank You All