

Towards Cryogenic Surface Ion Traps

M. Niedermayr¹, M. Kumph¹, R. Lechner¹, A. Pauli¹, M. Brownnutt¹, R. Blatt^{1,2}

¹Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria ²Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften

Micro Ion Traps Traditional Ion Traps Planar Surface Traps Motivation RFDC Scalability to many ions remains one of the most

challenges significant ion trap quantum tor computing.

Ion-heating rate can be reduced by ~2 orders of magnitude by cooling trap from 300 K to 6 K¹

Setup

- Sample temperature ~6-10 K
- Easily implemented UHV conditions
- Good optical access

no mechanical coupling between cryocooler and vacuum chamber

Cryogenic System: Gifford McMahon Cooler

AFM picture of gold electrodes

(surface roughness R_a 1.16 nm)

Our First Home-made Surface Ion Trap (Yedikule, Lift Off)

Light microscope picture

- 9 segements (width: 175 μm)
- Ion-electrode distance: 130 µm
- Gap between electrodes 17 µm
- Gold electrodes (300 nm thick) on fused silica

Outlook

• Fabricate and optimize new

ion traps

- Measure heating rates of ullet
 - different traps at low temperatures
 - (lift off, electroplating)
- **Develop 2D arrays** lacksquare
- Implement entangling operations