

The remaining QIP challenge

DiVincenzo requirements:

- I. A scalable physical system with well characterized qubits
- II. The ability to initialize the state of the qubits to a simple fiducial state
- III. Long relevant decoherence times, much longer than the gate time
- IV. A universal set of quantum gates (single qubit rot., two qubit gate)
- V. A qubit-specific read out capability

Overview

- Introduction to ion traps
- Atomic physics for ion-qubits
- Manipulation of ion-qubits with laser fields
- Scalable QIP with trapped ions
- Example experiments

Please ask questions! (dil@boulder.nist.gov)

More exhaustive, formal and rigorous treatments:

[1] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, J. Res. Nat. Inst. Stand. Tech. 103, 259 (1998); M. Sasura and V. Buzek, J. Mod. Opt. 49, 1593 (2002); D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys. 75, 281 (2003); H. Häffner, C. F. Roos, and R. Blatt, Physics Reports 469, 155 (2008); D. Kielpinski, Front. Phys. China 3, 365 (2008)

Overview

- Introduction to ion traps
- Atomic physics for ion-qubits
- Manipulation of ion-qubits with laser fields
- Scalable QIP with trapped ions
- Example experiments

Traps for single charged particles

Paul trap 1956 AC/DC electric fields

Wolfgang Paul

Penning trap 1959 (Dehmelt, Gräff) DC electric/magnetic fields

Hans Dehmelt

1980/1981 single trapped and laser cooled atomic ions at Univ. of Heidelberg and NIST

CCD image of two trapped and laser cooled ⁹Be⁺ ions in a Paul-trap at NIST

Pseudopotential approximation

equations of motion of ion described by Mathieu equations; can be rigorously solved "pseudopotential approximation" often sufficent:

 $m\ddot{x} = q \mathbf{E} \cos(\Omega_{\mathsf{rf}} \mathbf{t})$

assume field is slowly varying over space, then to first order ion will "quiver" at the drive frequency

associate kinetic energy with this "micro-motion" and average over one cycle of the driving field

$$U_{\mathsf{kin}} = q imes \Phi_{\mathsf{pp}} = q imes rac{q \mathbf{E}^2}{4m \Omega_{\mathsf{rf}}^2}$$

typically ion is trapped at field-zero with approx. quadratic spatial field dependence $\Phi_{\rm el} = V_0 \cos(\Omega_{\rm rf} t) \frac{1}{2} (\alpha x^2 + \beta y^2 + \gamma z^2), \quad \alpha + \beta + \gamma = 0 \qquad \text{(Laplace)}$

$$\Phi_{\rm pp} = \frac{qV_0^2}{4m\Omega_{\rm rf}^2} (\alpha^2 x^2 + \beta^2 y^2 + \gamma^2 z^2)$$

electric equi-potential lines (black thin) harmonic equi-pseudo-potential lines (red dashed)

The linear Paul trap

Harmonic oscillators

Examples: pendulum vibrating string ball on spring cantilevers resonant circuits light field quantum fields . . .

trapped ions

|2>

|1>

|0>

sinusoidal oscillations

energy eigenfunctions are stationary in time... so where's the pendulum?

use superposition of energy eigenfunctions, called "coherent states" (Schrödinger 1926, Glauber 1963) to shape "oscillating ground states"

Phase space

classical sinusoidal oscillation

momentum p (mass × velocity)

quantum mechanics: Heisenberg uncertainty

$$\Delta x \Delta p \geq \hbar/2$$

Gaussian wave-packet of coherent state fulfills the equality.

frame rotating at oscillation frequency

Overview

- Introduction to ion traps
- Atomic physics for ion-qubits
- Manipulation of ion-qubits with laser fields
- Scalable QIP with trapped ions
- Example experiments

One electron systems

Resonant $S \rightarrow P$ transition

nP (2P for Be⁺) excited state (life-time a few ns)

optically pump for state preparation

Resonant $S \rightarrow P$ transition

nP excited state (life-time a few ns)

Resonant $S \rightarrow P$ transition

nP excited state (life-time a few ns)

Electron shelving detection

3 Ca⁺ ions, Univ. of Innsbruck [PRA **60**, 145 1999]

Ion qubits $(|\downarrow\rangle, |\uparrow\rangle)$

Possible qubits (list is not exhaustive)

	hyperfine qubit	hyperfine+ optical qubit	optical qubit
degrees of freedom	nuclear spin electron spin	nuclear spin electron spin electron energy	electron energy
species	⁹ Be ⁺ , ²⁵ Mg ⁺ , ¹¹¹ Cd ⁺ , ⁶⁷ Zn ⁺ ¹³⁷ Ba ⁺ , ¹⁷¹ Yb ⁺	⁴³ Ca+, ⁸⁷ Sr+, ¹⁹⁹ Hg+	⁴⁰ Ca+, ⁸⁸ Sr+

Bloch sphere picture $|\Psi\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle; \quad |\alpha|^2 + |\beta|^2 = 1$ $|\Psi\rangle = e^{i\gamma}(\cos\theta/2|\uparrow\rangle + e^{i\phi}\sin\theta/2|\downarrow\rangle)$

Overview

- Introduction to ion traps
- Atomic physics for ion-qubits
- Manipulation of ion-qubits with laser fields
- Scalable QIP with trapped ions
- Example experiments

The initial idea

- Ions are used for atomic clocks \Rightarrow well characterized qubits
- Ions can be optically pumped and cooled to the trap ground state
- \Rightarrow well defined initial system state (see David Lucas' talk)
- Ions can be read out with high fidelity
- Atomic clocks can have coherence times of many seconds
- Shared eigenmodes of oscillation can provide qubit-qubit coupling

J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

Coherent excitations

Excitation spectrum for ion in trap (internal+motion) similar in both cases

Interaction Hamiltonian

 a_0 typically order 10 nm for a few MHz trap frequency, λ typically 200-400nm

Interaction Hamiltonian

over the extension of the wavefunction the electric field is to first order constant with a gradient term smaller by order η that can force the motion

interaction picture operator
$$a_i = a e^{-i\omega_m t}$$

$$\begin{split} H_{I} \simeq \hbar \Omega_{0} e^{-i([\delta_{0} - \omega_{0}]t + \phi)} |\uparrow\rangle \langle\downarrow| + \text{h.c.} \qquad \text{(carrier)} \\ + i\hbar \eta \Omega_{0} e^{-i([\delta_{0} - (\omega_{0} + \omega_{m})]t + \phi)} a^{\dagger} |\uparrow\rangle \langle\downarrow| + \text{h.c.} \qquad \text{(blue sideband)} \\ + i\hbar \eta \Omega_{0} e^{-i([\delta_{0} - (\omega_{0} - \omega_{m})]t + \phi)} a |\uparrow\rangle \langle\downarrow| + \text{h.c.} \qquad \text{(red sideband)} \end{split}$$

Sideband spectrum

sideband thermometry:

$$\frac{I_{\rm red}}{I_{\rm blue}} = \frac{\bar{n}}{\bar{n}+1}$$

red sideband vanishes for

 $ar{n}
ightarrow 0$ (motional ground state)

for N ions get 3 N sideband manifolds

Single qubit rotations

Universal two-qubit gates

theoretical proposals:

- J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
- A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971 (1999).
- E. Solano, R. L. de Matos Filho, and N. Zagury, Phys. Rev. A 59, 2539 (1999).
- G. J. Milburn, S. Schneider, and D. F. V. James, Fortschr. Physik 48, 801 (2000).
- A. Sørensen and K. Mølmer, Phys. Rev. A 62, 02231 (2000).

X.Wang, A. Sørensen, and K. Mølmer, Phys. Rev. Lett. 86, 3907 (2001).

Cirac-Zoller gate contains all basic ingredients Molmer-Sorensen+phase gates insensitive to motional state

M&S and phase gates equivalent in complementary basis:

 $\{|\uparrow\rangle,|\downarrow\rangle\}$ phase gate

first universal gate implementation (M&S) Sackett et al., Nature **404**, 256(2000) first C&Z gate, Schmidt-Kaler et al., Nature **422**, 408 (2003) first phase gate, Leibfried et al. Nature, **422**, 412 (2003) since then more M&S/phase gate work at Michigan/Maryland and Innsbruck detailed theoretical description of all 3 gates: P J Lee et al., J. Opt. B **7**, S371 (2005).

M&S {|

 $|+\rangle, |-\rangle\}$

Laser excitation of the harmonic oscillator:

Laser excerts light force on atom Detuned beams beat in amplitude at trap frequency Resonant light force excites motion Spin-up and spin-down feel different force (even in superposition)

Stretch mode excitation

Phase space picture

(needs animation)

$$|\downarrow\downarrow\rangle \rightarrow |\downarrow\downarrow\rangle$$

Same technique can be applied to more ions (including spectators), N-particle entangled states, teleportation, 3-qubit error correction, entanglement purification...

Overview

- Introduction to ion traps
- Atomic physics for ion-qubits
- Manipulation of ion-qubits with laser fields
- Scalable QIP with trapped ions
- Example experiments

Scaling example approaches

array of elliptical traps optical cavities as interconnects

DeVoe, Phys. Rev. A 58, 910 (1998)

array of single ion traps "head ion" for interconnects

Cirac & Zoller, Nature 404, 579 (2000)

array of two-ion traps interconnects by probabilistic entanglement

L. M. Duan *et al.*, Quant. Inform. Comp. **4**, 165 (2004)

Multiplexed trap approach

(needs animation)

D. J. Wineland, *et al.*, J. Res. Nat. Inst. Stand. Technol. **103**, 259 (1998); D. Kielpinski, C. Monroe, and D. J. Wineland, Nature **417**, 709 (2002).

Other proposals: DeVoe, Phys. Rev. A **58**, 910 (1998) . Cirac & Zoller, Nature **404**, 579 (2000) .

Multi-layer multi zone traps

6 zone 2 layer linear trap (NIST, 2003)

29 zone 2 layer linear trap (Ulm, 2006)

9-zone 3-layer T-trap (Michigan, 2006) first junction transport experiments

18 zone 2-layer junction trap (NIST, 2007) for experiments see Dave Wineland's talks

More integrated ion chips?

Surface electrode trap basics

radial confinement:

radial cross section

axial confinement:

axial cross section

J. Chiaverini et al., Quant. Inform. Comp. 5, 419439 (2005)

NIST Planar Trap Chip

RF

Gold on fused silica

trap designed and manufactured by John Chiaverini, Signe Seidelin (NIST)

Planar Trap Chip

John Chiaverini, Signe Seidelin

S. Seidelin et al., PRL 96, 253003 (2006).

NIST trap chip module (Jason Amini)

- 2 load zones
- 6 improved junctions
- 150 control electrodes

- backside loading
- motion through junctions
- utilize for multi-qubit work

Motional heating

Heating rate orders of magnitude over Johnson noise, physical origin unknown

electrode temperature < 12 K

Overview

- Introduction to ion traps
- Atomic physics for ion-qubits
- Manipulation of ion-qubits with laser fields
- Scalable QIP with trapped ions
- Example experiments

Experiment control

Homework assignment (example experiments)

• Innsbruck approach: linear ion strings in single well, M&S gates + local shifts

.

local AC-Stark-shift beams

global gate beams, global spin flips

G. Kirchmair *et al.*, New Journal of Physics **11**, 023002 (2009) V. Nebendahl *et al.*, PRA **79**, 012312 (2009)

• Michigan/Maryland approach: small local registers linked by photons

D. L. Moehring et al., Nature 449, 68 (2007)

S. Olmschenk et al., Science 323, 486 (2009)

•NIST approach: (see earlier in the talk and D. Wineland's talk on Wed.) Jonathan Home *et al.*, Science **325**, 1227 (2009) David Hanneke *et al.*, Nature Physics **6**, 13 (2010)

Conclusions

- Coherent manipulation of up to 14 qubits demonstrated in ion traps (see Rainer Blatt's talk)
- Successful implementation of basic QIP building blocks (teleportation, error correction, entanglement purification, entanglement swapping, multipartite entanglement, ...)
- Development of scalable micro-fabricated ion traps under way with very encouraging first results
- For more of the "latest and greatest", see other talks in this meeting