Molecular hydrogen ions, the proton-electron mass ratio and the proton size

Jeroen Koelemeij, Daniël Noom, Daniël de Jong, M. Ali Haddad, Kjeld Eikema, Wim Ubachs LaserLaB, VU University Amsterdam, the Netherlands

Motivation

- **Proton-electron** mass ratio μ : fundamental quantity, sets scale of vibrations and rotations in atoms, molecules and bulk material
- Standard Model describes structure of nuclei, atoms, molecules (latter primarily QED, but also QCD)
- QED for simple systems (H, H₂⁺, HD⁺) has reached accuracy ~10⁻¹⁰ limited substantially by non-QED contributions $(\mu, \text{ internal structure proton & deuteron})$
- Compare measurements H_2^+ , HD^+ at ~10⁻¹⁰ accuracy with theoretical calculations to test QED & extract improved values for μ , proton Zemach radius, deuteron electric quadrupole moment
- Long term perspective: HD⁺ spectroscopy at <10⁻¹⁵, comparison with optical clocks to test constancy of μ [7]

Experiment

Results

Observation of (v, J): $(0,2) \rightarrow (8,3)$ overtone at 781.9166 nm

Simulated spectrum (v,J) : $(0,2) \rightarrow (8,3)$

- Assume Doppler broadening 10-20 MHz • Line split > 1:100 [3]
- \Rightarrow expect 100-200 kHz accuracy per line (100 kHz ~ 0.26 ppb @ 782 nm)
- Include theoretical hyperfine structure (current accuracy for HD⁺ <50 kHz [6])
- Improve knowledge of HFS to <100 Hz through RF spectroscopy (see Outlook)

Approach

Determination of μ from some observable $A = A(\mu)$ in three steps :

- **1. QED theory** provides function $A(\mu)$
- 2. High-precision measurement of value A_m

3. Adjust $\mu \rightarrow \mu'$ so that $A(\mu') = A_m$

Current best determination of μ :

- Hydrogen-like ions in Penning trap:
- $A(\mu) = f_{\text{spin-flip}}/f_{\text{cyclotron}} = -g \eta \mu$
- QED provides bound-electron *g*-factor; η known with sufficient accuracy from other experiments
- μ value found with relative accuracy 5.2×10⁻¹⁰ [1]
- CODATA06 recommended value: $\mu = 1836.15267247(80)$ (4.3×10^{-10})

Determine μ from vibrational spectroscopy of HD⁺

Advantages HD⁺

'AC-Starkless' REMPD detection

- HD⁺ vibrational frequencies $v_i \equiv v_i(\mu)$
- Dipole-allowed overtones between long-lived (>10ms) vibrational states
- Detection: loss of HD⁺ due to REMPD[2]
- v = 0, J = 0.5 populated by 300K BBR [8] \Rightarrow many tens of rovibrational lines accessible to IR lasers
- Systematic shifts <100 kHz, _0.60 uncertainties <<100 kHz [3] [†][a.u.] 1 (100 kHz ~ 0.26 ppb @782nm)

Projected uncertainty μ

Future experiments μ

- HD⁺ ions in Lamb-Dicke trap ~10 Hz natural linewidth, so
- Time-variation of μ?

RF spectroscopy and proton size

- Doppler free (Lamb-Dicke)
- Measure *e-p* spin-spin interaction with accuracy <100 Hz
- Subtract QED terms (assume H₂) theoretical accuracy ~100 Hz [4])
- Remaining contributions: Zemach radius, proton polarizability (current inaccuracy ~500 Hz to HFS contribution) ⇒ Improved data on proton structure?

6. D.Bakalov, V.Korobov, S.Schiller, PRL 97, 243001 (2006)

- S. Schiller, V.Korobov, PRA 71, 032505 (2005)
 J. Koelemeij, B. Roth, S. Schiller, PRA 76, 023413 (2007)

arge Franck little dissociation ondon factor & AC-Stark shift from v=8 trong dissociatio -0.45 & AC-Stark shift -1-7 H(1s)+D -0.50313 nm D(1s)+H 782 nm -0.55 AC-Stark shift v'=8 5-14 kH .*P*= 2 3 2-9 kH

3. J.Koelemeij et al., PRL 98, 173002 (2007) V.Korobov, L.Hilico, J.-Ph.Karr, PRA 79, 012501 (2009)
 V.Korobov, PRA 77, 022509 (2008)

<<10⁻¹⁰ accuracy possible 'Molecular optical clock'