

New Approaches To An Indium Ion Optical Frequency Standard

Kazuhiro HAYASAKA

National Institute of Information and Communications Technology(NICT)

e-mail:hayasaka@nict.go.jp

Outline

1. Introduction

- 2. New approaches
- 3. Status of the project $(0)In^+-Ca^+$ chain synthesis (1)quantum logic spectroscopy (2)VUV excitation $(3)^1S_0-{}^3P_1$ excitation

4.Summary

Motivation: smaller frequency uncertainty

⁴⁰Ca⁺ optical clock at NICT

411 042 129 776 390 (7) Hz (2×10⁻¹⁴) Appl. Phys. Expr. **1**, 067011(2008)

411 042 129 776 393.2 (1.0) Hz Innsbruck, PRL.102, 023002 (2009)

2nd system: with magnetic shield

However,

fractional uncertainty is limited to in the order of 10⁻¹⁵ due to quadrupole shift, black body radiation(BBR) shift

need of IIIA ions (B⁺, Al⁺, Ga⁺, In⁺, Th⁺) for smaller fractional uncertainty

Energy structure of IIIA ions

Common feature of III A ions

•good clock transition (¹S₀-³P₀) •high Q value

•no quadrupole shift

small BBR shift

ECTI2010

•cooling/detection transition $({}^{1}S_{0} - {}^{1}P_{1})$ in VUV hard to access

4

Traditional In⁺ optical clock (MPQ, Erlangen)

Single In⁺ in a Paul-Straubel trap

- bicromatic sideband cooling at 230nm

clock transition $({}^{1}S_{0} - {}^{3}P_{0})$

- linewidth 0.8Hz

- no quadrupole shift
- small BBR shift estimated at 300K
 - < 7 × 10⁻¹⁷ Becker *et.al*. PRA 63,051802(2001)
 - 4.7 × 10⁻¹⁷ Peik (2002)
 - 3.8 × 10⁻¹⁷ Wang *et. al.* (2006)
 - 2.0 × 10⁻¹⁷ Kajita (2010)

Fractional uncertainty in the order of 10⁻¹⁸ is expected

However, reported numbers remain in the order of 10⁻¹³ 1 267 402 452 899.92 (0.23) kHz (1.8 × 10⁻¹³) von Zanthier *et. al.* Opt. Lett. **25**, 526(2000) 1 267 402 452 901.265 (0.256) kHz (2.35 × 10⁻¹³) Y.H Wang, *et. al.* Opt. Commun. **273**, 526(2007)

New approaches

- Basic configuration: In⁺ in a linear trap with other ions
 - Cooling is provided by sympathetic cooling (currently by ⁴⁰Ca⁺, in future by ¹¹⁵Cd⁺)
 - Detection is provided by three methods
 - 1. Quantum logic spectroscopy (QLS)
 - 2. Vacuum ultraviolet (VUV) excitation at 159nm multimode pulses generated by high harmonic generation(HHG) of Ti:S laser (795nm) might be used.
 ¹P₁
 ³P₂
 - 3. ¹S₀-³P₁ excitation at 230nm slow detection is compensated by clock laser locked to Sr optical lattice clock.

Procedure of building Ca⁺- In⁺ chains

ECTI2010

Snapshot of Ca⁺-In⁺ chain synthesis

rf voltage 430V->60V **1s**

In⁺ number adjustment by rf control

Configuration control by DC control

Quantum logic spectroscopy

Coherent VUV source for optical clocks

VUV generation Setup

Observation of the VUV output

Estimation of photon counting rate

*Fiber laser based system at JILA: 50uW at 153nm (7th)!!

Stabilization of In⁺-Ca⁺ configuration

diode-laser based 230nm source

ECTI2010

Clock laser under construction

Hybrid optical clock

A clock with stability of optical lattice clock and accuracy of single ion clock

Summary

- New approaches to In⁺ an optical frequency standard
 - Sympathetically cooled In⁺ in a linear trap
 - Detection by three methods
 - Quantum logic spectroscopy
 - Initialization of In⁺-Ca⁺ is in progress
 - VUV excitation
 - 1.5 μW at 159 nm was generated
 - 12,000cps expected when $100\mu W$ is available
 - ¹S₀-³P₁ excitation assisted by Sr optical clock
 - all components are almost ready
- Clock operation will be reported in the 2nd ECTI conference