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Abstract. Cold rubidium atoms are subjected to an amplitude-modulated far-detuned
standing wave of light to form a quantum-driven pendulum. Here we discuss the dynamics of
these atoms. Phase space resonances and chaotic transients of the system exhibit dynamics
which can be useful in many atom optics applications as they can be utilized as means for
phase space state preparation. We explain the occurrence of distinct peaks in the atomic
momentum distribution, analyse them in detail and give evidence for the importance of the
system for quantum chaos and decoherence studies.
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1. Introduction

Cold atoms have been used in a variety of experiments.
Here we report on the dynamics of cold atoms exposed to
a modulated standing light wave. There are many different
effects that can occur when atoms are subjected to a standing
wave of light. A standing wave can be used to diffract
atoms to act as a coherent beam splitter. This interaction
is similar to Bragg diffraction of light by a crystal [1] and
is used for interferometry applications. Anderson et al
have used cold atoms in a standing wave to demonstrate
an effect similar to the AC Josephson effect [2]. In this
experiment the interference of atoms tunnelling through
light potentials was observed. To observe a Wannier–Stark
ladder, Raizen’s group has subjected cold atoms to a phase-
modulated accelerating standing wave [3]. In yet another
experiment a far-detuned standing wave has been used to
focus an atomic beam. The atoms traversed the standing
wave field and each node acted as an individual lens, the
entire standing wave being equivalent to an array of lenses.
Using this principle permanent nanostructures were created
with Cr atoms [4].

An optical standing wave can be used to manipulate
atoms and prepare them to have a certain momentum (as
we will show later in this paper) for various atom optics
applications. Standing wave experiments can also be used
to study one of the frontiers of physics, the field of ‘quantum
chaos’ and decoherence. Quantum chaos deals with quantum
behaviour in classically chaotic systems. It is the desire to
understand the quantum mechanical origin of the observed
chaos which drives this area of research. Chaos can be
interpreted as the rapid divergence of arbitrarily close points

in phase space. This concept is not really compatible
with structure being smoothed away on small scales of
phase space volume (<h̄), due to the Heisenberg uncertainty
principle [5,6]. In fact, the quantum classical correspondence
for dynamical systems is still unclear and a subject of
discussion. Decoherence plays an integral role.

Graham et al [7] proposed to use cold atoms to study
quantum chaos. Cold atoms in a standing light wave are an
ideal system to study quantum and classical dynamics and
the effects of decoherence. The dynamics can be carefully
controlled using a wide array of possible optical potentials.
Decoherence can be introduced in two ways, either by the
addition of specific noise to the modulation of the optical
standing wave, or by changing the detuning of the standing
wave, increasing the amount of spontaneous emission and
therefore producing random recoil kicks on the atoms.

Moore et al [8] and Ammann et al [9] have used
cold atoms to simulate the quantum delta-kicked rotor
(Q-DKR). Here the standing wave is periodically turned
on and off and the atomic momentum distribution is
measured as a function of the number of kicks. The
first experimental observation of dynamical localization
(quantum suppression of chaotic diffusion) in cold atoms was
reported by Raizen’s group [10]. The trajectories of atoms
can interfere destructively, hindering the atomic diffusion.
Dynamical localization can be observed by measuring the
kinetic energy of atoms as a function of the number of
kicks. While classically, one would expect to observe linear
growth proportional to the classical diffusion constant, it is
observed in the experiment that, after the quantum break
time, the measured energy stops growing, in agreement
with the quantum prediction. In this system decoherence
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was applied in a controlled way using amplitude noise and
near-resonant optical molasses [9, 11]. It was found that
both factors led to the destruction of dynamical localization.
Therefore decoherence might be considered as the link
between the classical and quantum worlds, validating the
quantum/classical correspondence principle.

To gain a better insight into quantum chaos, it is
important to design experiments where one can vary and
control the scaled Planck’s constant of the system. If this
is possible, then the degree of divergence between quantum
and classical physics can be analysed for different values of
the scaled Planck’s constant. Furthermore, it is possible to
test whether the introduction of decoherence into a system is
equivalent to the limit of Planck’s constant going to zero. This
goal may be achieved when using the system of the quantum-
driven pendulum (QDP). It corresponds to the dynamics of
atoms in an amplitude-modulated standing wave. The scaled
Planck’s constant k for this system is inversely proportional
to the modulation frequency of the standing wave, which can
be varied to investigate both classical and quantum regimes.
Our group has already seen evidence for the occurrence of
quantum effects in this system for large values of k [12]. In
this present paper we will present some of our results for the
QDP which are related to the area of quantum chaos. We
will discuss the origin of distinct peaks in the momentum
distribution and analyse some of their properties. The QDP
has a mixed phase space consisting of regions of regular
motion (resonances) which are bounded by Kolmogorov,
Arnold and Moser (KAM) surfaces [13] surrounded by a
sea of chaos. The resonances are a distinct feature of the
atomic momentum distribution. To date, we know of two
kinds of quantum effects for this system. Firstly, the velocity
of the resonances predicted in quantum and classical models
differs significantly for values of large k. A velocity shift
was predicted theoretically by Milburn et al in the theory of
quantum slow motion [14].

The second quantum effect which has been discussed is
quantum phase space tunnelling. As predicted by Dyrting
et al [15, 16] atoms can coherently tunnel from one region
of regular motion to another. To do this, atoms have to cross
KAM surfaces, which is forbidden classically. The tunnelling
effect can be pictured as atoms tunnelling from one kind
of oscillatory motion to another oscillatory motion which is
180◦ out of phase. This means that atoms do not only tunnel
in position but also in momentum. Our aim is to construct
an experimental procedure to study this phenomenon. Once
phase space tunnelling is implemented the system is an ideal
testbed for studies of decoherence. We will discuss here some
possible methods for observation of the tunnelling. We will
also present some new results on the dynamics of phase space
resonances.

2. Description of the experimental setup

In order to study the effects of a standing wave on cold atoms a
source of such atoms is needed. In our experiments rubidium
atoms are cooled down to around 8 µK (corresponding
to a 1/e momentum spread of 13 recoil momenta) in a
standard magneto-optic trap (MOT) [17]. The specifications
of the MOT are as follows. The pressure in the vacuum

chamber is around 10−9 Torr. The magnetic field coils
produce a magnetic field gradient of 10−1 T m−1 in an anti-
Helmholtz configuration. Zeroing of the Earth’s magnetic
field is achieved using the Hanle effect [18]. When applying
a magnetic field the magnitude of absorption of the laser
beams changes slightly when the laser is at resonance with
the atomic vapour. This can be used to zero the magnetic
field with high precision. An injection locking scheme is
utilized to decrease the linewidth of the trapping diode laser
down to 100 kHz, while allowing all the power of the laser
to be used in the trapping experiment. Around 106 rubidium
atoms are polarization-gradient cooled for 10 ms. Then the
MOT is turned off but the repumping beam is left on so that
the atoms accumulate in the F = 3 ground state. We wait
for 500 µs to allow for effective repumping. The standing
wave is turned on for a precise duration and is intensity
modulated using an AOM as described below. After the
standing wave is switched off, the atoms undergo a period
of ballistic expansion (between 3–20 ms). Following this,
an image of the cloud is taken using a freezing molasses
technique [8, 19]. In this technique the optical molasses is
turned on again, with the magnetic field still turned off. As
a result of this the atomic distribution is frozen at its current
position and the fluorescence resulting from the ‘frozen’
atoms is viewed with a 16-bit charged coupled device (CCD)
camera. The CCD array of the camera is cooled, leading to
a quantum efficiency of around 80% and a RMS read noise
of 6.7 electrons. The experiment is repeated multiple times
with different ballistic expansion times to allow a statistical
measurement of the velocity of the atoms with high precision.

The experimental setup is shown in figure 1. The
standing wave is produced using a frequency-stabilized
titanium sapphire laser (Ti–S). It produces up to 2 W of
light at 780 nm with a linewidth of 1 MHz. To reduce the
intensity noise, polarization noise and pointing instability to
less than 1% we have implemented the following technique.
The Ti–S beam is first passed through an 80 MHz acousto-
optic modulator (denoted by AOM1 in figure 1) and the
zeroth order is fed into a polarization-preserving single-mode
optical fibre. Part of the output beam from the fibre is leaked
through a mirror and a polarizer to a photodetector, which
gives an electronic feedback signal to the AOM1 on the
other end of the fibre to compensate for fluctuations. In
our experiments we modulate the intensity of the optical
standing wave. AOM2 (as seen in figure 1) modulates this
beam and produces an intensity modulation of the form
I0(1 + 2ε cosωmt) where ε is the depth of modulation, ωm
is the modulation angular frequency and I0 the unmodulated
intensity. After the light has passed through AOM2 and the
vacuum chamber, we regularly monitor the beam quality in
the far field, utilizing a lens to expand the beam to ensure that
a regular Gaussian profile is maintained. To test the spectral
purity of our modulated standing wave the modulated light
wave was observed on a fast photodetector and subsequent
Fourier analysis of this signal indicated a spectral impurity
of about one part in a thousand. The light after AOM2 was
collimated to a 1/e width of 3.25 mm. The beam passes
through the vacuum chamber and through the atomic cloud
and is retroreflected to form the one-dimensional periodic
optical potential. There are several procedures to align the
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Figure 1. Schematic diagram of the experimental setup. L1, L2 are
lenses used to couple the laser beam in and out of the optical fibre
which is utilized to optimize the pointing stability and to improve
the quality of the laser beam. AOM1 is used for stabilization of the
light intensity. AOM2 produces the intensity modulation which is
needed to produce an amplitude-modulated standing wave.

beam so that the beam is centred on the cloud. In one
method the light frequency is tuned close to the spectral
resonance of the trapped atoms. The beam is then moved
until it blows the trapped atoms out of the centre of the
trap, which can be observed on a CCD camera. This is
good for rough alignment. The light is then further detuned
and the alignment is improved by ensuring that all the atoms
are blown out of the trap again. Subsequent iterations of
this procedure lead to a precise alignment of the incoming
beam. The retroreflection is aligned using an aperture located
far away from the retro mirror just before the output of the
single-mode polarization-preserving fibre. A beam splitter,
located right between the aperture and fibre output reflects
light only if the retroreflection passes through the aperture.
The alignment of the retroreflection was measured to be good
to approximately 0.02◦. We have measured the variation of
the scaled well depth κ over the extent of the atomic cloud
to be approximately 2%. The final maximum irradiance of
the standing wave in the region of the atomic cloud was
12 ± 0.5 W cm−2. A telescope before AOM2 is used to
decrease the beam diameter and consequently increase the
efficiency of the AOM. Using another telescope after AOM2

the beam diameter can be controlled and the beam is carefully
collimated. The whole experiment is computer controlled
using the LabVIEW programming environment and a GPIB
interface.

3. The QDP

As mentioned before, the QDP corresponds to atoms in an
amplitude-modulated standing wave. A thorough theoretical
treatment of the system can be found in Hensinger et al [12].
The dynamics of the atoms along the axis of the standing wave
can be calculated using the master equation for the system.
In the interaction picture this is given by

ρ̇ = − i

h̄
[H, ρ] + �L1ρ. (1)

HereH is the Hamiltonian for the centre-of-mass and internal
state of the atom. The superoperator L1 describes the

incoherent evolution due to the coupling to the vacuum field
modes at a rate �. To calculate the dynamics of the atoms
the excited state of the atom is adiabatically eliminated [12].
This is justified if the detuning of the standing wave δ is much
greater than the maximum of the Rabi frequency �(x, t).
Adiabatic elimination leads to an effective Hamiltionian for
the centre-of-mass motion given by [20]

H = p2
x

2m
+
h̄�eff

4
(1 + 2ε cosωmt) sin2(kx) (2)

where the effective Rabi frequency is �eff = �2/δ, � =
�

√
I/Isat is the resonant Rabi frequency, ε is the depth of

modulation, ωm is the modulation angular frequency, � is the
inverse spontaneous lifetime, t is the time, px the momentum
component of the atom along the standing wave and m the
mass of a Rb atom. Here I is the spatial mean of the intensity
of the unmodulated standing wave (which is half of the peak
intensity so � = �

√
Ipeak/2Isat) and Isat is the saturation

intensity. Using scaled variables [8] the Hamiltonian is given
by

H = p2/2 + 2κ(1 + 2ε cos τ) sin2(q/2) (3)

where H = (4k2/mω2
m)H , q = 2kx, p = (2k/mωm)px and

k is the wavenumber. The driving amplitude is given by

κ = h̄k2�eff

2ω2
mm

. (4)

τ = tωm is the scaled time variable. This system can be
classified as a driven pendulum, because the Hamiltonian is
equivalent to that of a driven pendulum [15].

To calculate the dynamics of the atoms we are using
two different methods for our quantum simulations. The full
master equation treatment is carried out using the momentum
state basis. Spontaneous emission following the absorption
of a photon from the standing wave enables a transfer of
momentum of any amount between −2h̄k and +2h̄k to
the atom. This means that an exact simulation of the
master equation would require a dense set of momentum
states. On the other hand, the initial conditions from the
experimental setup have a momentum spread of the order
of 7h̄k, which means that features of the order of h̄k are
not resolvable. It therefore makes sense to approximate the
continuous momentum transfer due to spontaneous emission
by discrete momentum transfer in units of h̄k, in order to take
advantage of the symmetry of the Hamiltonian. This leads
to a momentum state basis given by |p0 + h̄kn〉 (where p0 is
an arbitrary momentum and n is an integer). The initial-state
matrix 〈n|ρ(0)|n〉 is found by assuming a Gaussian initial
momentum distribution of 1/e half-width of 6.5h̄k which
forms the diagonal elements of ρ(0). The second method
we use to produce our simulations is the theory of quantum
trajectories [21]. It was shown [22] that it is possible to
simulate incoherent transitions using Monte Carlo methods,
so this was done to obtain our second kind of quantum
mechanical simulation. A stochastic Schrödinger equation
developed for atom optics by Dum et al [23] and Mølmer
et al [24] is used to include incoherent transitions [12].
Roughly speaking, the stochastic Schrödinger equation
includes the smooth evolution of the initial wavepacket
with the Hamiltonian (3), together with point processes
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(incoherent transitions) which are included with a Monte
Carlo method. The advantage of this approximation is that it
has a clear classical analogue.

For our classical simulations we use Hamilton’s
equations to calculate the dynamics of the system. To obtain
a realistic model, incoherent transitions have been included
in the classical simulation. This can be done analogously
to the quantum trajectory simulation using a Monte Carlo
simulation.

The scaled Planck’s constant, which is the commutator of
scaled position and momentum coordinates, can be rewritten
as

k = 4h̄k2

ωmm
= 4h̄

4π2

λ2ωm
= 4h̄π2

(
1

λ
2 (

λ
2T m)

)
= 4h̄π2

2πI0
= h

I0

(5)
where T is the modulation period, h̄ is Planck’s constant, λ is
the wavelength and I0 is the action of a free particle over the
distance λ/2 in the time T . Our one-dimensional system
can be described in the corresponding two-dimensional
phase space which is spanned by momentum and position
coordinates. The action of the system, multiplied by 2π ,
is given by the area in phase space, which is encircled by
the trajectory of a particle. k can be interpreted as the
ratio of Planck’s constant to the action of a free particle
in the system described. Thus k will indicate in which
regime the experiment is carried out [5]. Therefore we know
there is some minimum order of magnitude of k which must
be exceeded before we expect to see differences between
quantum and classical dynamics on a given timescale. We
have seen in our simulations that significant differences
between classical and quantum mechanical simulations arise
with values of k � 0.1. To introduce some kind of rough
classification we characterize values of k � 0.1 as the
quantum regime while we classify the classical regime with
values of k � 0.1.

The main source of decoherence introduced into the
system results from incoherent transitions (e.g. spontaneous
emission). This can be controlled by changing the detuning
of the modulated standing wave.

To understand the dynamics of the QDP it is convenient
to use Poincaré sections with the stroboscopic period equal
to the modulation period. Figure 2 shows Poincaré sections
for the QDP. One can see islands of regular motion in a sea
of chaos. While the islands correspond to atoms oscillating
with a certain phase relative to each other inside the well, the
random dots correspond to atoms bouncing chaotically inside
the well. The size and the position of the islands of regular
motion depend very strongly on the system parameters.
Using scaled variables the phase space depends only on κ
and ε. The sea of chaos is bounded by the region of regular
unbound motion, corresponding to atoms which have enough
kinetic energy to move from one well to the next. The ratio
of kinetic energy of the atoms having 1/e velocity to the
potential energy of the well is of the order of 10−2 (detuning
δ = 4.3 GHz). To give an overview of the dynamics of the
QDP, figure 2 shows the phase space for ε constant and κ
varied in parts (a)–(c), as well as κ constant and ε varied in
parts (d)–(f ). It can be seen that the position of the resonances
is a function of κ . Furthermore, one can see that the size of

the resonances is dependent on the modulation amplitude ε.
While the second-order resonances of interest are obvious
above and below the central island of stability, one can also
see the emergence of period 1 resonances just below the
separatrix, especially for higher values of the modulation
amplitude ε.

4. Experimental dynamics of the QDP

4.1. Dynamical properties of the phase space resonances

Figure 3 shows the optical potential after fractions of the
modulation period. To illustrate the concept of phase space
resonances and the loading and observation of the resonances
(period 2), the optical potential is shown for four phases of
the modulation period. Atoms are randomly spaced inside
the potential well when the potential is turned on. For our
current experimental setup the resonances are loaded when
they are located on the position axis, which is determined by
the start phase of the modulation of the standing wave. Let us
consider approximately stationary atoms (along the standing
wave). Only atoms which have a certain position inside
the well can be loaded into the resonances. These atoms
oscillate inside the well in regular motion (atom groups 1 and
2 correspond to atoms contained in the resonance). After one
modulation period atom groups 1 and 2 have exchanged their
positions. From dynamical theory and the Poincaré sections
it follows that only atoms whose initial position inside
the potential well corresponds to an oscillation frequency
equal to half of the modulation frequency are contained in
a resonance. All the other atoms whose initial position
corresponds to different oscillation frequencies will bounce
chaotically inside the potential well and will form the chaotic
background of atoms in the momentum distribution observed
in the experiment. It is experimentally impossible to resolve
structure inside one of the potential wells. Therefore, to
observe the resonances the standing wave is turned off after
N + 1

2 periods of the modulation (N is an integer). At
this point in time atom groups 1 and 2 will have maximum
velocity in opposite directions. After a ballistic expansion
time of typically 10–20 ms the atom groups 1 and 2 can be
spatially resolved and identified as phase space resonances.
The resonances of the QDP can thus be observed as peaks
in the momentum distribution. Spatial distributions of the
atoms can be taken for different ballistic expansion times
to effectively calibrate the position axis into a momentum
scale. Figure 4 shows the spatial distributions obtained after
a 10 ms ballistic expansion interval. The upper distribution
results when no interaction potential is applied. The lower
distribution shows the resonant structure that results when
the atoms interact with 7.5 cycles of a modulated standing
wave (using a modulation frequency ωm/(2π) = 500 kHz
and a modulation parameter ε = 0.13). The actual velocities
can be determined more precisely from measurements of the
peak positions as a function of ballistic expansion time.

Although resonances of the QDP occur for a variety
of parameters, due to nonlinear dynamics the size of the
resonances varies strongly. In our experiments we have
found a value of κ which maximizes the number of atoms
contained in the resonances. We first selected one modulation
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Figure 2. Poincaré sections for the QDP. The x-axis of this figure is the scaled position variable q and the y-axis of the plots is the scaled
momentum p. In parts (a)–(c) the modulation amplitude ε is held constant and the driving amplitude κ is varied while in parts (d)–(f ) κ is
held constant and ε is varied. The size and position of the resonances strongly depends on the system parameters ε and κ . The small
period-1 resonances positioned on the side of the Poincaré section just below the region of unbound regular motion do not rotate and
therefore never cross the position axis. This means that they will not be loaded in the experiment and thus cannot be seen in the atomic
momentum distribution.
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Figure 3. Potential after fractions of the modulation period. Groups 1 and 2 correspond to atoms contained in upper and lower resonances
(see Poincaré section). The position of the these two groups, as well as the potential, is shown for four phases of the modulation. Atoms
which start in the resonances start with zero velocity at the top of the potential. After half of the modulation period they have reached the
bottom of the well and have reached their maximum velocity.

frequency and then adjusted the detuning δ for maximum
height of the resonance peaks in the atomic momentum
distributions. During the procedure we kept the light intensity
constant. Figure 5 shows the position of the resonances
in terms of the system parameters ωm and δ. We know
that the driving amplitude κ is inversely proportional to the
detuning δ and the square of the modulation frequency ωm
(κ ∼ (ω2

mδ)
−1). Therefore, if there is a linear relationship

between 1/ω2
m and the detuning δ one can conclude that κ is

a constant, being proportional to the slope of the graph. We
could load up to 50% of all atoms into the resonances using
optimum values for κ and ε.

We have found that the resonances are maximized for
the scaled driving amplitude κ = 0.4 ± 0.1 (ε = 0.13).
Nonlinear dynamics theory tells us that, for every value
of κ , there will be a modulation frequency which will be
equal to a multiple of the nonlinear natural frequency of
the system. When this occurs, the system is in resonance.
However, the size of these resonances is very sensitive to
system parameters ε and κ . In some cases the resonances are
infinitely small, while in others they form stable islands. Our
simulations predict the formation of large stable resonances
for driving amplitudes in the range κ = 0.2–0.65. Several
different methods can be employed to control the velocity
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Figure 4. Spatial distributions of the atoms obtained after a 10 ms ballistic expansion interval. The upper distribution results when no
interaction potential is applied. The lower distribution shows the resonant structure that results when the atoms interact with 7.5 cycles of a
ωm/2π = 500 kHz, ε = 0.13 modulated standing wave.
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Figure 5. Optimum conditions for observation of phase space
resonances. Maximum size of the resonances in the atomic
momentum distributions only occurs for certain values of the
modulation frequency ω and the detuning δ. The graph shows that
maximum size of the resonances occurs for one value of the scaled
driving amplitude κ which is proportional to the slope of the
graph. (For these results the modulation amplitude ε and the light
intensity I were kept constant.)

of the resonances. We give a detailed description of the
methods in [12]. To roughly adjust the velocity it is most
convenient to vary the modulation frequency. As the velocity
of the resonant atoms within the wells varies cyclically,
fine tuning of the velocity at which they are projected
can be achieved by varying the end phase of the standing
wave modulation. Furthermore it is possible to vary the
velocity slightly by varying the driving amplitude κ and the
modulation parameter ε. The disadvantage of varying ε and κ
is that the size of the resonance (width and height) can change

drastically. Therefore changing the modulation frequency
and the modulation endphase are the most convenient means
for velocity control.

We have found that phase space resonances can be
observed if the modulated standing wave is turned on for
longer than 4.5 cycles. Thereafter, the resonances appear to
be stable for many cycles. Figure 6 shows the development
of the resonances as a function of the number of modulation
periods the standing wave is turned on. These data were taken
for an intermediate value of k with a modulation frequency
ωm/(2π) = 500 kHz and the modulation parameter ε =
0.13. One can see that the resonances start to emerge at 4.5
cycles and then remain stable. Figure 9 illustrates that the
resonances persist for hundreds of modulation periods, as
predicted by theory.

4.2. Transient dynamics

In our discussion of dynamical resonances it is important
to avoid confusion with some important transient dynamics
which are exhibited by the QDP using a similar experimental
setup. These can be used as a coherent atomic beam
splitter [25]. Unlike most beam splitters this beam
splitter operates outside the Raman–Nath regime because the
transverse motion of the atom during its passage through
the standing wave is not negligible. Figure 7 shows a
typical momentum distribution which results from transient
dynamics of the system. Two distinct peaks contain up to
60% of all atoms. This particular picture was taken at a
modulation frequencyωm/(2π) = 360 kHz and a modulation
parameter ε = 0.30. While phase space resonances need at
least 4.5 cycles to load sufficiently, the transients occur after
only 1.75 modulation periods (cycles) (with a Hamiltonian of
the form I0(1 + 2ε sinωmt)). The dynamics can be explained
classically by following the trajectories of atoms initially
equally spaced inside a potential well. A significant number
of atoms have climbed to the maximum of the potential
well after one cycle. While the potential starts rising again,
the atoms ‘surf’ down the well for the final 0.75 cycles of
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Figure 6. Phase space resonances as a function of the number of modulation periods applied to the initial atomic distribution. Resonances
start to emerge at 4.5 cycles. These data were obtained at a modulation frequency of ωm/2π = 500 kHz and a modulation amplitude of
ε = 0.13. The resonances move with around 22 recoil momenta.
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Figure 7. Atomic momentum distribution resulting from the
chaotic transients of the system. The momentum peaks have a
velocity of 33 recoils and the data were obtained at a modulation
frequency of ωm/2π = 360 kHz, a modulation amplitude of
ε = 0.30 and after 1.75 cycles of the modulation.

the modulation. Solving Hamilton’s equations one can see
that these atoms form a narrow velocity band, which can be
observed in the final atomic momentum distribution. As can
be seen from figure 7 these peaks have only a small velocity
spread, making them a good means to accelerate atoms to
some desired velocity. We have observed the transients
only for certain values of the light intensity, detuning and
modulation frequency. An approximate condition is given
by √

I

δ
= ς · ωm (6)

where I is the light intensity, δ is the detuning of the standing
wave, ωm is the modulation frequency and ς is an atom-
specific constant.

The velocity of the transient peaks is a function of the
modulation frequency. One can easily vary the momentum
from 12 to over 60 recoil momenta by adjusting the

200 300 400 500 600 700 800
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20
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70

Modulation frequency (kHz)

Figure 8. Control of the velocity of the chaotic transients using
the modulation frequency. Momenta between 10 and 70 recoils
can be achieved. The velocity is approximately a linear function
with respect to the modulation frequency.

modulation frequency (and detuning). Figure 8 shows
the momentum of the transient peaks as a function of the
modulation frequency. A significant momentum range can
be covered by changing the modulation frequency. The
velocity is approximately a linear function with respect
to the modulation frequency. A full discussion of the
experimental results can be found in [25]. A different way
to use a modulated potential to split an atomic wavefunction
coherently was illustrated by Dalibard et al [26, 27].

5. On the way to quantum tunnelling and
decoherence: loading one resonance effectively

To test predictions of quantum chaos and decoherence it
is important to investigate specifically quantum behaviour
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Figure 9. First step to quantum phase space tunnelling.
Resonances after an interaction time of 100 periods of the
modulation frequency.

of the system. For large values of the scaled Planck’s
constant k quantum effects should become more visible as
the size of the atomic wavepackets becomes comparable to
the area of the phase space resonances. Quantum tunnelling
between two resonances will be an important tool in studying
quantum chaos and decoherence. Atoms are predicted to
tunnel coherently between the two resonances. The unitary
evolution operator, the Floquet operator F , describes the
evolution of the QDP in terms of the Floquet eigenstates.
These eigenstates are associated with fixed points in the
Poincaré section. If we start with a superposition state of
two Floquet states which is localized in one resonance, time
evolution leads to periodical localization in the other phase
space resonance. To observe this quantum tunnelling it is
important to prepare atoms in a superposition of Floquet
states localized in one resonance. Several methods to achieve
this goal are under study.

The observation of resonances for a minimum length
of interaction time with the modulation potential is a
prerequisite to observe quantum phase space tunnelling,
as it is necessary to observe at least a significant part of
the tunnelling period to have sufficient evidence for the
tunnelling to occur. Tunnelling periods strongly depend
on different system parameters. Theoretical calculations
have shown that 100 cycles of the modulation frequency are
sufficient to observe tunnelling. We have recently observed
resonances for an interaction time of 100 periods of the
modulation frequency which is an important step towards
observation of tunnelling. Figure 9 shows a picture of the
resonances after 100 periods of the modulation frequency.

To observe resonances, the starting phase of the standing
wave modulation is chosen in such a way that the resonances
are located on the position axis of the Poincaré section (atom
groups 1 and 2 have zero velocity, see figure 3). In this
way both resonances are always loaded. To load only one
resonance, atoms can be prepared with a mean momentum
equivalent to the resonance velocity relative to the standing
wave. The starting phase of the resonance would then be
adjusted in such a way that the resonances are located on

the momentum axis. If the width of the initial distribution is
small enough, only one of the resonances will be loaded.

There are several ways to prepare the atomic cloud
with a certain velocity relative to the inertial frame of the
standing wave. One possibility is to give the standing wave
a constant velocity. This could be achieved by detuning the
retroreflecting beam. The velocity of the standing wave cst

is given in terms of the detuning by the following condition:

cst = ω1 − ω2

2k
(7)

where k is the wavenumber andω1 andω2 are the frequencies
of the two counterpropagating beams. In our case we would
need ω1 − ω2 ≈ 100 kHz, which could be achieved by
utilizing an AOM in each counterpropagating beam and
detuning them relative to each other by 100 kHz. The
detuning (and therefore the velocity of the standing wave)
could be adjusted using an AOM synthesizer driver.

An alternative method to accelerate the atoms is to
include an AOM in double-pass configuration in one of the
arms of the standing wave. Ramping the frequency difference
of the two beams produces an accelerating standing wave.
This has been used by Raizen et al to demonstrate a Wannier–
Stark ladder [3].

Preliminary simulations indicate that, by using the
methods introduced above, we may need atoms colder than
we currently have as, at the temperatures that we attain, some
atoms are still loaded into the other resonance originating
from the tail of the atomic Gaussian distribution. To
prevent this, a velocity-selective Raman process might be
required [28]. After populating the ground state of the
potential wells by adiabatically turning on the standing
wave [29], the atoms could be prepared in a spatial region
of the well corresponding to one of the resonances by means
of a controlled phase shift of the optical standing wave.

6. Conclusion

We have shown that atoms in an amplitude-modulated
standing wave have some significant properties. Phase
space resonances and chaotic transients provide new ways
to manipulate atoms. We have explained distinct peaks in
the atomic momentum distribution and we showed how to
obtain these peaks experimentally. We have investigated the
modulation frequency dependence of the velocity of chaotic
transients. This provides new means for experiments in
atom optics, especially for phase space state preparation.
Applications to the study of quantum chaos and decoherence
are clear and we have shown pathways to utilize phase
space resonances for this. In this study we have shown that
the observation of quantum tunnelling should be possible
because we were able to observe distinct resonances for 100
periods of the modulation frequency. Further investigations
are underway to confirm the predictions of quantum
tunnelling for this system. Once quantum tunnelling has
been demonstrated it can be used to test predictions of
quantum chaos and decoherence. It is easy to vary the scaled
Planck’s constant as well as the amount of decoherence. This
could lead to a better understanding about the connection
of quantum mechanics and classical physics. Preparations
to see quantum tunnelling are well underway and the first
observation is expected to occur shortly.
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