## Random matrix theory and the Riemann zeta function

A project with Dr. Nick Simm (n.j.simm@sussex.ac.uk)

Given a complex number $s=x+i y$, the Riemann zeta function is defined by the following series

$$
\begin{aligned}
\zeta(s) & =\sum_{n=1}^{\infty} \frac{1}{n^{s}} \\
& =\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\ldots
\end{aligned}
$$

By standard convergence tests, this sum is finite provided $\operatorname{Re}(s)=x>1$. It is known that the function $\zeta(s)$ and its zeros encode information about the prime numbers: $2,3,5,7,11, \ldots$. The possible location of zeros of $\zeta(s)$ (Riemann hypothesis) has been described as one of the greatest unsolved problems of pure mathematics.

On the other hand, random matrix theory is concerned with matrices, say of size $n \times n$

$$
M=\left(\begin{array}{cccc}
M_{11} & M_{12} & \cdots & M_{1 n} \\
M_{21} & M_{22} & \cdots & M_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
M_{n 1} & M_{n 2} & \cdots & M_{n n}
\end{array}\right)
$$

where the entries $M_{i j}$ are random and taken from a given distribution (for example, normally distributed and independent) ${ }^{1}$. For large $n$, it has been observed since the 1960s that on a statistical level, the eigenvalues of $M$ seem to have a close relationship with zeros of $\zeta(s)$.

The aim of this project will be to study some of the interactions between these two subjects. Goals:

- To understand the basics of the Riemann zeta function and the connection to prime numbers.
- Basic principles of random matrix theory: definitions and key notions. Basic calculations.

Relevant modules (in order): Complex Analysis (G5110), fluency in Linear Algebra (G5088) and Probability and Statistics (G5098).

Key words: Random matrix theory, Riemann zeta function, Riemann hypothesis, analytic number theory, complex analysis, normal distribution.

[^0]
## References

[1] J.P. Keating and N.C. Snaith, Random matrix theory and $\zeta(1 / 2+i t)$. Communications in Mathematical Physics, no. 1, 57-89, 2000.
[2] M. L. Mehta, Random Matrices Pure and Applied Mathematics Series 142, (3rd ed), Singapore: Elsevier, 2004.


[^0]:    ${ }^{1}$ It is usually also required that $M$ is Hermitian: $M_{i j}=\overline{M_{j i}}$.

