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Geometric motions and applications I
See Gurtin, 1993 for details.

Curves, surfaces, and more generally manifolds, tradionally viewed
as static objects lying in a surrounding space.
Geometric motions is the branch of maths that makes manifolds
move.
Geometric motions ⇔ special classes of partial differential
equations (PDE’s) with loads of differential geometry.
In this project(s) we view them instead as moving within the
surrounding space: immersed manifolds.
Differential Geometry (at the heart of Geometric Motions) is a
mature mathematical theory.
Geometric Motions is (surprisingly) quite young: picked-up in the
late seventies of the past century.
Recent work of G. Perelman (solving the Poincaré conjecture) has
made geometric motions even more trendy.
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Applications

Geometric motions play in applications which range from phase
transition to cyrstal growth (see piccie) and from fluid dynamics, image
processing and cell mobility.
.Dendrites..

.. ..

.

.

A real-life dendrite lab picture: A phase-field simulation:

O Lakkis (Sussex, GB) Maths Degree Programme Sussex November 6, 2013 4 / 19



Department of  Mathematics

. . . . . .

Mean Curvature Flow

Manifold (curve in picture)
Γ .
Velocity (speed) at each
(space-time) point of Γ is
v(x, t)
Curvature (average of
principal curvatures)
H(x, t).
Mean curvature flow obeys

v(x, t) = −H(x, t).

.

.Γ = {u = 0}

.H

.v
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Level set method

Γ(t) ={
x ∈ R

d+1 : ϕ(x, t) = 0
}

ϕ is a function defined for
all x ∈ R

d+1.
ϕ satisfies partial
differential equation

∂tϕ(x, t)
|∇ϕ(x, t)|−div ∇ϕ(x, t)

|∇ϕ(x, t)| = 0.

.

.Γ = {u = 0}

.H

.v
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Nonparametric/Graph method

Only sections of the curve
can be represented.
Loads of “standard”
analysis can be used.
Γ =graph of function u.
u satisfies

∂tu(x, t)√
1 + |∇u(x, t)|2

− div ∇u√
1 + |∇u(x, t)|2

= 0.

.
.H

.v
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Computations

One way of peforming this extension would be to implement computer
code simulating geometric motions and analysing the algorithms.

Finite element method.
Matlab.
C/C++.
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Requirements

Love for geometry and analysis (e.g., Bethuel et al., 1999; Spivak,
1979; Struwe, 1996
Interest for “physically useful” mathematics.
Technically, you need some PDE and (if you want to compute as
well) Numerical Analysis.
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Recommended courses

Numerical Solution of Partial Differential Equations,
Differential Geometry,
Measure and Integration,
Numerical Linear Algebra,
Advanced Numerical Analysis,
Introduction to Mathematical Biology,
Topology courses.
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Differential equations (ordinary and stochastic)
(Deterministic) ordinary differential equation (ODE) consists in finding
a function u : [0,T] ⊂ R→ R

n such that

d
dtu(t) = f(u(t), t) ∀ t ∈ [0,T], (ODE)

given a function fRn
R

n and an initial value

u(0) = u0. (IC)

A stochastic (ordinary) differential equation (SDE) consists in finding a
stochastic process X : [0,T]×Ω → R

n such that

d
dtX(t,ω) = f(X(t,ω), t,ω) ∀ t ∈ [0,T],P-a.e. ω ∈ Ω. (SDE)

and
X(0) = X0. (1)

References: Higham and Kloeden, 2006; Kloeden and Platen, 1999.
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What are SDE’s?

d
dtX(t,ω) = f(X(t,ω), t,ω) ∀ t ∈ [0,T],P-a.e. ω ∈ Ω. (2)

What does d
dtX(t) really mean? (Stochastic processes are generally

continuous but not differentiable!)
How does the “outcome parameter” ω enter the picture.
Stochastic processes model uncertainty, e.g., white noise: e.g.,

f(x, t,ω) dt = α(x) dt + σ(x) dW(t,ω). (3)

Where W is a Wiener process (not differentiable!). What does it
mean?
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Answers
How to give mathematical meaning to a stochastic differntial equation (SDE)

The SDE
d
dtX(t,ω) = f(X(t,ω), t,ω) ∀ t ∈ [0,T],P-a.e. ω ∈ Ω. (4)

can be rewritten in integral form

X(t) = X0 +

∫ t

0
f(X(s), s) ds. (5)

For example if

f(x, t,ω) dt = α(x) dt + σ(x) dW(t,ω) (6)

we write the SDE in the integral form

X(t) = X0 +

∫ t

0
α(X(s)) ds +

∫ t

0
σ(X(s)) dW(s). (7)

provided we give meaning to the last “integral”.
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X(t) = X0 +

∫ t

0
α(X(s)) ds +

∫ t

0
σ(X(s)) dW(s). (8)

provided we give meaning to the last “integral”.
This is solved, in theory, by introducing Itô’s calculus, e.g., see Li, 2004.
Beautiful theorey implies Project.
But what how do we “compute” solutions? implies Project.
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Why do we care?
About computing stochastic differential equations

Uncertainty arises in many applications:
structural uncertainty risk analysis (e.g., due to weather pattern),

climate change, meteorology, stock market,
data uncertainty partial or incomplete measurements (e.g., geology),
Bayesian uncertainty reliability of data collection (e.g., medicine) or the

difficulty to find “averages” (e.g., what is the average size
of the human heart?)

inherent “noise” in systems astrophysics, neurology, etc.
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Other fields connected to SDE’s

Feynman–Kac path integrals in particle physics,
Harmonic functions and potential theory,
Brownian motion and diffusion equations (Einstein’s paper and
Lagevin’s equations),
Discrete stochastic processes,
Multiscale problems (involving SDE’s at some scales), e.g., models
of non-Newtonian fluids,
Statistical mechanics,
Theory of computability (Computer science).
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Recommended courses
Indicative, as usual

Probability Models,
Random Processses,
Advanced Numerical Analysis,
Mathematical Models in Industry and Finance,
Partial differential equations,
Numerical Linear Algebra.
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