
Asymptotic analysis of integrals and applications

A project with Dr. Nick Simm (n.j.simm@sussex.ac.uk)

Consider the sequence an = n!, where n = 1, 2, 3, . . . That is, we have a1 = 1, a2 = 2·1 = 2,
a3 = 3 · 2 · 1 = 6, a4 = 4 · 3 · 2 · 1 = 24 and so on. These numbers seem to grow without
bound. But how fast?

The statement

lim
n→∞

n!√
2πn

(
n
e

)n = 1 (1.1)

gives us information on how fast n! grows. This formula is called Stirling’s approximation
and is one of the most famous examples of what is called asymptotic approximation. It
tells us, in the most reasonable and explicit terms one can hope for, what is the behaviour
of n! when n becomes very large.

A starting point for the proof of (1.1) is to remember the integral

n! =

∫ ∞
0

xne−x dx = nn+1

∫ ∞
0

e−nφ(u) du (1.2)

where we changed variable x = un and defined φ(u) = u − log(u). This already seems
to capture the factor nn in (1.1) but the other terms like

√
2π remain mysterious at this

stage.
The aim of this project will be to develop the skills to perform an asymptotic analysis

of integrals, including for example ones of the type (1.2). This is a very practical and
fundamental skill not often taught at the undergraduate level, despite its appearance in
many areas of research in probability, statistics and mathematical physics.

A particular goal could be to apply the methods learnt to some currently active re-
search topics, such as those in random matrix theory. Depending on the progress, the
proof of some fundamental results on the eigenvalue distribution of large random matrices
could form part of the project.

Relevant modules (in order): Complex Analysis (G5110), Probability and Statistics (G5098),
Perturbation th & Calc of variations (840G1).
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