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A classical geometric evolution

Motion by mean curvature: t — E; C R?
V = Hyk, su OE; (MCM)

V is the normal velocity of JE;
Hpsg, is the mean curvature of OE;.
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A classical geometric evolution

Motion by mean curvature: t — E; C R?

V = Hpg, su OE;
V is the normal velocity of OE;

(MCM)
Hpg, is the mean curvature of JE;.

Proposed by Mullins (1956) to describe the evolution of crystalline grains:
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Singularities may appear

@ Local-in-time existence from smooth initial data can be shown by
standard methods;
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Singularities may appear

@ Local-in-time existence from smooth initial data can be shown by
standard methods;

@ Singularities may appear even from smooth initial data:

Figure : An example of pinching singularity (Grayson '89).
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Singularities may appear

@ Local-in-time existence from smooth initial data can be shown by
standard methods;

@ Singularities may appear even from smooth initial data:

Figure : An example of pinching singularity (Grayson '89).

Question: how to define a global-in-time solution?
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The level set approach
Idea:
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The level set approach

Idea:

» represent E; as E; = {u(-,t) > 0}
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The level set approach

Idea:
» represent E; as E; = {u(-,t) > 0}
> let all of super-level sets of u evolve according to MCM

Vu

ur = |Vu]div‘vu|

(EqlL)
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The level set approach

Idea:
» represent E; as E; = {u(-,t) > 0}
> let all of super-level sets of u evolve according to MCM

Vu

Yl (EqlL)

ur = |Vuldiv

» Proposed by Osher & Sethian (1988) for numerical purposes, as a
method to deal with topological changes.
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The level set approach

Idea:
» represent E; as E; = {u(-,t) > 0}
> let all of super-level sets of u evolve according to MCM

Vu
|Vl

ur = |Vuldiv (EqlL)

» Proposed by Osher & Sethian (1988) for numerical purposes, as a
method to deal with topological changes.

» Global existence and uniqueness for (EqIL) has been established in Evans
& Spruck (1991) and Chen-Giga-Goto (1991) within the formalism of
viscosity solutions.
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The variational approach by Amlgren-Tayor-Wang

The evolution law (MCM) can be regarded as the gradient flow of the
perimeter,
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The variational approach by Amlgren-Tayor-Wang

The evolution law (MCM) can be regarded as the gradient flow of the
perimeter, with respect to a L?-type Riemannian-structure .
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The variational approach by Amlgren-Tayor-Wang

The evolution law (MCM) can be regarded as the gradient flow of the
perimeter, with respect to a L?-type Riemannian-structure .
» One defines a discrete-in-time evolution by iteration:

T

1
E,i1 € argmin (Per(F) + / d(x,0Ep_1) dx)
FAE,
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The variational approach by Amlgren-Tayor-Wang

The evolution law (MCM) can be regarded as the gradient flow of the
perimeter, with respect to a L?-type Riemannian-structure .
» One defines a discrete-in-time evolution by iteration:

T

1
E,i1 € argmin (Per(F) + / d(x,0Ep_1) dx)
FAE,

Let £-(t) the piecewise interpolation with time step 7. Then
E-(t) — E(t), solution to (MCM) up to Tsing.
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The variational approach by Amlgren-Tayor-Wang

The evolution law (MCM) can be regarded as the gradient flow of the
perimeter, with respect to a L?-type Riemannian-structure .
» One defines a discrete-in-time evolution by iteration:

T

1
E,i1 € argmin (Per(F) + / d(x,0Ep_1) dx)
FAE,

Let E-(t) the piecewise interpolation with time step 7. Then
E-(t) — E(t), solution to (MCM) up to Tsing.
» F. Almgren, J. E. Taylor, and L.-H. Wang. Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31 (2),

1993
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The variational approach by Amlgren-Tayor-Wang

The evolution law (MCM) can be regarded as the gradient flow of the
perimeter, with respect to a L?-type Riemannian-structure .
» One defines a discrete-in-time evolution by iteration:

T

1
Eni1 € argmin | Per(F) + / d(x,0E,_1) dx
FAE,

Let E-(t) the piecewise interpolation with time step 7. Then

E-(t) — E(t), solution to (MCM) up to Tsing.

» F. Almgren, J. E. Taylor, and L.-H. Wang. Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31 (2),
1993

P S. Luckhaus and T. Sturzenhecker. Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial

Differential Equations, 3 (2), 1995.
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The variational approach by Amlgren-Tayor-Wang

The evolution law (MCM) can be regarded as the gradient flow of the
perimeter, with respect to a L?-type Riemannian-structure .
» One defines a discrete-in-time evolution by iteration:

1
Eni1 € argmin | Per(F) + / d(x,0E,_1) dx
FAE,

T

Let E-(t) the piecewise interpolation with time step 7. Then

E-(t) — E(t), solution to (MCM) up to Tsing.

P F. Almgren, J. E. Taylor, and L.-H. Wang. Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31 (2),
1993.

P S. Luckhaus and T. Sturzenhecker. Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial
Differential Equations, 3 (2), 1995.

P Chambolle, A.: An algorithm for mean curvature motion. Interfaces Free Bound. 6 (2004), 195-218.
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Generalized perimeters and nonlocal motions

Chambolle-M.-Ponsiglione (ARMA 2015)
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Generalized perimeters and nonlocal motions
Chambolle-M.-Ponsiglione (ARMA 2015)

Definition J : 9t — [0, +00] is a generalized perimeter if:
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Generalized perimeters and nonlocal motions

Chambolle-M.-Ponsiglione (ARMA 2015)
Definition J : 9t — [0, +00] is a generalized perimeter if:

@ J(E) < 4oo for all E € C? with compact boundary;
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Generalized perimeters and nonlocal motions
Chambolle-M.-Ponsiglione (ARMA 2015)
Definition J : 9t — [0, +00] is a generalized perimeter if:

@ J(E) < 4oo for all E € C? with compact boundary;
o J(0) = J(RY) =0;
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Generalized perimeters and nonlocal motions

Chambolle-M.-Ponsiglione (ARMA 2015)

Definition J : 9t — [0, +00] is a generalized perimeter if:
@ J(E) < 4oo for all E € C? with compact boundary;
o J(0) = J(RY) = 0;
o J(E) = J(E) if |EAE') = 0;

Brighton, September 8th 2015 Nonlocal geometric flows 6 /31



Generalized perimeters and nonlocal motions

Chambolle-M.-Ponsiglione (ARMA 2015)
Definition J : 9t — [0, +00] is a generalized perimeter if:

@ J(E) < 4oo for all E € C? with compact boundary;
o J(0) = J(RY) =0;

o J(E) = J(E') if [EAE'| = O;

1 .

e Jisls.cin L
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Generalized perimeters and nonlocal motions
Chambolle-M.-Ponsiglione (ARMA 2015)
Definition J : 9t — [0, +00] is a generalized perimeter if:
@ J(E) < 4oo for all E € C? with compact boundary;
o J(0) = J(RY) = 0;
o J(E) = J(E) if |EAE') = 0;
e Jislscin L} ;

loc’
@ J is translation invariant;
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Generalized perimeters and nonlocal motions

Chambolle-M.-Ponsiglione (ARMA 2015)
Definition J : 9t — [0, +00] is a generalized perimeter if:

J(E) < +oo for all E € C? with compact boundary;
J(0) = J(RY) = 0;

J(E) = J(E') if |[EAE'| = 0;

1 .
loc?

J is translation invariant;
J is submodular: for all E, F

Jislscin L

JEUF) + J(ENF) < J(E) + J(F) ;
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Generalized perimeters and nonlocal motions

Chambolle-M.-Ponsiglione (ARMA 2015)
Definition J : 9t — [0, +00] is a generalized perimeter if:
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J can be extended to a functional on L1

loc DY enforcing the coarea formula:
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Generalized perimeters and nonlocal motions

Chambolle-M.-Ponsiglione (ARMA 2015)
Definition J : 9t — [0, +00] is a generalized perimeter if:

J(E) < +oo for all E € C? with compact boundary;
J(0) = J(RY) = 0;

J(E) = J(E') if |[EAE'| = 0;

1 .
loc?

J is translation invariant;
J is submodular: for all E, F

Jislscin L

JEUF) + J(ENF) < J(E) + J(F) ;

J can be extended to a functional on L} _

- +o00
J(u) = / J({u > s})ds.

—00

by enforcing the coarea formula:
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Generalized perimeters and nonlocal motions

Chambolle-M.-Ponsiglione (ARMA 2015)

Definition J : 9t — [0, +00] is a generalized perimeter if:
@ J(E) < 4oo for all E € C? with compact boundary;
o J(0) = J(RY) =0;

J(E) = J(E') if |[EAE'| = 0;

1 .
loc?

Jislscin L
J is translation invariant;
J is submodular: for all E, F

JEUF) + J(ENF) < J(E) + J(F) ;

J can be extended to a functional on L1

loc DY enforcing the coarea formula:

- +o00
J(u) = / J({u > s})ds.

J |S SmeodUlar et J |S CONVEX ( Chambolle, Giacomini,ckussardi2Q10)
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Generalized curvatures
Definition

We say that k(-, E) is the curvature of OE associated with J if per any
smooth family of diffeomorphisms (®.)., with o = Id, one has

d
9 o), = / (%, E) X(x) - vE(x)dHN=1 ().
de le=o0 9E

where X = 8525| L and vE is the outer normal to E.
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Generalized curvatures
Definition

We say that k(-, E) is the curvature of OE associated with J if per any
smooth family of diffeomorphisms (®.)., with o = Id, one has

d
9 o), = / (5, E) X(x) - vE(x)dHN 1 ().
de le=o0 9E
where X = 85;5| L and vE is the outer normal to E.
Hypotheses:

e Existence: (-, E) is defined for all E of class C2.

Brighton, September 8th 2015 Nonlocal geometric flows 7/31



Generalized curvatures
Definition

We say that k(-, E) is the curvature of OE associated with J if per any
smooth family of diffeomorphisms (®.)., with o = Id, one has

d
9 o), = / (5, E) X(x) - vE(x)dHN 1 ().
de le=o0 9E
where X = 63;5| L and vE is the outer normal to E.
Hypotheses:

e Existence: (-, E) is defined for all E of class C2.

o Continuity: If E, — E in C? and x, € 9E, — x € OE, then
K(Xn, En) — Kk(x, E).
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Generalized curvatures
Definition

We say that k(-, E) is the curvature of OE associated with J if per any
smooth family of diffeomorphisms (®.)., with o = Id, one has

d
9 o), = / (5, E) X(x) - vE(x)dHN 1 ().
de le=o0 9E
where X = 85;5| L and vE is the outer normal to E.
Hypotheses:

e Existence: (-, E) is defined for all E of class C2.

o Continuity: If E, — E in C? and x, € 9E, — x € OE, then
K(Xn, En) — Kk(x, E).

@ Non degeneracy: inf >0 minyegs, k(x, By) > —o0.
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Consequences of convexity

Lemma (Subgradient inequalities)
Let E € C? and x € OE. Then

J(E) = J(E\ W,) < [Wh N E|(k(x, E) 4 o(1))

and
J(EUW,) —J(E) > W, \ E|(k(x, E) 4+ o(1))

if Wy, — {x} in the Hausdorff sense.
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Consequences of convexity

Lemma (Monotonicity)
Let E,F € C? with E C F and let x € OF N OE. Then
k(x, F) < k(x, E).
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Nonlocal geometric flows

We are interested in
(GMQ)

V(x, t) = —r(x, E(t))

fort >0 and x € 8E(t)J

o =
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Nonlocal geometric flows

We are interested in

(GMC) V(x,t) = —r(x, E(t)) fort>0andxe€ 8E(t)J

@ The strong formulation of (GMC) becomes meaningless when
singularities appear
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singularities appear
@ Need for a weak formulation:

> Representation via super-level sets
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Nonlocal geometric flows

We are interested in

(GMC) V(x,t) = —r(x, E(t)) fort>0andxe€ BE(t)J

@ The strong formulation of (GMC) becomes meaningless when
singularities appear
@ Need for a weak formulation:

> Representation via super-level sets
» Viscosity formulation of the corresponding equation
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Level set formulation

Representing £(0) := {up > 0}, one is led to the Cauchy problem:

ug(x, t) + |Du(x, t)|c(x, {y : u(y,t) > u(x,t)}) =0
u(0,-) = wo.
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Level set formulation

Representing £(0) := {up > 0}, one is led to the Cauchy problem:

ug(x, t) + |Du(x, t)|c(x, {y : u(y,t) > u(x,t)}) =0
u(0,-) = wo.

@ Weak formulation: The curvature k is defined only on regular sets.
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Level set formulation

Representing £(0) := {up > 0}, one is led to the Cauchy problem:

ue(x, ) 4+ [Du(x, t)[s(x, {y : u(y,t) = u(x, t)}) = 0
u(0,-) = wo.

@ Weak formulation: The curvature k is defined only on regular sets.
We consider viscosity solutions.
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Level set formulation

Representing £(0) := {up > 0}, one is led to the Cauchy problem:

ue(x, ) 4+ [Du(x, t)[s(x, {y : u(y,t) = u(x, t)}) = 0
u(0,-) = wo.

@ Weak formulation: The curvature k is defined only on regular sets.
We consider viscosity solutions.

@ Functional setting: Evolution of sets with compact boundary.
Therefore, u and the test functions are constant outside a compact
set.
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Definition of viscosity solution
Definition

A continuous function u: RY x [0, T] — R is a viscosity subsolution if
u(0,-) < ug, and for any test function o of class C? s.t. u— ¢ has a
maximum at z := (x, t), one has

©1(2) + IDp(2) 5 (x, {y = @(y, t) > p(2)}) <0,

if the level set {p(-,t) = ©(z)} is not critical, and ¢(z) < 0 if Dp(z) =0
(and ¢ “flat enough” at z).
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u(0,-) < ug, and for any test function o of class C? s.t. u— ¢ has a
maximum at z := (x, t), one has

©1(2) + IDp(2) 5 (x, {y = @(y, t) > p(2)}) <0,

if the level set {p(-,t) = ©(z)} is not critical, and ¢(z) < 0 if Dp(z) =0
(and ¢ “flat enough” at z).

@ It is convenient to extend the class of test functions.
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Definition of viscosity solution
Definition

A continuous function u: RY x [0, T] — R is a viscosity subsolution if
u(0,-) < ug, and for any test function o of class C? s.t. u— ¢ has a
maximum at z := (x, t), one has

©1(2) + IDp(2) 5 (x, {y = @(y, t) > p(2)}) <0,

if the level set {p(-,t) = w(z)} is not critical, and v+(z) < 0 if Dp(z) =0
(and ¢ “flat enough” at z).

@ It is convenient to extend the class of test functions.

@ Extension of x to non-regular sets by semicontinuity.
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Definition of viscosity solution
Definition

A continuous function u: RY x [0, T] — R is a viscosity subsolution if
u(0,-) < ug, and for any test function o of class C? s.t. u— ¢ has a
maximum at z := (x, t), one has

©1(2) + IDp(2) 5 (x, {y = @(y, t) > p(2)}) <0,

if the level set {p(-,t) = w(z)} is not critical, and v+(z) < 0 if Dp(z) =0
(and ¢ “flat enough” at z).

@ It is convenient to extend the class of test functions.
@ Extension of x to non-regular sets by semicontinuity.

@ Perron’s Method extends to this setting
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The minimizing movements scheme

For any fixed time step h > 0, let T,E be the minimal solution to

: 1 .
Fnélﬂgd {J(F) + h/FAEdlst(x,aE) dx}
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The minimizing movements scheme

For any fixed time step h > 0, let T,E be the minimal solution to
min < J(F) + ! / dist(x, 0E) d
I — Ist(x, Ix
FCRY h Jene

Lemma (Discrete Comparison Principle)

ECE — ThE C ThE'.
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Time-discrete evolutions

o u€ BUCRY), s >s = Tp{u>s} C Tp{u>s'}.
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Time-discrete evolutions

o u€ BUCRY), s >s = Tp{u>s} C Tp{u>s'}.

@ Thus, we may define

Thu(x) = sup{s : x€ Tp{u>s}}.
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Time-discrete evolutions

o u€ BUCRY), s >s = Tp{u>s} C Tp{u>s'}.
@ Thus, we may define

Thu(x) = sup{s : x€ Tp{u>s}}.

o Let up € BUC(RY), constant outside a compact set. We define

up(x, t) = (Th)[%]u().

@ One can show that up is still constant outside a compact (spacial) set.
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Equicontinuity

Lemma

For every € > 0 there exists T > 0 s.t. if h > 0 is small enough, |x —y| <t
and |i/h—j/h| < T with i,j € N, then |up(i/h,x) — up(j/h,y)| < e.
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Equicontinuity

Lemma

For every € > 0 there exists T > 0 s.t. if h > 0 is small enough, |x —y| <t
and |i/h—j/h| < T with i,j € N, then |up(i/h,x) — up(j/h,y)| < e.

@ Equicontinuity in space: follows from discrete comparison principle +
translation invariance
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Equicontinuity

Lemma

For every € > 0 there exists T > 0 s.t. if h > 0 is small enough, |x —y| <t
and |i/h—j/h| < T with i,j € N, then |up(i/h,x) — up(j/h,y)| < e.

@ Equicontinuity in space: follows from discrete comparison principle +
translation invariance

@ Equicontinuity in time: follows from discrete comparison principle +
estimate on how fast balls shrink.
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The main consistency result

Thus, up to subsequences, up — u uniformly on compact sets
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The main consistency result

Thus, up to subsequences, up — u uniformly on compact sets

Theorem (Chambolle-M.-Ponsiglione, ARMA 2015)

The limiting function u is a viscosity solution of

ue(x, t) + |Du(x, t)|k(x,{y : u(y,t) > u(x,t)}) =0
u(0,-) = up.
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Theorem (Chambolle-M.-Ponsiglione, ARMA 2015)

The limiting function u is a viscosity solution of

ue(x, t) + |Du(x, t)|k(x,{y : u(y,t) > u(x,t)}) =0
u(0,-) = up.

We recall that the theorem holds under the assumptions:

e Existence: (-, E) is defined for all E of class C.
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Theorem (Chambolle-M.-Ponsiglione, ARMA 2015)

The limiting function u is a viscosity solution of

ue(x, t) + |Du(x, t)|k(x,{y : u(y,t) > u(x,t)}) =0
u(0,-) = up.

We recall that the theorem holds under the assumptions:
e Existence: (-, E) is defined for all E of class C.

e Continuity: If E, — E in C? and x, € 0E, — x € OE, then
k(xn, En) — K(x, E).
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The main consistency result

Thus, up to subsequences, up — u uniformly on compact sets

Theorem (Chambolle-M.-Ponsiglione, ARMA 2015)

The limiting function u is a viscosity solution of

ur(x, t) + |Du(x, t)|k(x,{y : u(y,t) > u(x,t)}) = 0
u(0,-) = up.

We recall that the theorem holds under the assumptions:
e Existence: (-, E) is defined for all E of class C.

e Continuity: If E, — E in C? and x, € 0E, — x € OE, then
k(xn, En) — K(x, E).

@ Non degeneracy: inf >0 minyegs, k(x, By) > —o0.
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Uniqueness

We consider two different hypotheses:

(FO): (First order curvatures) Let ¥ € ¢3! and x € OX. Then

sup {k(x,F) : F€ C*,F2 X, x€dF}
:inf{/@'(x,F) : FeCz,ﬁQZ,xeaF}.
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Uniqueness

We consider two different hypotheses:

(FO): (First order curvatures) Let ¥ € ¢3! and x € OX. Then

sup{/i(x,F) : F€C2,F22,x€8F}
:inf{n(x,F) : FGCz,ﬁQZ,XeaF}.

(UC) (Uniform C?-continuity) Given r > 0, there exists w, such that:

For every E € C?, x € OE satisfying a ball condition of radius
r at x and for every diffeomorphisms ¢ : RY — R? of class C?
|K(x, E) — £(®(x), P(E))| < w,([|® — Id| c2).
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Uniqueness

Theorem (Chambolle-M.-Ponsiglione, ARMA 2015)
Assume that (FO) or (UC) hold. Then

ue(x, t) + [Du(x, t)|k(x, {y : u(y, t) = u(x,t)}) = 0
u(0,-) = up.

admits a unique viscosity solution.
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Examples and applications: the fractional mean curvature
flow

@ For a € (0,1) consider the fractional perimeter

// Ixe(x) — xe(y)|
RYxRd

Ix—y |N+a dxdy =

[xels -

o =
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Examples and applications: the fractional mean curvature
flow

@ For a € (0,1) consider the fractional perimeter

// [xE(x) —
RY xR

Xe(y)| 2
dxd! [ ] a .
|X _ |N+a Y = IXE H2
G. Gilboa; S. Osher, Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6
(2007)
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Examples and applications: the fractional mean curvature
flow

@ For a € (0,1) consider the fractional perimeter

xe(x) = xe(y)|
/Aded XE|X— |N+a dxdy = [XE]iI% J

G. Gilboa; S. Osher, Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6

(2007)

It satisfies all the axioms of a generalized perimeter.
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Examples and applications: the fractional mean curvature
flow

@ For a € (0,1) consider the fractional perimeter

() — xe(y) 2
/Aded |x = y|N+a dxdy = [XE]H% . J

G. Gilboa; S. Osher, Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6

(2007)
It satisfies all the axioms of a generalized perimeter.
@ The fractional curvature x® is well defined for C?-sets:

K,a(X, E) — PV/ XE(y) _XE(X) d J

Re |x — y|NFe v
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Examples and applications: the fractional mean curvature
flow

@ For a € (0,1) consider the fractional perimeter

//Rded ’Xb]_xxz |N+c(x 7) dxdy = [XE]iI%' J

G. Gilboa; S. Osher, Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6

(2007)
It satisfies all the axioms of a generalized perimeter.
@ The fractional curvature x® is well defined for C?-sets:

K(x, E) = P.V./ Xely) = xe(x) J

Re |x — y|NFe

@ k% is non-negative on balls and continuous with respect to the
C?-convergence of sets.
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Minimizing movements and fractional mean curvature flow

@ k% is a first order curvature.

Brighton, September 8th 2015 Nonlocal geometric flows 20/ 31



Minimizing movements and fractional mean curvature flow

@ k% is a first order curvature.
Corollary

The minimizing movements algorithm converges to the unique viscosity
solution of

ue(x, ) + [Du(x, 1) |[s*(x,{y : uly, t) = u(x,1)}) = 0
u(0,-) = up.
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Minimizing movements and fractional mean curvature flow

@ k% is a first order curvature.
Corollary

The minimizing movements algorithm converges to the unique viscosity
solution of

ue(x, ) + [Du(x, 1) |[s*(x,{y : uly, t) = u(x,1)}) = 0
u(0,-) = up.

@ Existence and uniqueness were already known: Imbert (2009).

@ Our approximation is new and alternative to Caffarelli&Souganidis
ARMA (2010).

Brighton, September 8th 2015 Nonlocal geometric flows 20/ 31



Examples and applications: the Minkowski pre-content

J(E) == /ess—osc(XE, B,(x)) dx

o =
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Barchiesi, Kang, Lee, M., Ponsiglione. Multiscale Model. Simul. 8 (2010).
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Examples and applications: the Minkowski pre-content

J(E) == /ess—osc(XE, B,(x)) dx .

Noise penalization “relaxation” of boundary oscillations

o o o
O C o O
o © O o .
o O {04
° e e
@) o o

Barchiesi, Kang, Lee, M., Ponsiglione. Multiscale Model. Simul. 8 (2010).

@ Regularized version:

P(E)= [ w(IE)

where w > 0 is in C°(R4)
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Examples and applications: the Minkowski pre-content

J(E) == /ess—osc(xE, B,(x)) dx .

Noise penalization “relaxation” of boundary oscillations

Barchiesi, Kang, Lee, M., Ponsiglione. Multiscale Model. Simul. 8 (2010).

@ Regularized version:

P(E)= [ w(IE)

where w > 0 is in C°(Ry)
@ the associated curvature satisfies (UC)
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Examples and applications: the p-capacity flow

@ We consider the shape flow of bounded sets generated by the
p-capacity, 1 < p < N.
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Examples and applications: the p-capacity flow

@ We consider the shape flow of bounded sets generated by the
p-capacity, 1 < p < N.
@ The relaxed p-capacity of a bounded set E € I is given by:

Cap(E) ::min{/ |IDw|Pdx: we KPand w > 1 q.0in E}. J
Rd

Brighton, September 8th 2015 Nonlocal geometric flows 22 /31



Examples and applications: the p-capacity flow

@ We consider the shape flow of bounded sets generated by the
p-capacity, 1 < p < N.
@ The relaxed p-capacity of a bounded set E € I is given by:

Cap(E) ::min{/ |IDw|Pdx: we KPand w > 1 q.0in E}. J
Rd

@ For every E of class C? and bounded:

o, E) = [Dwe () = | 22 ()

)

Brighton, September 8th 2015 Nonlocal geometric flows 22 /31



Examples and applications: the p-capacity flow
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@ The relaxed p-capacity of a bounded set E € I is given by:

Cap(E) ::min{/ |IDw|Pdx: we KPand w > 1 q.0in E}. J
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@ For every E of class C? and bounded:
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@ rp all the previous assumptions, including (FO).
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Examples and applications: the p-capacity flow

@ We consider the shape flow of bounded sets generated by the
p-capacity, 1 < p < N.
@ The relaxed p-capacity of a bounded set E € I is given by:

Cap(E) ::min{/ |IDw|Pdx: we KPand w > 1 q.0in E}. J
Rd

@ For every E of class C? and bounded:

o, E) = [Dwe () = | 22 ()

)

The case p = 2 is similar to the Hele-Show type flow studied in

@ rp all the previous assumptions, including (FO).

P. Cardaliaguet and O. Ley. Some flows in shape optimization. Arch. Ration. Mech, Anal., 183 (1):21=58, 20&¢
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The anisotropic mean curvature flow

We are interested in the (formal) law

V = —m(pE®)E® (AMC)
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where mg(t) is the curvature associated with the anisotropy ¢ and mis a

mobility.
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mobility. The anisotropic curvature is the first variation of
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where Iig(t) is the curvature associated with the anisotropy ¢ and mis a

mobility. The anisotropic curvature is the first variation of

Ps(E) = - o(vF) dH"

and formally given by
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The anisotropic mean curvature flow

We are interested in the (formal) law

V = —m(pE®)E® (AMC)

where Iig(t) is the curvature associated with the anisotropy ¢ and mis a
mobility. The anisotropic curvature is the first variation of

Ps(E) = - o(vF) dH"

and formally given by

Iig = div, (ng(yE)) .

e If ¢ is smooth, then (AMC) falls within the previous theory
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Limitations of the theory

If ¢ is non-smooth or crystalline, then the anisotropic mean curvature is
not well-defined.
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Limitations of the theory

If ¢ is non-smooth or crystalline, then the anisotropic mean curvature is
not well-defined. Thus the previous theory does not apply to the
crystalline mean curvature flow!
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The crystalline case

The unit ball B,

The Wulff shape W,

o = = E A
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uniquely defined for some directions;
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The crystalline case

The unit ball B, The Wulff shape W,

o Lack of differentiability: the Cahh-Hoffmann field Vé(v) is not
uniquely defined for some directions;

o look at suitable selections z of x — d¢(vE(x));
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o Lack of differentiability: the Cahh-Hoffmann field Vé(v) is not
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o look at suitable selections z of x — d¢(vE(x));

@ the crystalline curvature is given by div,z, where div,z has minimal
[2-norm among all admissible fields;
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The crystalline case

The unit ball B, The Wulff shape W,

o Lack of differentiability: the Cahh-Hoffmann field Vé(v) is not
uniquely defined for some directions;

o look at suitable selections z of x — d¢(vE(x));

@ the crystalline curvature is given by div,z, where div,z has minimal

[2-norm among all admissible fields;

@ The curvature becomes nonlocal!

Brighton, September 8th 2015 Nonlocal geometric flows 25 /31



Know results

=] = = E A
Brighton, September 8th 2015 Nonlocal geometric flows



Know results

@ The planar case N = 2 has been investigated by many authors
(Angenent, Giga, Gurtin...).
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Know results

@ The planar case N = 2 has been investigated by many authors
(Angenent, Giga, Gurtin...). It has been settled in

M.-H. Giga and Y. Giga. Generalized motion by nonlocal curvature in the plane. ARMA 2001.

by developing a “crystalline” viscosity approach.
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by developing a “crystalline” viscosity approach.

@ In the case N > 3 only partial results were available:

» Convex initial data: Caselles & Chambolle (2006) and Bellettini,
Caselles, Chambolle & Novaga (2006)
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Know results

@ The planar case N = 2 has been investigated by many authors
(Angenent, Giga, Gurtin...). It has been settled in
M.-H. Giga and Y. Giga. Generalized motion by nonlocal curvature in the plane. ARMA 2001.

by developing a “crystalline” viscosity approach.

@ In the case N > 3 only partial results were available:

» Convex initial data: Caselles & Chambolle (2006) and Bellettini,
Caselles, Chambolle & Novaga (2006)

» Polyhedral initial data: Giga, Gurtin & Matias (1998)

» General initial data, but for a specific cylindrical anisotropy: Giga, Giga
& Pozar (2014)

» Global-in-time solution via ATW scheme;no general comparison
principle known so far.

Brighton, September 8th 2015 Nonlocal geometric flows 26 / 31



Latest developments

New result (Chambolle-M.-Ponsiglione 2015)
Let ¢ be any crystalline anisotropy. Then, the crystalline mean curvature
equation
_ (. E(t)y, E(t)
V=—¢("")k,

admits a weak (distributional) formulation that yields global existence and
comparison principle in all dimensions and for arbitrary (possibly

unbounded) initial sets.
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Latest developments

New result (Chambolle-M.-Ponsiglione 2015)
Let ¢ be any crystalline anisotropy. Then, the crystalline mean curvature
equation
_ (. E(t)y, E(t)
V=—¢("")k,

admits a weak (distributional) formulation that yields global existence and
comparison principle in all dimensions and for arbitrary (possibly

unbounded) initial sets.

@ Our result holds only for the “natural” mobility m = ¢.
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A suitable weak formulation: heuristics

Let t — E(t) be a smooth flow and assume ¢ to be smooth.
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A suitable weak formulation: heuristics

Let t — E(t) be a smooth flow and assume ¢ to be smooth.

e Set d(-,t) :=dist(+, E(t)), where dist is the distance induced by ¢°.
Then 9;d = —V /p(vE®) on DE(t).
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e Set d(-,t) :=dist(+, E(t)), where dist is the distance induced by ¢°.
Then d:d = —V /p(vE(®)) on DE(t). Thus, the anisotropic mean
curvature equation reads

9ed = div(Vo(Vd))  on DE(t) = {d(-,t) = O}.
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Let t — E(t) be a smooth flow and assume ¢ to be smooth.

e Set d(-,t) :=dist(+, E(t)), where dist is the distance induced by ¢°.
Then d:d = —V /p(vE(®)) on DE(t). Thus, the anisotropic mean
curvature equation reads

9ed = div(Vo(Vd))  on DE(t) = {d(-,t) = O}.

@ Since the curvatures of the s-level sets of d are non-increasing in s,
we have
Ord > div(Vo(Vd)) in {d > 0}. (1)
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A suitable weak formulation: heuristics

Let t — E(t) be a smooth flow and assume ¢ to be smooth.

e Set d(-,t) :=dist(+, E(t)), where dist is the distance induced by ¢°.
Then d:d = —V /p(vE(®)) on DE(t). Thus, the anisotropic mean
curvature equation reads

9ed = div(Vo(Vd))  on DE(t) = {d(-,t) = O}.

@ Since the curvatures of the s-level sets of d are non-increasing in s,
we have
Ord > div(Vo(Vd)) in {d > 0}. (1)

@ Analogously, setting d°(-, t) := dist(-, E(t)), we have
8:d > div(V(VdS))  in {d° > 0}. (2)
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The weak formulation

Definition (Chambolle-M.-Ponsiglione 2015)

Let (E(t))t>0 be a family of closed sets. We say that it is a weak
supersolution if
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Let (E(t))e>0 be a family of closed sets. We say that it is a weak
supersolution if

(a) E(s) N E(t) ass /'t for all t > 0 (left-continuity);
(b) setting d(x, t) := dist(x, E(t)), then

Ord >divz inRN x (0, T*)\ E

in the distributional sense for a suitable z s.t. z € 0¢(Vd) a.e
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The weak formulation

Definition (Chambolle-M.-Ponsiglione 2015)

Let (E(t))e>0 be a family of closed sets. We say that it is a weak
supersolution if

(a) E(s) N E(t) ass /'t for all t > 0 (left-continuity);
(b) setting d(x, t) := dist(x, E(t)), then

Ord >divz inRN x (0, T*)\ E

in the distributional sense for a suitable z s.t. z € 0¢(Vd) a.e and
(divz)t € L>({d > &}) for every § > 0.

@ Reminiscent of the distance formulation by Soner
@ Comparison Principle: exploits the distributional formulation
o Existence: via minimizing movements
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Conclusions

@ Unifying approach to deal with a general class of nonlocal curvature

flows

@ The variational point of view highlights the crucial role of convexity
(submodularity)

@ General Consistency Result between viscosity solutions and

minimizing movements

@ The general theory does not apply to the crystalline mean curvature

flow

@ New distributional formulation: provides the first sound definition of a
crystalline mean curvature flow valid in any dimension and for

arbitrary initial sets.

Open Problem: the general mobility case (future investigations).
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THE END

THANK YOU!!
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