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A classical geometric evolution

Motion by mean curvature: t 7→ Et ⊂ Rd

V = H∂Et su ∂Et (MCM)

V is the normal velocity of ∂Et

H∂Et is the mean curvature of ∂Et .

Proposed by Mullins (1956) to describe the evolution of crystalline grains:
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Singularities may appear

Local-in-time existence from smooth initial data can be shown by

standard methods;

Singularities may appear even from smooth initial data:

Figure : An example of pinching singularity (Grayson ’89).

Question: how to define a global-in-time solution?
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The level set approach

Idea:

I represent Et as Et = {u(·, t) ≥ 0}
I let all of super-level sets of u evolve according to MCM

ut = |∇u|div
∇u

|∇u|
(EqIL)

I Proposed by Osher & Sethian (1988) for numerical purposes, as a

method to deal with topological changes.

I Global existence and uniqueness for (EqIL) has been established in Evans

& Spruck (1991) and Chen-Giga-Goto (1991) within the formalism of

viscosity solutions

.
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The variational approach by Amlgren-Tayor-Wang

The evolution law (MCM) can be regarded as the gradient flow of the

perimeter,

with respect to a L2-type Riemannian-structure .

I One defines a discrete-in-time evolution by iteration:

En+1 ∈ argmin

(
Per(F ) +

1

τ

∫
F∆En−1

d(x , ∂En−1) dx

)

Let Eτ (t) the piecewise interpolation with time step τ . Then

Eτ (t)→ E (t), solution to (MCM) up to Tsing .

I F. Almgren, J. E. Taylor, and L.-H. Wang. Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31 (2),

1993.

I S. Luckhaus and T. Sturzenhecker. Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial

Differential Equations, 3 (2), 1995.

I Chambolle, A.: An algorithm for mean curvature motion. Interfaces Free Bound. 6 (2004), 195-218.
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Generalized perimeters and nonlocal motions

Chambolle-M.-Ponsiglione (ARMA 2015)

Definition J : M 7→ [0,+∞] is a generalized perimeter if:

J(E ) < +∞ for all E ∈ C 2 with compact boundary;

J(∅) = J(Rd) = 0;

J(E ) = J(E ′) if |E4E ′| = 0;

J is l.s.c in L1
loc ;

J is translation invariant;

J is submodular: for all E , F

J(E ∪ F ) + J(E ∩ F ) ≤ J(E ) + J(F ) ;

J can be extended to a functional on L1
loc by enforcing the coarea formula:

J̃(u) :=

∫ +∞

−∞
J({u > s}) ds.

J is submodular ⇐⇒ J̃ is convex ( Chambolle, Giacomini, Lussardi 2010).
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Generalized curvatures

Definition

We say that κ(·,E ) is the curvature of ∂E associated with J if per any

smooth family of diffeomorphisms (Φε)ε, with Φ0 = Id, one has

d

dε
J
(
Φε(E )

)
|ε=0

=

∫
∂E
κ(x ,E ) X (x) · νE (x)dHN−1(x).

where X := ∂Φε
∂ε |ε=0

and νE is the outer normal to E .

Hypotheses:

Existence: κ(·,E ) is defined for all E of class C 2.

Continuity: If En → E in C 2 and xn ∈ ∂En → x ∈ ∂E , then

κ(xn,En)→ κ(x ,E ).

Non degeneracy: infρ>0 minx∈∂Bρ κ(x ,Bρ) > −∞.
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Consequences of convexity

Lemma (Subgradient inequalities)

Let E ∈ C 2 and x ∈ ∂E . Then

J(E )− J(E \Wn) ≤ |Wn ∩ E |(κ(x ,E ) + o(1))

and

J(E ∪Wn)− J(E ) ≥ |Wn \ E |(κ(x ,E ) + o(1))

if Wn → {x} in the Hausdorff sense.
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Consequences of convexity

Lemma (Monotonicity)

Let E ,F ∈ C 2 with E ⊆ F and let x ∈ ∂F ∩ ∂E . Then

κ(x ,F ) ≤ κ(x ,E ).

Brighton, September 8th 2015 Nonlocal geometric flows 9 / 31



Nonlocal geometric flows

We are interested in

(GMC) V (x , t) = −κ(x ,E (t)) for t > 0 and x ∈ ∂E (t)

The strong formulation of (GMC) becomes meaningless when

singularities appear

Need for a weak formulation:

I Representation via super-level sets
I Viscosity formulation of the corresponding equation
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Level set formulation

Representing E (0) := {u0 ≥ 0}, one is led to the Cauchy problem:

ut(x , t) + |Du(x , t)|κ(x , {y : u(y , t) ≥ u(x , t)}) = 0

u(0, ·) = u0.

Weak formulation: The curvature κ is defined only on regular sets.

We consider viscosity solutions.

Functional setting: Evolution of sets with compact boundary.

Therefore, u and the test functions are constant outside a compact

set.
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Definition of viscosity solution

Definition

A continuous function u : Rd × [0,T ]→ R is a viscosity subsolution if

u(0, ·) ≤ u0, and for any test function ϕ of class C 2 s.t. u − ϕ has a

maximum at z := (x , t), one has

ϕt(z) + |Dϕ(z)|κ (x , {y : ϕ(y , t) ≥ ϕ(z)}) ≤ 0,

if the level set {ϕ(·, t) = ϕ(z)} is not critical, and ϕt(z) ≤ 0 if Dϕ(z) = 0

(and ϕ “flat enough” at z).

It is convenient to extend the class of test functions.

Extension of κ to non-regular sets by semicontinuity.

Perron’s Method extends to this setting
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The minimizing movements scheme

For any fixed time step h > 0, let ThE be the minimal solution to

min
F⊂Rd

{
J(F ) +

1

h

∫
F4E

dist(x , ∂E ) dx

}

Lemma (Discrete Comparison Principle)

E ⊆ E ′ =⇒ ThE ⊆ ThE ′.
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Time-discrete evolutions

u ∈ BUC (Rd), s > s ′ =⇒ Th{u ≥ s} ⊆ Th{u ≥ s ′}.

Thus, we may define

Thu(x) := sup{s : x ∈ Th{u ≥ s}} .

Let u0 ∈ BUC (Rd), constant outside a compact set. We define

uh(x , t) := (Th)[ t
h

]u0 .

One can show that uh is still constant outside a compact (spacial) set.
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Equicontinuity

Lemma

For every ε > 0 there exists τ > 0 s.t. if h > 0 is small enough, |x − y | ≤ τ
and |i/h − j/h| ≤ τ with i , j ∈ N, then |uh(i/h, x)− uh(j/h, y)| ≤ ε.

Equicontinuity in space: follows from discrete comparison principle +

translation invariance

Equicontinuity in time: follows from discrete comparison principle +

estimate on how fast balls shrink.
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The main consistency result

Thus, up to subsequences, uh → u uniformly on compact sets

Theorem (Chambolle-M.-Ponsiglione, ARMA 2015)

The limiting function u is a viscosity solution ofut(x , t) + |Du(x , t)|κ(x , {y : u(y , t) ≥ u(x , t)}) = 0

u(0, ·) = u0.

We recall that the theorem holds under the assumptions:

Existence: κ(·,E ) is defined for all E of class C 2.

Continuity: If En → E in C 2 and xn ∈ ∂En → x ∈ ∂E , then

κ(xn,En)→ κ(x ,E ).

Non degeneracy: infρ>0 minx∈∂Bρ κ(x ,Bρ) > −∞.
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Uniqueness

We consider two different hypotheses:

(FO): (First order curvatures) Let Σ ∈ C1,1 and x ∈ ∂Σ. Then

sup
{
κ(x ,F ) : F ∈ C 2 ,F ⊇ Σ , x ∈ ∂F

}
= inf

{
κ(x ,F ) : F ∈ C 2 , F̊ ⊆ Σ , x ∈ ∂F

}
.

(UC) (Uniform C 2-continuity) Given r > 0, there exists ωr such that:

For every E ∈ C 2, x ∈ ∂E satisfying a ball condition of radius

r at x and for every diffeomorphisms Φ : Rd → Rd of class C 2

|κ(x ,E )− κ(Φ(x),Φ(E ))| ≤ ωr (‖Φ− Id‖C2).
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Uniqueness

Theorem (Chambolle-M.-Ponsiglione, ARMA 2015)

Assume that (FO) or (UC) hold. Thenut(x , t) + |Du(x , t)|κ(x , {y : u(y , t) ≥ u(x , t)}) = 0

u(0, ·) = u0.

admits a unique viscosity solution.
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Examples and applications: the fractional mean curvature

flow

For α ∈ (0, 1) consider the fractional perimeter

Jα(E ) :=

∫ ∫
Rd×Rd

|χE (x)− χE (y)|
|x − y |N+α

dxdy = [χE ]2
H
α
2
.

G. Gilboa; S. Osher, Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6

(2007)

It satisfies all the axioms of a generalized perimeter.

The fractional curvature κα is well defined for C 2-sets:

κα(x ,E ) := P.V .

∫
Rd

χE (y)− χE (x)

|x − y |N+α
dy .

κα is non-negative on balls and continuous with respect to the

C 2-convergence of sets.
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Minimizing movements and fractional mean curvature flow

κα is a first order curvature.

Corollary

The minimizing movements algorithm converges to the unique viscosity

solution ofut(x , t) + |Du(x , t)|κα(x , {y : u(y , t) ≥ u(x , t)}) = 0

u(0, ·) = u0.

Existence and uniqueness were already known: Imbert (2009).

Our approximation is new and alternative to Caffarelli&Souganidis

ARMA (2010).
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Examples and applications: the Minkowski pre-content

Jρ(E ) :=

∫
ess-osc(χE ,Bρ(x)) dx .

Noise penalization

1

“relaxation” of boundary oscillations

1

2

Barchiesi, Kang, Lee, M., Ponsiglione. Multiscale Model. Simul. 8 (2010).

Regularized version:

Jω(E ) :=

∫ +∞

0
ω(ρ)Jρ(E ) dρ,

where ω ≥ 0 is in C∞c (R+)

the associated curvature satisfies (UC)
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Examples and applications: the p-capacity flow

We consider the shape flow of bounded sets generated by the

p-capacity, 1 < p < N.

The relaxed p-capacity of a bounded set E ∈M is given by:

Cap(E ) :=min

{∫
Rd

|Dw |p dx : w ∈ Kp and w ≥ 1 q.o in E

}
.

For every E of class C 2 and bounded:

κp(x ,E ) := |DwE (x)|p =

∣∣∣∣∂wE

∂ν
(x)

∣∣∣∣p

κp all the previous assumptions, including (FO).

The case p = 2 is similar to the Hele-Show type flow studied in

P. Cardaliaguet and O. Ley. Some flows in shape optimization. Arch. Ration. Mech. Anal., 183 (1):21-58, 2007.
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The anisotropic mean curvature flow

We are interested in the (formal) law

V = −m(νE(t))κ
E(t)
φ (AMC)

where κ
E(t)
φ is the curvature associated with the anisotropy φ and m is a

mobility. The anisotropic curvature is the first variation of

Pφ(E ) =

∫
∂E
φ(νE ) dHN−1

and formally given by

κEφ = divτ
(
∇φ(νE )

)
.

If φ is smooth, then (AMC) falls within the previous theory
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Limitations of the theory

If φ is non-smooth or crystalline, then the anisotropic mean curvature is

not well-defined.

Thus the previous theory does not apply to the

crystalline mean curvature flow!
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The crystalline case

The unit ball Bφ The Wulff shape Wφ

Lack of differentiability: the Cahh-Hoffmann field ∇φ(νE ) is not

uniquely defined for some directions;

look at suitable selections z of x 7→ ∂φ(νE (x));

the crystalline curvature is given by divτz , where divτz has minimal

L2-norm among all admissible fields;

The curvature becomes nonlocal!
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Know results

The planar case N = 2 has been investigated by many authors

(Angenent, Giga, Gurtin...). It has been settled in

M.-H. Giga and Y. Giga. Generalized motion by nonlocal curvature in the plane. ARMA 2001.

by developing a “crystalline” viscosity approach.

In the case N ≥ 3 only partial results were available:

I Convex initial data: Caselles & Chambolle (2006) and Bellettini,

Caselles, Chambolle & Novaga (2006)
I Polyhedral initial data: Giga, Gurtin & Matias (1998)
I General initial data, but for a specific cylindrical anisotropy: Giga, Giga

& Pozar (2014)
I Global-in-time solution via ATW scheme;no general comparison

principle known so far.
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Latest developments

New result (Chambolle-M.-Ponsiglione 2015)

Let φ be any crystalline anisotropy. Then, the crystalline mean curvature

equation

V = −φ(νE(t))κ
E(t)
φ

admits a weak (distributional) formulation that yields global existence and

comparison principle in all dimensions and for arbitrary (possibly

unbounded) initial sets.

Our result holds only for the “natural” mobility m = φ.
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A suitable weak formulation: heuristics

Let t 7→ E (t) be a smooth flow and assume φ to be smooth.

Set d(·, t) := dist(·,E (t)), where dist is the distance induced by φ◦.

Then ∂td = −V /φ(νE(t)) on ∂E (t). Thus, the anisotropic mean

curvature equation reads

∂td = div(∇φ(∇d)) on ∂E (t) = ∂{d(·, t) = 0}.

Since the curvatures of the s-level sets of d are non-increasing in s,

we have

∂td ≥ div(∇φ(∇d)) in {d > 0}. (1)

Analogously, setting dc(·, t) := dist(·,E c(t)), we have

∂td
c ≥ div(∇φ(∇dc)) in {dc > 0}. (2)
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The weak formulation

Definition (Chambolle-M.-Ponsiglione 2015)

Let (E (t))t≥0 be a family of closed sets. We say that it is a weak

supersolution if

(a) E (s)
K−→ E (t) as s ↗ t for all t > 0 (left-continuity);

(b) setting d(x , t) := dist(x ,E (t)), then

∂td ≥ divz in RN × (0,T ∗) \ E

in the distributional sense for a suitable z s.t. z ∈ ∂φ(∇d) a.e and

(divz)+ ∈ L∞({d ≥ δ}) for every δ > 0.

Reminiscent of the distance formulation by Soner

Comparison Principle: exploits the distributional formulation

Existence: via minimizing movements
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Conclusions

Unifying approach to deal with a general class of nonlocal curvature

flows

The variational point of view highlights the crucial role of convexity

(submodularity)

General Consistency Result between viscosity solutions and

minimizing movements

The general theory does not apply to the crystalline mean curvature

flow

New distributional formulation: provides the first sound definition of a

crystalline mean curvature flow valid in any dimension and for

arbitrary initial sets.

Open Problem: the general mobility case (future investigations).
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THE END

THANK YOU!!
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