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Part 1: Non-autonomous functionals
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Classical facts

consider variational problems of the type

W 1,1 3 v 7→
∫

Ω
f (x ,Dv) dx Ω ⊂ Rn

the standard growth conditions are

|z |p . f (x , z) . |z |p + 1

for p > 1, and the problem is well settled in W 1,p

a model example is

v 7→
∫

Ω
c(x)|Dv |p dx
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Cassical regularity facts (in a model case)

consider the model case

v 7→
∫

Ω
c(x)|Dv |p dx

then

If c(x) is measurable then u ∈ C 0,γ for some γ > 0

If c(x) is continuous then u ∈ C 0,γ for every γ < 1

If c(x) is Hölder then Du ∈ C 0,γ for some γ > 0
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Non-standard growth conditions

consider now variational problems of the type

W 1,1 3 v 7→
∫

Ω
f (x ,Dv) dx Ω ⊂ Rn

with
|z |p . f (x , z) . |z |q + 1 and q > p > 1
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Lower semicontinuity, Relaxation, Homogenization

Pioneers: Marcellini and Zhikov in the 80s
A few

Marcellini Ann. IHP 86

Zhikov Izv. Akad. Nauk SSSR 86

Marcellini-Fonseca JGA 97

Fonseca-Malý Ann. IHP 97

Kristensten Proc. Edin. 97 + Calc. Var. 98

Bouchitté-Fonseca-Malý Ann. Proc. Edin. 98
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Lower semicontinuity results

Theorem (Fonseca & Malý Ann. IHP 97)

Let

W 1,1 3 v 7→
∫

Ω
f (Dv) dx Ω ⊂ Rn

be a quasiconvex functional satisfying assumptions

0 ≤ f (z) . |z |q + 1 .

Then ∫
Ω

f (Dv) dx ≤ lim inf
k

∫
Ω

f (Dvk) dx

whenever {vk} ⊂W 1,q is such that vk ⇀ v in W 1,p provided

q

p
<

n

n − 1
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(
>

n + 1

n
by Marcellini Ann. IHP 86

)
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Regularity - A basic condition

W 1,1 3 v 7→
∫

Ω
f (Dv) dx Ω ⊂ Rn

with
|z |p . f (z) . |z |q + 1 and q > p > 1

then
q

p
< 1 + o(n)

is a sufficient (Marcellini) and necessary (Giaquinta and Marcellini)
condition for regularity
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Non-standard growth conditions

Bounded minimisers give better bounds

q < p + 1

the first example of this result I know is from a paper of Uraltseva
& Urdaletova (1984).

Several results have been obtained in this direction (in particular I
mention a recent result of Carozza & Kristensen & Passarelli (ann.
IHP 2011), where the bound is q < p + 2)
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Several people on non-uniformly elliptic operators

Leon Simon

Uraltseva & Urdaletova

Zhikov

Marcellini

Hong

Lieberman

Fusco-Sbordone

many, many, many others (including me)
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Non-autonomous functionals

I am interested in non-autonomous functionals of the type

v 7→
∫

Ω
f (x ,Dv) dx

new phenomena appear in this situation, and the presence of x is
not any longer a perturbation
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Three functionals of Zhikov

Zhikov introduced, between the 80s and the 90s, the following
functionals:

v 7→
∫

Ω
|Dv |2w(x) dx w(x) ≥ 0

v 7→
∫

Ω
|Dv |p(x) dx p(x) ≥ 1

v 7→
∫

Ω
(|Dv |p + a(x)|Dv |q) dx a(x) ≥ 0

motivations: modelling of strongly anisotropic materials, Elasticity,
Homogenization, Lavrentiev phenomenon etc
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Part 3: Irregularity (based on pioneering work of Zhikov)
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Irregularity I

Theorem (Esposito-Leonetti-Min. JDE 2004)

For every choice of n ≥ 2, Ω ⊂ Rn and of

ε > 0 and α ∈ (0, 1)

there exists a non-negative function a(·) ∈ C 0,α, a boundary datum
u0 ∈W 1,∞(B) and exponents p, q satisfying

n − ε < p < n < n + α < q < n + α + ε

such that the solution to the Dirichlet problemu 7→ min
w

∫
B

(|Dv |p + a(x)|Dv |q) dx

w ∈ u0 + W 1,p
0 (B)

does not belong to W 1,q
loc (B)
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The example goes via Lavrentiev phenomenon

inf
w∈u0+W 1,p

0 (B)

∫
B

(|Dv |p + a(x)|Dv |q) dx

< inf
w∈u0+W 1,p

0 (B)∩W 1,q
loc (B)

∫
B

(|Dv |p + a(x)|Dv |q) dx
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Irregularity II

Theorem (Fonseca-Malý-Min. ARMA 2004)

For every choice of n ≥ 2, Ω ⊂ Rn and of ε > 0, α > 0, there
exists a non-negative function a(·) ∈ C [α]+{α}, a boundary datum
u0 ∈W 1,∞(B) and exponents p, q satisfying

n − ε < p < n < n + α < q < n + α + ε

such that the solution to the Dirichlet problemu 7→ min
w

∫
B

(|Dv |p + a(x)|Dv |q) dx

w ∈ u0 + W 1,p
0 (B)

has a singular set of essential discontinuity points of Hausdorff
dimension larger than n − p − ε
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First (old) regularity

Theorem (Esposito-Leonetti-Min. JDE 2004)

Let u ∈W 1,p(Ω), Ω ⊂ Rn be a local minimiser of the functional

v 7→
∫

Ω
(|Dv |p + a(x)|Dv |q) dx

and assume that

0 ≤ a(·) ∈ C 0,α(Ω) and
q

p
< 1 +

α

n

then
u ∈W 1,q

loc (Ω)
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Part 3: Main results, with Maria Colombo (ETH)

Three papers:

Regularity for double phase variational problems - ARMA 15

Bounded minimisers of double phase variational integrals -
ARMA 15

Calderón-Zygmund estimates and non-uniformly elliptic
operators - JFA 15
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Classical Regularity

Theorem (Uraltseva Zap. LOMI 68 - Uhlenbeck Acta Math. 77)

Let u ∈W 1,p(Ω), Ω ⊂ Rn, be a local minimiser of the functional

v 7→
∫

Ω
|Dv |p dx , p > 1 .

Then
Du is Hölder continuous
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Theorem 1

Theorem (Colombo-Min. ARMA 15)

Let u ∈W 1,p(Ω), Ω ⊂ Rn, be a local minimiser of the functional

v 7→
∫

Ω
(|Dv |p + a(x)|Dv |q) dx

and assume that

0 ≤ a(·) ∈ C 0,α(Ω) and
q

p
< 1 +

α

n

then
Du is Hölder continuous
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Theorem 2

Theorem (Colombo-Min. ARMA 15)

Let u ∈W 1,p(Ω) be a bounded local minimiser of the functional

v 7→
∫

Ω
(|Dv |p + a(x)|Dv |q) dx

and assume that

0 ≤ a(·) ∈ C 0,α(Ω) and q ≤ p + α

then
Du is Hölder continuous

Notice the the delicate borderline case q = p + α is achieved
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Nonlinear Calderón-Zygmund theory

Theorem (Iwaniec Studia Math. 83 - DiBenedetto & Manfredi
Amer. J. Math. 93)

Let u ∈W 1,p be a distributional solution to

div (|Du|p−2Du) = div (|F |p−2F ) in Rn

Then it holds that

F ∈ Lq =⇒ Du ∈ Lq p ≤ q <∞
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Theorem 3

Theorem (Colombo-Min. JFA 15)

Let u ∈W 1,p(Ω) be a distributional solution to

div (|Du|p−2Du + a(x)|Du|q−2Du) = div (|F |p−2F + a(x)|F |q−2F )

and assume that

0 ≤ a(·) ∈ C 0,α(Ω) and
q

p
≤ 1 +

α

n

then

(|F |p + a(x)|F |q) ∈ Lγloc =⇒ (|Du|p + a(x)|Du|q) ∈ Lγloc

for every γ ≥ 1
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Theorem 4

Theorem (Colombo-Min. JFA 15)

Let u ∈W 1,p(Ω) be a bounded minimiser of the functional

v 7→
∫

[|Dv |p + a(x)|Dv |q − (|F |p−2 + a(x)|F |q−2)〈F ,Dv〉]

and assume that

0 ≤ a(·) ∈ C 0,α(Ω) and q ≤ p + α

and

sup
B%

%p0 −
∫
B%

[|F |p + a(x)|F |q] dx <∞ for some p0 < p

then

(|F |p + a(x)|F |q) ∈ Lγloc =⇒ (|Du|p + a(x)|Du|q) ∈ Lγloc

for every γ ≥ 1
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Part 4: Similarities and heuristics
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The general viewpoint

is to consider functionals as

v 7→
∫

Ω
f (x , v ,Dv) dx

where
H(x , |z |) . f (x , u, z) . H(x , |z |) + 1

with
H(x , |z |) = |z |p + a(x)|z |q

being a replacement of
|z |p
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Heuristic explanations - dependence on α of the bound

The Euler equation of the functional is

div a(x ,Du) = div (|Du|p−2Du + (q/p)a(x)|Du|q−2Du) = 0

then

highest eigenvalue of ∂za(x ,Du)

lowest eigenvalue of ∂za(x ,Du)
≈ 1 + a(x)|Du|q−p

≈ 1 + Rα|Du|q−p
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Heuristic explanation - the bound q ≤ p + α

Consider the usual p-capacity for p < n

capp(Br ) = inf

{∫
Rn

|Dv |p dx : f ∈W 1,p, f ≥ 1 on Br

}
we have

capp(Br ) ≈ rn−p

then consider the weighted capacity

capq,α(Br ) = inf

{∫
Rn

|x |α|Dv |q dx : f ∈ C∞0 (Rn), f ≥ 1 on Br

}
we then have (the ball is centered at the origin)

capq,α(Br ) ≈ rn−q+α
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Heuristic explanation - The bound q ≤ p + α

We then ask for
capq,α(Br ) . capp(Br )

that is
rn−q+α ≤ rn−p

for r small enough, so that

q ≤ p + α
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A parallel with Muckenhoupt weights

A maximal theorem holds∫
Ω

[H(x , |M(f )|)]t dx .
∫

Ω
[H(x , |f |)]t dx

where Mf is the usual (localised) Hardy-Littlewood maximal
operator, together with a Sobolev-Poincaré type inequality(

−
∫
BR

[
H

(
x ,

∣∣∣∣ f − (f )BR

R

∣∣∣∣)]d dx

)1/d

≤ c −
∫
BR

[H(x , |Df |)]dx

for d > 1
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A parallel with Muckenhoupt weights

A non-negative function w ∈ Lt is said to be of class At if

sup
BR

(
−
∫
BR

|w | dx

)(
−
∫
BR

|w |1/(1−t) dx

)1/(p−1)

<∞

then it follows ∫
Ω
|M(f )|pw(x) dx .

∫
Ω
|f |w (x) dx

holds for t > 1 and(
−
∫
BR

[
H

(
x ,

∣∣∣∣ f − (f )BR

R

∣∣∣∣)]d dx

)1/d

≤ c −
∫
BR

H(x , |Df |)dx

holds for d > 1
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Questions

Study more general conditions for which such abstract results
hold in connection to regularity theorems, for instance

Define the quantity

capH(Br )

= inf

{∫
Rn

H(x ,Dv) dx : f ∈ C∞0 (Rn), f ≥ 1 on Br

}
and prove it is a capacity in the usual sense when q ≤ p + α;
also consider the condition q/p < 1 + α/n

Consider removability of singularities problems using this
capacity, and in connection obstacle problems
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A parallel with Muckenhoupt weights

Minima of functionals of the type

v →
∫

f (x , v ,Dv) dx

with
f (x , v , z) ≈ |z |pw(x) ≡ H(x , |z |)

are locally Hölder continuous provided
Fabes-König-Serapioni (Comm. PDE 1982) - Modica (Ann. Mat.
Pura Appl. 1985)
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Questions

Study more general conditions for which such abstract results
hold in connection to regularity theorems, for instance

Define the quantity

capH(Br )

= inf

{∫
Rn

H(x ,Dv) dx : f ∈ C∞0 (Rn), f ≥ 1 on Br

}
and prove it is a capacity in the usual sense when q ≤ p + α;
also consider the condition q/p < 1 + α/n

Consider removability of singularities problems using this
capacity, and in connection obstacle problems

Consider weights with respect to this new norm
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Part 5: Proofs sketches
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The proofs: Separation of phases and universal threshold

There exists a universal threshold M ≡ M(n, p, q, α) such that if
on the ball BR

ai (R) := inf
x∈BR

a(x) ≤ M[a]0,αRα

Then our functional is essentially equivalent to

v 7→
∫
BR

|Dv |p dx
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The proofs: Separation of phases and universal threshold

there exists a universal threshold M ≡ M(n, p, q, α) such that if on
the ball BR

ai (R) := inf
x∈BR

a(x) > M[a]0,αRα

then our functional is essentially equivalent to

v 7→
∫
BR

(|Dv |p + ai (R)|Dv |q) dx

Implementation of this is very delicate and goes though a delicate
analysis involving an exit time argument
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Tool 1: Reverse Hölder inequality

Lemma

Let u ∈W 1,p(Ω) be a local minimiser of the functional

v 7→
∫

Ω
(|Dv |p + a(x)|Dv |q) dx

and let BR be a ball such that

inf
x∈BR

a(x) ≤ M[a]αRα and
q

p
< 1 +

α

n

hold. then there exists a positive constant c ≡ c(M) such that(
−
∫
BR/2

|Du|2q−p dx

)1/(2q−p)

≤ c

(
−
∫
BR

|Du|p dx

)1/p
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Tool 2: Caccioppoli type inequality

Lemma

Let u ∈W 1,p(Ω) be a bounded local minimiser of the functional

v 7→
∫

Ω
(|Dv |p + a(x)|Dv |q) dx

and let BR be a ball such that

inf
x∈BR

a(x) ≤ M[a]αRα and q ≤ p + α

hold. then there exists a positive constant c ≡ c(M) such that

−
∫
BR/2

|Du|p dx ≤ c −
∫
BR

∣∣∣∣u − (u)BR

R

∣∣∣∣p dx
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Theorem on bounded minimisers

Theorem (Colombo-Min. ARMA 15)

Let u ∈W 1,p(Ω) be a bounded local minimiser of the functional

v 7→
∫

Ω
(|Dv |p + a(x)|Dv |q) dx

and assume that

0 ≤ a(·) ∈ C 0,α(Ω) and q ≤ p + α

then
Du is Hölder continuous

A parabolic theorem is on its way
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Proof goes in ten different Steps

Step 1: Low Hölder continuity (to treat the borderline case
q = p + α)

Step 2: p-harmonic approximation to handle the p-phase

Step 3: Decay estimate on all scales in the (p, q)-phase

Step 4: Exit time argument implies u ∈ C 0,γ for every γ < 1

Step 5: Previous Step implies that Du is in every Morrey space

Step 6: Morrey space regularity of the gradient implies
absence of Lavrentiev phenomenon

Step 7: Gradient fractional Sobolev regularity

Step 8: Upgraded Caccioppoli inequality via interpolation
inequalities in fractional Sobolev spaces

Step 9: Higher integrability of the gradient implies a better
p-harmonic approximation in the p-phase

Step 10: Hölder gradient continuity via weighted separation of
phases
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The excess functional

I will consider for simplicity the case p ≥ 2

E (u; x0,R) :=

(
−
∫
BR(x0)

|u − (u)BR(x0) |
p dx

)1/p

You want to prove that

E (u; x0, τ
kR) ≤ τkγE (u; x0,R)

and this implies that
u ∈ C 0,γ

Giuseppe Mingione Double phase functionals



The excess functional

I will consider for simplicity the case p ≥ 2

E (u; x0,R) :=

(
−
∫
BR(x0)

|u − (u)BR(x0) |
p dx

)1/p

You want to prove that

E (u; x0, τ
kR) ≤ τkγE (u; x0,R)

and this implies that
u ∈ C 0,γ

Giuseppe Mingione Double phase functionals



Step 1: Preliminary microscopic Hölder continuity

u is locally Hölder continuous with some potentially microscopic
exponent γ0 ∈ (0, 1). This essentially serve to catch the borderline
case q = p + α.
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Step 2: p-phase

Assume
inf

x∈BR

a(x) ≤ M[a]0,αRα

holds for some number M ≥ 1. then for every γ ∈ (0, 1) there
exists a positive radius R∗ ≡ R∗(M, γ) and τ ≡ τ(M, γ) ∈ (0, 1/4)
such that the decay estimate

E (u; x0, τR) ≤ τγE (u; x0,R)

holds whenever 0 < R ≤ R∗
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Step 2: p-phase

→ Caccioppoli inequality in the p-phase becomes∫
BR/2

|Du|p dx ≤ c

∫
BR

∣∣∣∣u − (u)BR

R

∣∣∣∣p dx =

(
E (u; x0,R)

R

)p

,

→ then define

v(x) :=
u(x0 + Rx)

E (u; x0,R)
, x ∈ B1

so that

−
∫
B1/2

|Dv |p dx ≤ c
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Step 2: p-phase

→ moreover, v solves, for every ϕ ∈ C∞0 (B1)∫
B1

〈|Dv |p−2Dv+(q/p)ã(x)Rp−q[E (u; x0,R)]q−p|Dv |q−2Dv ,Dϕ〉 dx = 0

this means that∣∣∣∣−∫
B1

〈|Dv |p−2Dv ,Dϕ〉 dx

∣∣∣∣
≤ cMRp+α−q[E (u; x0,R)]q−p‖Dϕ‖L∞(B1/2) −

∫
B1/2

|Dv |q−1 dx

≤ cRp+α−q+γ0(q−p)‖Dϕ‖L∞(B1/2)

(
−
∫
B1/2

|Dv |p dx

) q−1
p

≤ C∗R
p+α−q+γ0(q−p)
∗ ‖Dϕ‖L∞(B1/2)
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Step 2: p-phase

→ we conclude that∣∣∣∣−∫
B1

〈|Dv |p−2Dv ,Dϕ〉 dx

∣∣∣∣ ≤ ε‖Dϕ‖L∞(B1/2)

by taking R∗ suitably small
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Step 2: p-phase

→ apply the p-harmonic approximation lemma

Theorem (Duzaar - Min. Calc. Var. 04)

Given ε > 0 and L > 0, there exists δ ∈ (0, 1] such that whenever
v ∈W 1,p(B1/2) satisfies

−
∫
B1/2

|Dv |p dx ≤ L

and

−
∫
B1/2

〈|Dv |p−2Dv ,Dϕ〉 dx ≤ δ‖Dϕ‖L∞(B1/2)

holds for all ϕ ∈ C 1
0 (B1/2). there exists a p-harmonic map

h ∈W 1,p(B1/2), that is div (|Dh|p−2Dh) = 0, such that

−
∫
B1/2

|v − h|p dx ≤ εp

Giuseppe Mingione Double phase functionals



Step 2: p-phase

→ we conclude that∣∣∣∣−∫
B1

〈|Dv |p−2Dv ,Dϕ〉 dx

∣∣∣∣ ≤ ε‖Dϕ‖L∞(B1/2)

by taking R∗ suitably small
→ find a p-harmonic map h such that

−
∫
B1/2

|v − h|p dx ≤ εp

→ for harmonic maps you know that you have a good excess
decay, and therefore, since v and h are close, then also v has the
same property; scaling back, the same property holds for u
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Step 3: (p, q)-phase

assume
inf

x∈BR

a(x) > M[a]0,αRα

holds for some number M ≥ 1. Fix γ ∈ (0, 1); there exist positive
constants M1 ≥ 4 and τ ∈ (0, 1/4), with depending on γ, such
that if M ≥ M1, then the decay estimate

E (u; x0, τ
kR)

. τkγR

[
−
∫
B2R

(∣∣∣∣u − (u)B2R

R

∣∣∣∣p + a(x)

∣∣∣∣u − (u)B2R

R

∣∣∣∣q) dx

]1/p

holds for every integer k ≥ 0
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Step 4: Separation of phases via exit time

→ choose γ ∈ (0, 1)
→ Find M ≥ 1 and τ2 from Step 2
→ Use this M in Step 1 and find R∗ and τ1 from Step 1
→ consider the sequence of balls

....BRk+1
⊂ BRk

... ⊂ BR1 ⊂ BR , Rk = τk1 R0

and the condition
inf

x∈BRk

a(x) ≤ MRα
k (1)

the exit time index is

m := min {k ∈ N ∪ {∞} : (1) fails} .

Giuseppe Mingione Double phase functionals



Step 4: Separation of phases via exit time

→ keep on using Step 1 as long as the exit time is not reached,
this yields

E (u; x0, τ
k
1 R0) ≤ τkγ1 E (u; x0,R0) for every k ∈ {0, . . . ,m} .

→ after the exit time you can use Step 2 to get

E (u; x0, τ
k
2 τ

m
1 R0) . τkγ2 E (u; x0, 2τ

m
1 R0)

+τkγ2 τm1 R0

(
−
∫
B2τm

1
R0

a(x)

∣∣∣∣∣u − (u)B2τm
1

R0

τm1 R0

∣∣∣∣∣
q

dx

)1/p

→ match the two inequalities using the exit time condition and
ones again the bound q ≤ p + α
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Step 5: Morrey space regularity of the gradient

this tells that ∫
BR

|Du|p dx . Rn−θ ∀ θ > 0
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Step 6: Absence of Lavrentiev phenomenon

there exists a sequence of smooth functions {un} such that∫
B

(|Dun|p + a(x)|Dun|q) dx

→
∫
B

(|Du|p + a(x)|Du|q) dx

for every ball B ⊂ Ω
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Step 7: Fractional differentiability

We get suitable uniform estimates in

Du ∈W β/p,p for every β < α

we recall that this means∫
Ω′

∫
Ω′

|Du(x)− Du(y)|p

|x − y |n+β
<∞

for every Ω′ b Ω
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Step 7: Fractional differentiability

We get suitable uniform estimates in

Du ∈W β/p,p for every β < α

we recall that this means∫
Ω′

∫
Ω′

|Du(x)− Du(y)|p

|x − y |n+β
<∞

for every Ω′ b Ω
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Step 7: Fractional differentiability

the proof goes via approximationvn 7→ min
w

∫
B

(|Dv |p + [a(x) + σn]|Dv |q) dx

w ∈ un + W 1,q
0 (B)

where 0 < σn → 0∫
B

(|Dun|p + a(x)|Dun|q) dx →
∫
B

(|Du|p + a(x)|Du|q) dx

and
un ∈ C∞(B)

this implies vn → u
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Step 7: Fractional differentiability

the proof goes via approximationvn 7→ min
w

∫
B

(|Dv |p + [a(x) + σn]|Dv |q) dx

w ∈ un + W 1,q
0 (B)

where 0 < σn → 0∫
B

(|Dun|p + a(x)|Dun|q) dx →
∫
B

(|Du|p + a(x)|Du|q) dx

and
un ∈ C∞(B)

this implies vn → u
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Step 8: Upgraded Caccioppoli inequality

the following improved Caccioppoli type inequality holds:

−
∫
BR/2

|Du|2q−p dx

.
1

Rα/2

[
−
∫
B2R

(∣∣∣∣u − (u)BR

R

∣∣∣∣p + a(x)

∣∣∣∣u − (u)B2R

R

∣∣∣∣q) dx + 1

]b
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Step 8: Upgraded Caccioppoli inequality

we use the fractional interpolation inequality

‖f ‖W s̃,t ≤ c‖f ‖θW s1,p1‖f ‖1−θ
W s2,p2

with

s̃ = θs1 + (1− θ)s2
1

t
=

θ

p1
+

1− θ
p2
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Step 8: Upgraded Caccioppoli inequality

we apply as
‖Dvn‖Lt ≤ c[vn]θs,p1

‖Dvn‖1−θ
W β/p,p

with exponents

1 = θs + (1− θ)

(
1 +

β

p

)
1

t
=

θ

p1
+

1− θ
p

and

[vn]s,p1 :=

(∫ ∫
|vn(x)− vn(y)|p1

|x − y |n+sp1
dx dy

)1/p1

and take s close to 1 as you please and p1 as large as you like
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Step 9: Improved estimate in the p-phase

if for some M ≥ 1

ai (R) = inf
x∈BR

a(x) ≤ M[a]0,αRα

then solve v 7→ min
w

∫
BR

|Dv |p dx

w ∈ u + W 1,p
0 (BR)

and find

−
∫
BR

|Du − Dv |p dx ≤ M2Rα
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Step 9: Improved estimate in the p-phase

if for some M ≥ 1

ai (R) = inf
x∈BR

a(x) ≤ M[a]0,αRα

then solve vR 7→ min
w

∫
BR

(|Dv |p + ai (R)|Dv |q) dx

w ∈ u + W 1,p
0 (BR)

and get

−
∫
BR

|Du−Dv |p dx .
1

M
−
∫
B2R

(∣∣∣∣u − (u)BR

R

∣∣∣∣p + a(x)

∣∣∣∣u − (u)B2R

R

∣∣∣∣q) dx
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Step 10: Final gradient continuity

→ take BR and M > 0 and consider the functionals

v 7→
∫
BR

(|Dv |p + ai (R)|Dv |q) dx

where

ai (R) :=


0 if infx∈BR

a(x) ≤ M[a]0,αRα

infx∈BR
a(x) if infx∈BR

a(x) > M[a]0,αRα

→ solve vR 7→ min
w

∫
BR

(|Dv |p + ai (R)|Dv |q) dx

w ∈ u + W 1,p
0 (BR)
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Thank you, with a work of Serena Nono
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