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Outline

• Quantum Dots: Wetting and zero contact angle. Shapes of islands

• Surface Diffusion in epitaxially strained solids: Existence and regularity

• Nucleation of Dislocations: Release of energy . . . and film becomes flat!
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Quantum Dots. The Context

Strained epitaxial films on a relatively thick substrate; the thin film wets the
substrate
Islands develop without forming dislocations – Stranski-Krastanow growth

plane linear elasticity (In-GaAs/GaAs or SiGe/Si)

free surface of film is flat until reaching a critical thikness

lattice misfits between substrate and film induce strains in the film

Complete relaxation to bulk equilibrium⇒ crystalline structure would be
discontinuous at the interface

Strain⇒ flat layer of film morphologically unstable or metastable after a
critical value of the thickness is reached (competition between surface
and bulk energies)
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Islands
To release some of the elastic energy due to the strain: atoms on the free sur-
face rearrange and morphologies such as formation of islands (quatum dots)
of pyramidal shapes are energetically more economical. Kinetics of Stranski-
Krastanow depend on initial thickness of film, competition between strain and
surface energies, anisotropy, ETC.

3D photonic crystal template partially filled with GaAs by epitaxy.
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Why Do We Care?

Quantum Dots: "semiconductors whose characteristics are closely related to
size and shape of crystals"

• transistors, solar cells, optical and optoelectric devices (quantum dot laser),
medical imaging, information storage, nanotechnology . . .

• electronic properties depend on the regularity of the dots, size, spacing, etc.

• 3D Printing: New additive manufacturing technology– the mathematical
understanding of the theory of dislocations will be central to address the
energy balance between laser beam power (laser beams are used to melt the
powder of the material into a specific shape) and the energy required to form
a given geometrical shape
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Epitaxial films: equilibrium configurations

Substrate

0

Γh

Ωh

b

F (h, u) :=

∫
Ωh

W (E(u)) dxdy +

∫
Γh

ψ(ν)dσ

I E(u) =
1

2

(
∇u+∇Tu

)
. . . strain

I W (E) = 1
2E · CE . . . energy density

I C . . . positive definite fourth-order tensor

I ψ = . . . (anisotropic) surface energy density

I u(x, 0) = e0(x, 0), ∇u(·, t) . . .Q-periodic

inf {F (h, u) : (h, u) admissible , |Ωh| = d}
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F (h, u) :=

∫
Ωh

W (E(u)) dxdy +

∫
Γh

ψ(ν)dσ

Brian Spencer, Bonnetier and Chambolle, Chambolle and Larsen; Caflish, W. E, Otto, Voorhees, et. al.

epitaxial thin films: Gao and Nix, Spencer and Meiron, Spencer and Tersoff, Chambolle, Braides, Bonnetier, Solci, F., Fusco, Leoni, Morini

anisotropic surface energies: Herring, Taylor, Ambrosio, Novaga, and Paolini, Fonseca and Müller, Morgan

mismatch strain (at which minimum energy is attained)

E0 (y) =

{
e0i⊗ i if y ≥ 0,
0 if y < 0,

e0 > 0
i the unit vector along the x direction

elastic energy per unit area: W (E − E0 (y))

W (E) :=
1

2
E · CE, E(u) :=

1

2
(∇u+ (∇u)T )

C . . . positive definite fourth-order tensor
film and substrate have similar material properties, share the same homogeneous
elasticity tensor C
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ψ (y) :=

{
γfilm if y > 0,
γsub if y = 0.

Total energy of the system:

F (u,Ωh) :=

∫
Ωh

W (E(u)(x, y)− E0 (y)) dx +

∫
Γh

ψ (y) dH1 (x) ,

Γh := ∂Ωh ∩ ((0, b)× R) . . . free surface of the film
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Hard to Implement . . .

Sharp interface model is difficult to be implemented numerically

Instead: boundary-layer model; discontinuous transition is regularized over a
thin transition region of width δ (“smearing parameter”)

Eδ (y) :=
1

2
e0

(
1 + f

(y
δ

))
i⊗ i, y ∈ R

ψδ (y) := γsub + (γfilm − γsub) f
(y
δ

)
, y ≥ 0

f (0) = 0, lim
y→−∞

f (y) = −1, lim
y→∞

f (y) = 1
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smooth transition – total energy of the system:

Fδ (u,Ωh) :=

∫
Ωh

W (E(u)(x, y)− Eδ (y)) dx +

∫
Γh

ψδ (y) dH1 (x)

Two regimes:

{
γfilm ≥ γsub

γfilm < γsub
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Wetting, etc.

asymptotics as δ → 0+

• γfilm < γsub

relaxed surface energy density is no longer discontinuous: it is constantly
equal to γfilm. . . WETTING!

•
more favorable to cover the substrate with an infinitesimal layer of film atoms

(and pay surface energy with density γfilm) rather than to leave any part of the
substrate exposed (and pay surface energy with density γsub)

• wetting regime: regularity of local minimizers (u,Ω) of the limiting functional
F∞ under a volume constraint
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Cusps and Vertical Cuts

The profile h of the film for a locally minimizing configuration is regular except
for at most a finite number of cusps and vertical cuts which correspond to
vertical cracks in the film

[Spencer and Meiron]: steady state solutions exhibit cusp singularities,
time-dependent evolution of small disturbances of the flat interface result in
the formation of deep grooved cusps (also [Chiu and Gao]); experimental
validation of sharp cusplike features in SI0.6 Ge0.4

zero contact-angle condition between the wetting layer and islands

vertical
slope

cusp

contact angle =zero
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Regularity . . .

conclude that the
graph of h is a Lipschitz continuous curve away from a finite number

of singular points (cusps, vertical cuts)

. . . and more: Lipschitz continuity of h +blow up argument+classical
results on corner domains for solutions of Lamé systems of h⇒ decay
estimate for the gradient of the displacement u near the boundary⇒
C1,α regularity of h and ∇u; bootstrap

. . . this leads us to linearly isotropic materials
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Linearly Isotropic Elastic Materials

W (E) =
1

2
λ [tr (E)]

2
+ µ tr

(
E2
)

λ and µ are the (constant) Lamé moduli

µ > 0 , µ+ λ > 0 .

Euler-Lagrange system of equations associated to W

µ∆u+ (λ+ µ)∇ (div u) = 0 in Ω.
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Regularity of Γ: No Corners

Γsing := Γcusps ∪ {(x, h(x)) : h(x) < h−(x)}

Already know that Γsing is finite

Theorem
(u,Ω) ∈ X . . . local minimizer for the functional F∞.
Then Γ \ Γsing is of class C1,σ for all 0 < σ < 1

2 .

If z0 = (x0, 0) ∈ Γ \ Γsing then h′(x0) = 0.
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Shapes of Islands [With A. Pratelli and B. Zwicknagl]

We proved that the shape of the island evolves with the size (and size varies
with misfit! . . . later . . . ):

small islands always have the half-pyramid shape, and as the volume
increases the island evolves through a sequence of shapes that include more
facets with increasing steepness – half pyramid, pyramid, half dome, dome,
half barn, barn

This validates what was experimentally and numerically obtained in the
physics and materials science literature

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 16 / 48

Preliminary version – August 21, 2015 – 15:13



Shapes of Islands [With A. Pratelli and B. Zwicknagl]

We proved that the shape of the island evolves with the size (and size varies
with misfit! . . . later . . . ):

small islands always have the half-pyramid shape, and as the volume
increases the island evolves through a sequence of shapes that include more
facets with increasing steepness – half pyramid, pyramid, half dome, dome,
half barn, barn

This validates what was experimentally and numerically obtained in the
physics and materials science literature

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 16 / 48

Preliminary version – August 21, 2015 – 15:13



Another Incompatibility: Miscut
Small slope approximation of a geometrically linear elastic strain energy
([Tersoff & Tromp, 1992; Spencer & Tersoff, 2010])

fully facetted model:

E(u) ∼
∫ L

0

∫ L

0

log |x− y|u′(x)u′(y) dydx+ length(Graph(u))− L,

height profile u, supp(u) = [0, L]

u′ ∈ A := {tan(−θm + nθ) : n ∈ N ⊂ Z}

θm describes miscut. If θm 6= 0, wetting not admissible

Figure : Sketch of a faceted height profile function u with support [0, L]. The profile is Lipschitz and the derivative lies almost everywhere in a
discrete set. The miscut angle is denoted by θm 6= 0, i.e., the preferred orientation of the film is not parallel to the substrate surface.
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Compactness: Bounds on the Support of u

F(d) := inf{E(u) :
∫
u = d}

Theorem
For every d, r > 0 there exists L such that if E(u) ≤ F(d) + r, then L ≤ L
If d→ 0 and r → 0, then L→ 0
no wetting effect for small volumes; wetting– optimal profiles tend to be
extremely large and flat when the mass is small. The flat profile is not
admissible

Theorem
Every minimizer satisfies the quantized zero contact angle property: the
island meets the substrate at the smallest angle possible
There is a volume d > 0 such that the half pyramid is the unique
minimizer for every d ∈ (0, d)
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This approximation becomes progressively less accurate for
increasing slope, so our results should be taken as semiquan-
titative for domes and only qualitative for barns. This is ad-
equate for the general and qualitative issues addressed here.
The other term Esurface is the extra surface energy due to the
presence of the island,

Esurface = !
i=1

N

!iLi − !mW , "3#

where Li is the length of the ith facet, !i is its surface energy,
!m is the surface energy of the vicinal surface with miscut
"m, and W is the island width. The first term accounts for the
additional island surface, and the second term represents the
substrate surface eliminated by the island. We assume
Stranski–Krastonov growth, so !m is actually the energy of
the vicinal wetting layer, and interfacial energy does not
enter.10

For concreteness, we consider the case of identical facet
energies !i=!0, with equally spaced orientations "n=n"1 "in-
teger n#. By analogy with $105% facets on "001#, we choose
"1=11.3°. Facets at higher angles 2"1 and 3"1 can be con-
sidered roughly analogous to the $113% and $111% facets de-
fining “dome” and “barn” shapes.

The average surface energy of a vicinal surface with
miscut "m "assuming noninteracting steps# is

!m = !0 cos""m# + # sin""m# , "4#

where # is the step formation energy per unit height. A lower
bound on # is the value for a facet of neighboring orientation
"1 "here 11.3°#. "For smaller values of #, the facet at "1
would be unstable against decomposing into steps.# We use
this value, giving

# = &!0 − !0 cos""1#'csc""1# . "5#

Using a significantly larger value does not qualitatively
change any of the results reported here.

For a given island volume V, we consider all possible
island types "i.e., all allowed facet sequences# and find the
one with lowest energy. For a given type "a given set of N
facets#, any stable or metastable island shape satisfies

!E/!$i

!V/!$i
= % for i = 1, . . . ,N . "6#

Here % is the island’s chemical potential, or equivalently, a
Lagrange multiplier used to fix its volume; and $i is the
position of the ith facet with respect to translation of the
facet normal to itself. Island shapes satisfying Eq. "6# are
shown in Fig. 1, and their energies in Fig. 2.

Sufficiently small islands always have the half-pyramid
shape, because of the dominant influence of surface energy.
As the volume increases, we find that the island evolves
through a sequence of shapes that include more facets with
increasing steepness. Figure 1 shows the sequence of equi-
librium island shapes at a 3° miscut, from half-pyramid to
pyramid, half-dome, dome, etc. We find that pyramids are
always truncated in equilibrium, as expected;7 the degree of
truncation depends on the facet angles and energies.

Note that in every case, the outermost facets of the is-
land correspond to the smallest possible slope relative to the
vicinal substrate. For Ge on Si "001#, this would correspond
to "105# on the “downhill” side, and "001# on the “uphill”
side. In between, the island passes sequentially through ev-
ery intermediate facet orientation,11 up to some maximum
positive slope, and then down to some maximally negative
slope. These extremal slopes define the island type.

The energy versus volume for this same 3° miscut is
shown in Fig. 2. For clarity, we show only solutions of Eq.
"6# that are energy minima, i.e., stable and metastable shapes.

half pyramid

pyramid

half dome

dome

half barn

barn

FIG. 1. "Color online# Shape transition sequence at 3° miscut. "Vertical
scale is expanded by a factor of 1.8 for clarity.# Shapes are shown for
increasing volume from bottom to top. We show the largest stable island of
each type, except in the case of barns where we show the smallest. Within
each type, the shape varies only modestly over the entire range of volume
where that type is stable; and the half-pyramid shape is independent of size.
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FIG. 2. "Color online# Energy vs volume for different island types at 3°
miscut, in “natural units” V0= "! /S0#3 and E0=!3 /S0

2. Curves correspond to
solutions of Eq. "6# for different shapes, labeled HP, P, HD, etc., for half-
pyramid, pyramid, half-dome, etc. Circles highlight the crossing points.
Curves are shown as solid where they are stable and dashed where meta-
stable "passing above another curve#. Unstable solutions are not shown.
Inset shows the HP-P transition using a different thermodynamic reference
"i.e., adding a term proportional to V# for better visibility of the unstable
solution, which is included as a dotted line.
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Figure : Shape transitions with increasing volume at miscut angle 3◦ . Numerical simulation. Courtesy of B. Spencer and J. Tersoff, Appl. Phys. Lett.
bf 96/7, 073114 (2010)
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[With N. Fusco, G. Leoni, M. Morini]

Einstein-Nernst Law : surface flux of atoms ∝ ∇Γµ

µ= chemical potential ;

V = c× ∆Γ(t)µ︸ ︷︷ ︸
Laplace-Beltrami operator

(volume preserving)

µ= first variation of energy = divΓDψ(ν)︸ ︷︷ ︸
anisotropic curvature

+W (E(u)) + λ
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(
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Highly Anisotropic Surface Energies

For highly anisotropic ψ it may happen

D2ψ(ν)[τ, τ ] < 0 for some τ ⊥ ν
⇓

the evolution becomes backward parabolic

Idea: add a curvature regularization

F (h, u) :=

∫
Ωh

W (E(u)) dxdy +

∫
Γh

(
ψ(ν) +

ε

p
|H|p

)
dσ, p > 2, ε > 0

⇓

V = ∆Γ

[
divΓ(Dψ(ν)) +W (E(u))

− ε
(

∆Γ(|H|p−2H)− |H|p−2H
(
κ2

1 + κ2
2 −

1

p
H2
))]
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Highly Anisotropic Surface Energies in 2D
Regularized energy:

F (h, u) :=

∫
Ωh

W (E(u)) dxdy +

∫
Γh

(
ψ(ν) +

ε

2
k2
)
dH1

⇓

V =
(

divσDψ(ν) +W (E(u))−ε(kσσ + 1
2k

3)
)
σσ

I F., Fusco, Leoni, and Morini (ARMA 2012): evolution of films in
two-dimensions
I F., Fusco, Leoni, and Morini (To appear in Analysis & PDE): evolution of
films in three-dimensions

Why here p > 2: technical . . . in two dimensions, the Sobolev space
W 2,p embeds into C1,(p−2)/p if p > 2
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The Evolution Law
I Curvature dependent energies ; Herring (1951)

I In the context of grain growth, curvature regularization was proposed by Di
Carlo, Gurtin, Podio-Guidugli (1992)

I In the context of epitaxial growth, see Gurtin & Jabbour (2002)

Given Q, find h : R2 × [0, T0]→ (0,+∞) s.t.

1

J

∂h

∂t
= ∆Γ

[
divΓ(Dψ(ν)) +W (E(u))

−ε
(

∆Γ(|H|p−2H)− |H|p−2H
(
κ2

1 + κ2
2 −

1

p
H2
))]

, in R2 × (0, T0)

divCE(u) = 0 in Ωh

CE(u)[ν] = 0 on Γh, u(x, 0, t) = e0(x, 0)

h(·, t) and Du(·, t) are Q-periodic
h(·, 0) = h0

Here J :=
√

1 + |Dh|2
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Some Related Results
I Siegel, Miksis, Voorhees (2004): numerical experiments in the case of
evolving curves

I Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version
of the evolution

I Garcke: analytical results concerning some diffuse interface versions of the
evolution equation

I Bellettini, Mantegazza, Novaga (2007): analytical results concerning the
L2-gradient flow of higher order geometric functionals (without elasticity)

I Elliott & Garcke (1997), Escher, Mayer & Simonett (1998): existence results
for the surface diffusion equation without elasticity and without curvature
regularization, via semigroups techniques

I no analytical results for the sharp interface evolution with elasticity
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regularization, via semigroups techniques

I no analytical results for the sharp interface evolution with elasticity

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 24 / 48

Preliminary version – August 21, 2015 – 15:13



Some Related Results
I Siegel, Miksis, Voorhees (2004): numerical experiments in the case of
evolving curves

I Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version
of the evolution

I Garcke: analytical results concerning some diffuse interface versions of the
evolution equation

I Bellettini, Mantegazza, Novaga (2007): analytical results concerning the
L2-gradient flow of higher order geometric functionals (without elasticity)

I Elliott & Garcke (1997), Escher, Mayer & Simonett (1998): existence results
for the surface diffusion equation without elasticity and without curvature
regularization, via semigroups techniques

I no analytical results for the sharp interface evolution with elasticity

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 24 / 48

Preliminary version – August 21, 2015 – 15:13



Some Related Results
I Siegel, Miksis, Voorhees (2004): numerical experiments in the case of
evolving curves

I Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version
of the evolution

I Garcke: analytical results concerning some diffuse interface versions of the
evolution equation

I Bellettini, Mantegazza, Novaga (2007): analytical results concerning the
L2-gradient flow of higher order geometric functionals (without elasticity)

I Elliott & Garcke (1997), Escher, Mayer & Simonett (1998): existence results
for the surface diffusion equation without elasticity and without curvature
regularization, via semigroups techniques

I no analytical results for the sharp interface evolution with elasticity

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 24 / 48

Preliminary version – August 21, 2015 – 15:13



Some Related Results
I Siegel, Miksis, Voorhees (2004): numerical experiments in the case of
evolving curves

I Rätz, Ribalta, Voigt (2006): numerical results for the diffuse interface version
of the evolution

I Garcke: analytical results concerning some diffuse interface versions of the
evolution equation

I Bellettini, Mantegazza, Novaga (2007): analytical results concerning the
L2-gradient flow of higher order geometric functionals (without elasticity)

I Elliott & Garcke (1997), Escher, Mayer & Simonett (1998): existence results
for the surface diffusion equation without elasticity and without curvature
regularization, via semigroups techniques

I no analytical results for the sharp interface evolution with elasticity

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 24 / 48

Preliminary version – August 21, 2015 – 15:13



The Gradient Flow Structure
I The evolution law is the gradient flow of the reduced energy F w.r.t a
suitable H−1-Riemannian structure

I Consider the “manifold”

M :=
{

Ωh : h isQ− periodic,
∫
Q

h = d
}

I The tangent space of admissible normal velocities is

TΩhM :=
{
V : Γh → R : V Q-periodic,

∫
Γh

V = 0
}
,

endowed with the H−1-scalar product

gΩh(V1, V2) :=

∫
Γh

∇Γhw1∇Γhw2 dσ for all V1, V2 ∈ TΩhM ,

where wi, i = 1, 2, is the solution to
−∆Γhwi = Vi on Γh,
wi is Q-periodic,∫

Γh
wi dσ = 0 .
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The Gradient Flow Structure, cont.

I Consider the reduced functional

F (h, u) ; F (Ωh) := F (h, uh)

where uh is the elastic equilibrium in Ωh.

I The evolution law is formally equivalent to

gΩh(t)(V, Ṽ ) = −∂F (Ωh(t))[Ṽ ] for all Ṽ ∈ TΩh(t)M,

where ∂F (Ωh(t))[Ṽ ] = first variation of F at Ωh(t) in the direction Ṽ .

I First observed by Cahn &Taylor (1994) in the context of surface diffusion
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Minimizing Movements Approach to Gradient Flows
I H Hilbert space

I F : H → R, F of class C1 {
u̇ = −∇HF (u)

u(0) = u0

Semi-implicit time-discretization: Set w0 := u0 and let wi the solution to

min
w∈H

{
F (w) +

1

2τ
‖w − wi−1‖2H

}

The discrete evolution converges to the continuous evolution as τ → 0

I This approach can be generalized to metric spaces ; De Giorgi’s
minimizing movements

I In the context of geometric flows ; Almgren-Taylor-Wang.

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 27 / 48

Preliminary version – August 21, 2015 – 15:13



Minimizing Movements Approach to Gradient Flows
I H Hilbert space

I F : H → R, F of class C1 {
u̇ = −∇HF (u)

u(0) = u0

Semi-implicit time-discretization: Set w0 := u0 and let wi the solution to

min
w∈H

{
F (w) +

1

2τ
‖w − wi−1‖2H

}

The discrete evolution converges to the continuous evolution as τ → 0

I This approach can be generalized to metric spaces ; De Giorgi’s
minimizing movements

I In the context of geometric flows ; Almgren-Taylor-Wang.

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 27 / 48

Preliminary version – August 21, 2015 – 15:13



Minimizing Movements Approach to Gradient Flows
I H Hilbert space

I F : H → R, F of class C1 {
u̇ = −∇HF (u)

u(0) = u0

Semi-implicit time-discretization: Set w0 := u0 and let wi the solution to

min
w∈H

{
F (w) +

1

2τ
‖w − wi−1‖2H

}

The discrete evolution converges to the continuous evolution as τ → 0

I This approach can be generalized to metric spaces ; De Giorgi’s
minimizing movements

I In the context of geometric flows ; Almgren-Taylor-Wang.

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 27 / 48

Preliminary version – August 21, 2015 – 15:13



Minimizing Movements Approach to Gradient Flows
I H Hilbert space

I F : H → R, F of class C1 {
u̇ = −∇HF (u)

u(0) = u0

Semi-implicit time-discretization: Set w0 := u0 and let wi the solution to

min
w∈H

{
F (w) +

1

2τ
‖w − wi−1‖2H

}

The discrete evolution converges to the continuous evolution as τ → 0

I This approach can be generalized to metric spaces ; De Giorgi’s
minimizing movements

I In the context of geometric flows ; Almgren-Taylor-Wang.

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 27 / 48

Preliminary version – August 21, 2015 – 15:13



Minimizing Movements Approach to Gradient Flows
I H Hilbert space

I F : H → R, F of class C1 {
u̇ = −∇HF (u)

u(0) = u0

Semi-implicit time-discretization: Set w0 := u0 and let wi the solution to

min
w∈H

{
F (w) +

1

2τ
‖w − wi−1‖2H

}

The discrete evolution converges to the continuous evolution as τ → 0

I This approach can be generalized to metric spaces ; De Giorgi’s
minimizing movements

I In the context of geometric flows ; Almgren-Taylor-Wang.

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 27 / 48

Preliminary version – August 21, 2015 – 15:13



Minimizing Movements Approach to Gradient Flows
I H Hilbert space

I F : H → R, F of class C1 {
u̇ = −∇HF (u)

u(0) = u0

Semi-implicit time-discretization: Set w0 := u0 and let wi the solution to

min
w∈H

{
F (w) +

1

2τ
‖w − wi−1‖2H

}

The discrete evolution converges to the continuous evolution as τ → 0

I This approach can be generalized to metric spaces ; De Giorgi’s
minimizing movements

I In the context of geometric flows ; Almgren-Taylor-Wang.

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 27 / 48

Preliminary version – August 21, 2015 – 15:13



The Minimizing Movements Scheme in Our Case

I Given T > 0, N ∈ N, we set τ := T
N . For i = 1, . . . , N we define inductively

(hi, ui) as the solution of the incremental minimum problem

min
(h, u) admissible
‖Dh‖∞ ≤ C

F (h, u) +
1

2τ

∫
Γhi−1

|DΓhi−1
wh|2dH2

where 
∆Γhi−1

wh =
h− hi−1√

1 + |Dhi−1|2
=: VΩh ,∫

Γhi−1

wh dH2 = 0 .

1

2τ

∫
Γhi−1

|DΓhi−1
wh|2dH2 ∼ ‖h− hi−1‖2H−1(Γhi−1

)
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The Discrete Euler-Lagrange Equation
I The Euler-Lagrange equation of the incremental problem is

1

τ
whi = divΓhi

(Dψ(ν)) +W (E(ui))

− ε
(

∆Γhi
(|Hi|p−2Hi)− |Hi|p−2Hi

(
(κi1)2 + (κi2)2 − 1

p
H2
i

))
I By applying ∆Γhi−1

to both sides, we formally get

1

J i−1

hi − hi−1

τ
= ∆Γhi−1

[
divΓhi

(Dψ(ν)) +W (E(ui))

− ε
(

∆Γhi
(|Hi|p−2Hi)− |Hi|p−2Hi

(
(κi1)2 + (κi2)2 − 1

p
H2
i

))]

this is a discrete version of the continuous evolution law
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Estimates

I hN (·, t) = hi−1 + t−(i−1)τ
τ (hi − hi−1) if (i− 1)τ ≤ t ≤ iτ

Basic energy estimate:

F (hi, ui) +
1

2τ

∫
Γhi−1

|DΓhi−1
wh|2dH2 ≤ F (hi−1, ui−1)

;
∑N
i=1

1
2τ ‖hi − hi−1‖2H−1 ≤

∑N
i=1

(
F (hi−1, ui−1)− F (hi, ui)

)
≤ CF (h0, u0)

⇓

{hN} is bounded in H1(0, T ;H−1)
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Local in Time Existence of Weak Solutions

I Previous estimates+interpolation inequalities+higher regularity+
compactnes argument ; hN → h (up to a subsequence)

I h is a weak solution in the following sense:

Theorem (Local existence)
h ∈ L∞(0, T0;W 2,p

# (Q)) ∩H1(0, T0;H−1
# (Q)) is a weak solution in [0, T0] in the

following sense:

(i) divΓ(Dψ(ν)) +W (E(u))− ε
(

∆Γ(|H|p−2H)− 1
p |H|

pH + |H|p−2H|B|2
)
∈

L2(0, T0;H1
#(Q)),

(ii) for a.e. t ∈ (0, T0)

1
J
∂h
∂t = ∆Γ

[
divΓ(Dψ(ν)) +W (E(u))

− ε
(

∆Γ(|H|p−2H)− |H|p−2H
(
κ2

1 + κ2
2 − 1

pH
2
))]

in H−1
# (Q).
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Uniqueness and regularity in 2D

Theorem

In two dimensions:
(i) The weak solution is unique.

(ii) If h0 ∈ H3, ψ ∈ C4, then the solution is in H1(0, T0;L2) ∩ L2(0, T0;H6).
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Global in Time Existence and Asymptotic Stability
Consider the regularized surface diffusion equation

1

J

∂h

∂t
= ∆Γ

[
divΓ(Dψ(ν)) +W (E(u))

−ε
(

∆Γ(|H|p−2H)− |H|p−2H
(
κ2

1 + κ2
2 −

1

p
H2
))]

Detailed analysis of Asaro-Tiller-Grinfeld morphological stability/instability by
Bonacini, and F., Fusco, Leoni and Morini:
• if d is sufficiently small, then the flat configuration (d, ud) is a volume
constrained local minimizer for the functional

G(h, u) :=

∫
Ωh

W (E(u)) dz +

∫
Γh

ψ(ν) dH2 .

d small enough⇒ the second variation ∂2G(d, ud) is positive definite
⇒ local minimality property.
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Global in Time Existence and Asymptotic Stability –
Main Result

Theorem
Assume that D2ψ(e3) > 0 on (e3)⊥ and ∂2G(d, u0) > 0. There exists ε > 0 s.t.

if ‖h0 − d‖W 2,p ≤ ε and
∫
Q

h0 = d, then:

(i) any variational solution h exists for all times;

(ii) h(·, t)→ d in W 2,p as t→ +∞.
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Liapunov Stability in the Highly Non-Convex Case
Consider the Wulff shape

Wψ := {z ∈ R3 : z · ν < ψ(ν) for all ν ∈ S2}

Theorem (F.-Fusco-Leoni-Morini)
Assume that Wψ contains a horizontal facet. Then for every d > 0 the flat
configuration (d, ud) is Liapunov stable, that is, for every σ > 0 there exists
δ(σ) > 0 s.t.∫

Q
h0 = d, ‖h0 − d‖W 2,p ≤ δ(σ) =⇒ ‖h(t)− d‖W 2,p ≤ σ for all t > 0.
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And Now . . . Epitaxy and Dislocations
lattice-mismatched semiconductors — formation of a periodic dislocation network at
the substrate/layer interface

nucleation of dislocations is a mode of strain relief for sufficiently thick films

• when a cusp-like morphology is approached as the result of an increasingly
greater stress in surface valleys, it is energetically favorable to nucleate a
dislocation in the surface valley

• dislocations migrate to the film/substrate interface and the film surface
relaxes towards a planar-like morphology.
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Microscopic Level

Perfect crystals

Figure : Courtesy of James Hedberg
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Microscopic Level

Defects in crystalline materials

Figure : Courtesy of Helmut Föll
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Microscopic Level

Line defects in crystalline materials. Orowon (1934); Polanyi (1934),
Taylor (1934).

Figure : Courtesy of NTD
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Microscopic Level
Edge dislocations,
Burgers vector, Burgers (1939)
Dislocation line

Figure : Courtesy of J. W. Morris, Jr

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 40 / 48

Preliminary version – August 21, 2015 – 15:13



Microscopic Level
Edge dislocations,
Burgers vector, Burgers (1939)
Dislocation line

Figure : Courtesy of J. W. Morris, Jr

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 40 / 48

Preliminary version – August 21, 2015 – 15:13



Microscopic Level
Edge dislocations,
Burgers vector, Burgers (1939)
Dislocation line

Figure : Courtesy of J. W. Morris, Jr

Irene Fonseca ( Department of Mathematical Sciences Center for Nonlinear Analysis Carnegie Mellon University Supported by the National Science Foundation (NSF))Epitaxy and Dislocations Sussex, September 2015 40 / 48

Preliminary version – August 21, 2015 – 15:13



Microscopic Level
Screw dislocations
Burgers vector

Figure : Courtesy of Helmut Föll
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Epitaxy and Dislocations: The Model

The Energy: vertical parts and cuts may appear in the (extended) graph of h

G(h, u) :=

∫
Ωh

[
µ|E(u)|2 +

λ

2
(divu)2

]
dz + γH1(Γh) + 2γH1(Σh) ,

Σh := {(x, y) : x ∈ [0, b), h(x) < y < min{h(x−), h(x+)}} set of vertical cuts

h(x±) . . . the right and left limit at x

. . . now with the presence of isolated misfit dislocations in the film
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Epitaxy and Dislocations: The Model With Dislocations

System of Dislocations located at z1, . . . , zk with Burgers Vectors b1, . . . ,bk

curlH =

k∑
i=1

biδzi strain field compatible with the system of dislocations

the elastic energy associated with such a singular strain
is infinite!

Strategy:

• remove a core Br0(zi) of radius r0 > 0 around each dislocation

OR

• regularize the dislocation measure σ :=
∑k
i=1 biδzi through

a convolution procedure
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Epitaxy and Dislocations: More on the Model With
Dislocations

curlH = σ ∗ ρr0 . ρr0 := (1/r2
0)ρ(·/r0) standard mollifier

Total energy associated with a profile h, a dislocation measure σ and a strain
field H

F (h, σ,H) :=

∫
Ωh

[
µ|Hsym|2 +

λ

2
(tr(H))2

]
dz + γH1(Γh) + 2γH1(Σh) .

What we ask : Assume that a finite number k of dislocations, with given
Burgers vectors B := {b1, . . . ,bk} ⊂ R2, are already present in the film

Optimal Configuration?
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What We Know
Theorem
The minimization problem

min{F (h, σ,H) : (h, σ,H) ∈ X(e0;B), |Ωh| = d} .

admits a solution.

The equilibrium profile h satisfies the same regularity properties as in the
dislocation-free case:

Theorem
(h̄, σ̄, Hh̄,σ) ∈ X(e0;B) minimizer.

Then h̄ has at most finitely many cusp points and vertical cracks, its graph is
of class C1 away from this finite set, and of class C1,α, α ∈ (0, 1

2 ) away from
this finite set and off the substrate.

Major difficulty: to show that the volume constraint can be replaced by a
volume penalization. Dislocation-free case – straightforward truncation
argument. This fails here because dislocations cannot be removed in this
way, they act as obstacles
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Migration to the Substrate

Analytical validation of experimental evidence:
after nucleation, dislocations lie at the bottom !

Theorem
Assume B 6= ∅, d > 2r0b.

There exist ē > 0 and γ̄ > 0 such that whenever |e0| > ē, γ > γ̄, and
e0(bj · e1) > 0 for all bj ∈ B,

then any minimizer (h̄, σ̄, H̄) has all dislocations lying at the bottom of Ωh :
the centers zi are of the form zi = (xi, r0).
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When is Energetically Favorable to Create
Dislocations?
Assume that the energy cost of a new dislocation is proportional to the square
of the norm of the corresponding Burgers vector (Nabarro, Theory of Crystal
Dislocations, 1967 )

New variational problem:

minimize F (h, σ,H) +N(σ)

We identify a range of parameters for which all
global minimizers have nontrivial dislocation measures.

Theorem
Assume that there exists b ∈ Bo such that b · e1 6= 0, and let d > 2r0b.

Then there exists γ̄ > 0 such that whenever |e0| > ē, and γ > γ̄,

then any minimizer (h̄, σ̄, H̄) has nontrivial dislocations, i.e., σ̄ 6= 0.
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Open Problems and Future Directions

I What if the substrate is exposed, i.e., with initial profile h0 ≥ 0 but
|{h0 = 0}| > 0

I Uniqueness in three-dimensions

I More general global existence results

I The non-graph case

I The convex case, without curvature regularization

I More general H−α-gradient flows: the nonlocal Mullins-Sekerka law

I Dislocations!
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