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The SCN ligand 2-{3-[(methylsulfanyl)methyl]phenyl}pyridine,
1, has been synthesized starting from an initial Suzuki–Miyaura
(SM) coupling between 3-((hydroxymethyl)phenyl)boronic
acid and 2-bromopyridine. The C–H activation of 1 with in
situ formed Pd(MeCN)4(BF4)2 has been studied and leads to a
mixture of palladacycles, which were characterized by X-ray
crystallography. The monomeric palladacycle LPdCl 6, where
L-H = 1, has been synthesized, and tested in SM couplings of
aryl bromides, where it showed moderate activity. Density
functional theory and the atoms in molecules (AIM) method
have been used to investigate the formation and bonding of
6, revealing a difference in the nature of the Pd–S and Pd–N
bonds. It was found that S-coordination to the metal in the
rate determining C–H bond activation step leads to better
stabilization of the Pd(II) centre (by 13–28 kJ mol−1) than with
N-coordination. This is attributed to the electron donating
ability of the donor atoms determined by Bader charges.
The AIM analysis also revealed that the Pd–N bonds are
stronger than the Pd–S bonds influencing the stability of key
intermediates in the palladacycle formation reaction pathway.

2016 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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Figure 1. Unsymmetrical PCN [10] and SCN [11] palladacycles.

1. Introduction
Since its inception, by Cope & Siekman, in 1965 [1], the chemistry of palladacycles has grown into a
popular area of research. The seminal discovery by Herrmann and Beller that palladacycles are efficient
catalysts for C–C bond formation [2,3] paved the way for a number of reports on catalytic applications,
with several reviews and an excellent book covering the wide array of examples [4–7]. Pincer complexes,
where the palladium–carbon bond is stabilized intramolecularly by two donor atoms, are another
interesting subtype of palladacycles [8,9]. Although the majority are symmetrical [6], a limited number of
unsymmetrical complexes have been reported, often synthesized by more challenging routes than their
symmetrical analogues. Examples of interesting unsymmetrical pincers include those synthesized by
Dupont and co-workers [10,11] (figure 1), by Fleckhaus et al. [12] and by Milstein and co-workers [13,14]
on late transition metal unsymmetrical metallacycles. Other interesting pincers include ferrocene-based
SCN palladacycles that were used in catalytic allylic alkylations [15].

A number of reports have been published showing unsymmetrical pincer palladacycles to be more
active in various catalytic applications than their symmetrical counterparts [16,17].

The Suzuki–Miyaura (SM) coupling reaction [18,19] has widespread use in pharmaceutical research
and academia. Recent examples using pincer palladacycles include the coupling of activated and
deactivated bromides using SCN pincers, which also included use of the Hg drop test as evidence of
the palladacycles acting as a source of catalytically active Pd(0) [20]. Thioether-based palladacycles have
also been shown to form catalytically active Pd nanoparticles by transmission electron microscopy in
SM couplings [21]. A range of activated and deactivated aryl bromides were coupled using a thioether-
functionalized iminophosphorane SCN palladacycle [22]. Aryl bromides and aryl chlorides were also
successfully coupled with NCN [23,24] and PCP [25] palladacycles. Therefore, owing to the number
of reports of the application of pincer palladacycles in SM coupling, this reaction is considered to be
a suitable benchmark for the study of new palladacycle catalysts, despite often being surpassed in
performance by other palladium-based catalysts [19,26].

Previously described syntheses of unsymmetrical pincers are often low yielding. For example,
attempts to desymmetrize 1,3-bis(bromomethyl)benzenes with different P- and S-based nucleophiles,
gave the desired unsymmetrical product with concomitant formation of symmetrical bis-S-,S- and
bis-P-,P-substituted products [17]. Applications in tandem catalysis and evidence that unsymmetrical
pincers may provide opportunities to fine-tune catalytic activity encouraged us to investigate a more
robust synthetic strategy, which would provide an easy route to a large number of new interesting
ligands and unsymmetrical SCN pincer palladacycles and their applications in catalysis.

Recently, we showed that the strength and nature of the bonding in symmetrical palladacycles can
have an effect on the energetics of a model formation reaction:

LH + PdCl2 → PdLCl + HCl,

studied using density functional theory (DFT). It was shown that the thermodynamic stability and the
energy barriers for the key C–H bond activation step in the formation of symmetrical palladacycles were
dependent on the pincer ligand donor atoms. The PCP palladacycle was found to have the smallest C–H
activation barrier, SCS intermediate and NCN the largest barrier [27]. Work by other groups has included
investigations of various mechanisms for C–H bond activation in cyclometallation [28–31].

The purposes of this paper are threefold. Firstly, to devise a robust synthesis for the formation
of a novel SCN palladacycle that allows an easy route for future late-stage diversification, through
modification of the sulfur substituent, as a simpler route to interesting unsymmetrical ligands, which
often have challenging syntheses. Secondly, to investigate its catalytic activity in the SM coupling of
aryl bromides in order to have a direct comparison to previously reported palladacycles. Finally, to
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Scheme 2. New synthesis of SCN ligand 1. (i) 2-Bromopyridine, Pd(PPh3)4, base/solvent. (ii) HBr. (iii) NaSMe, EtOH.

Table 1. Optimization of step (i) of scheme 2. Synthesis of SCN ligand 1 via SM coupling. 1 : 2 : 1 base : toluene : EtOH. (A) Thermal, 85°C,
48 h, (B) MW, 150°C, 10 min, (C) MW, 150°C, 20 min and (D) thermal, 85°C, 24 h.

entry catalyst base reaction conditions isolated yield (%)

1 Pd(PPh3)4 1 M Na2CO3 A 75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Pd(PPh3)4 1 M Na2CO3 B 27
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Pd(PPh3)4 0.5 M K3PO4 C 51
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Pd(PPh3)4 1 M NaOH D 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Pd(OAc)2 1 M Na2CO3 C 57
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Pd(dppf)Cl2 1 M Na2CO3 C 49
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7a Pd(PPh3)4 1 M Na2CO3 C 77
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8a Pd(PPh3)4 0.5 M K3PO4 C 93
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9a Pd(PPh3)4 1 M NaOH C 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10b Buchwald XPhos Pd G2 0.5 M K3PO4 C 74
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a
10 : 7.5 : 5 base : toluene : EtOH.

b
Methodology adapted from Buchwald et al. [33], 1.5 eq of boronic acid, 1 mol % catalyst, 1 : 2 base : THF.

determine the role of the donor atoms, and the donor atom substituents, in the bonding and stability
of unsymmetrical SCN palladacycles, which is often not widely discussed [16].

2. Results and discussion
2.1. Synthesis of an SCN ligand and palladacycle
The known ligand 2-{3-[(methylsulfanyl)methyl]phenyl}pyridine, 1, has previously been prepared via
the route shown in 78% yield (scheme 1) [32]. However, our desire was to introduce the sulfur
nucleophiles at a later stage to allow future late-stage diversification (scheme 2), via the nucleophilic
substitution of benzyl bromide 3. Optimization of the first SM step was undertaken testing a variety of
palladium catalysts and bases (table 1). From the conditions tested, it was found that Pd(PPh3)4 was
the most effective catalyst compared with other ones tested: Pd(OAc)2, Pd(dppf)Cl2 and Buchwald’s X
Phos Pd G2 catalyst [33]. Varying the base using Pd(PPh3)4 as catalyst showed K3PO4 to be to the most
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Figure 2. H2O bound palladacycle crystal structure 4b (a) and chloride bridged palladacycle crystal structure 5 (b).

effective and applying microwave (MW) heating was found to be advantageous (entry 8). The overall
yield from the starting boronic acid to ligand 1 was 51%.

Next, ligand 1 was selected for a C–H activation employing in situ generated Pd(MeCN)4(BF4)2 [34]
(scheme 3). After work-up, two products were obtained, which was also suggested by high-resolution
mass spectrometry (HRMS) data.

Thereafter, crystals were grown from the crude reaction mixture and X-ray crystal structures were
determined for the water bound complex 4b (figure 2), presumably formed from the expected acetonitrile
complex 4a, by water displacement (the crystallization was carried out in air) and the unusual dimeric
structure 5 [35,36] which was probably formed from the formation of a monomeric chloro-palladacycle
(from unreacted PdCl2) displacing solvent from either 4a or 4b (scheme 3).

Repeating the C–H activation but subjecting the crude mixture to a simple salt metathesis (scheme 4)
[17,37] gave the expected product 6 in 71% yield, and growth of crystals enabled its structural
determination by X-ray diffraction to be carried out (figure 3). We now had a robust synthesis of 6 in
order to synthesize quantities to be tested in catalytic applications.

2.2. X-ray crystal structure details
All three structures, 4b, 5 and 6, displayed a distorted square planar palladium(II) centre.

Structure 4b crystallizes in the monoclinic P21/c space group and comprises the H2O bound
palladacycle, the tetrafluoroborate counterion and a water of crystallization. The palladacycle forms
alternating stacks which propagate along the b-axis with the bound H2O forming a hydrogen bond to
the water of crystallization (O...O = 2.67067(6) Å).
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Figure 4. GC conversion of SM coupling of 2-bromotoluene and phenylboronic acid using 6 as a precatalyst, performed in duplicate.

Table 2. SM coupling to determine minimum precatalyst loading.

K2CO3

+
o-xylene

0.001 – 0.5 mol%6O

O

Br

B(OH)2

entry catalyst loading (Pd mol %) 2 h GC conversion (%)a 4 h GC conversion (%)a

1 0.5 94 96
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.1 95 96
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.05 93 94
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.01 85 87
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.001 6 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a
Average of two runs based on 4-bromoanisole and product.

Structure 5 crystallizes in the monoclinic P21 space group with the bridged palladacycle forming
interleaved antiparallel stacks along the b-axis. This results in channels along the b-axis which are
occupied by the tetrafluoroborate counterion.

Structure 6 crystallizes in the monoclinic P21/c space group with the ligands disordered (50 : 50) across
a mirror plane through the palladium centre and perpendicular to the rings of the SCN ligand. The
structure comprises antiparallel tapes of 6 which propagate along the a-axis.

2.3. Catalytic investigations
The catalytic applications of palladacycle 6 have been investigated in the SM coupling. All reactions were
performed in air using analytical grade solvents without further purification due to the air stability of the
precatalyst 6, which is advantageous for ease of use in the laboratory. Initial catalytic tests ascertained the
minimum catalyst loading required for the coupling of 4-bromoanisole and phenylboronic acid (table 2).
The conditions used were identical to those of Herrmann et al. [3]. The base used in each reaction was
K2CO3, with the reaction undertaken in o-xylene at 130°C, with catalyst loadings from 0.001 to 0.5 mol
%. Using gas chromatography (GC) conversions, a minimum catalyst loading of 0.01 mol % (entry 4) was
deemed necessary, which was to be used in further catalytic runs. It was also found that, when performed
under an argon atmosphere, lower catalyst loadings were possible, achieving conversions more than 50%
with catalyst loadings as low as 0.0001 mol%; however, due to the very low catalyst loadings, concurrent
results could not be obtained.
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Figure 5. Symmetrical SCS palladacycle [38,39] and Herrmann–Beller catalyst [2].

Table 3. Testing of precatalysta using sterically hindered and electronically deactivated substrates.

GC conversion (%)

entry bromide boronic acid product 2 h 4 h 6 h
1

Br B(OH)2

61 64 67

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2
Br

B(OH)2

57 59 62

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3
Br B(OH)2

23 31 39

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4
Br

B(OH)2

67 74 79
37b 43b 47b

51c 51c 57c

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a
0.01 mol % 6, 2–6 h, o-xylene and K2CO3.

b
Symmetrical SCS palladacycle replaced 6.

c
Herrmann–Beller palladacycle replaced 6.

To investigate optimal reaction conversions over time, 2-bromotoluene was coupled with
phenylboronic acid using 0.01 mol% 6 using the conditions described previously, and the reaction
monitored by GC every 15 min for 4 h (figure 4). The results show the reaction reaches maximum
completion within 1 h. This suggests that the generation of the active palladium catalyst from the
palladacycle precatalyst is rapid under these reaction conditions, with no improvement over time.

Following on from investigations into necessary precatalyst loading, the applicability of the
precatalyst for challenging sterically hindered and electronically deactivated bromides was attempted
using the previous conditions employed (table 3). All reactions were monitored via GC with conversions
of starting material to product quoted. To validate GC conversions, in a related investigation, biaryl
products have been isolated using related palladacycles in more than 70% yield, after purification
(G. Roffe, J. Spencer 2014, unpublished data), and entry 1 confirmed via 1H NMR conversions.

These catalytic tests, performed in duplicate, show moderate to good conversions of the starting ortho
methylated aryl bromides to the corresponding biaryls. An interesting result is that the coupling of
the 2-bromo-1,3-dimethylbenzene with 2-methylphenylboronic acid proceeds at much lower conversion
than the corresponding more hindered bromomesitylene with 2-methylphenylboronic acid.

However, overall, most of these substrates show similar conversions with 6 as the precatalyst. For
entry 4, the results were compared to an SCS symmetrical example [38,39], and the Herrmann–Beller
catalyst [2] (figure 5), revealing that our unsymmetrical example shows favourable results under these
catalytic conditions. Having the ability to couple the much more challenging aryl chlorides would have
been advantageous due to their greater availability and cheaper cost; however, in this case 6 was not
successful, even with the addition of tetrabutylammonium bromide.
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Figure 6. Symmetrical SCS (I) [40], symmetrical NCN (II) [41], and unsymmetrical SCN (III), unsymmetrical pyridine SCN ligand (1) and
unsymmetrical pyridine SCN palladacycle (6).

+ PdCl2n

III : (Y¢, n) = (NMe2, 1)
6   : (Y¢, n) = (2-pyridyl, 0)

H
Pd

Cl

III or 6

Y Y¢
Y

n + HCl
Y¢

Scheme 5. Model formation reaction, where Y= SMe, to unsymmetrical palladacycles III (n= 1, Y′ = NMe2) and 6 (n= 0,
Y′ = pyridyl).

2.4. SCN model formation pathway
Recently, we studied the formation reaction pathway of two symmetrical pincer palladacycles I [40]
and II [41] (figure 6) from their respective ligands and palladium(II) chloride using DFT, and atoms in
molecules (AIM) analysis was used to establish the nature of the bonding. Several computational model
chemistries were investigated, and suitable candidates determined, one of which is used here [27]. In
this work, we are interested in the effects when these palladacycles are desymmetrized, and we have
therefore studied the formation reaction pathway towards III. We have also studied a potential formation
pathway towards palladacycle 6 (figure 6).

Calculated (DFT) bond lengths and bond angles for the X-ray structures of 6 around the Pd centre
are in excellent agreement when compared with the experimental values, confirming the accuracy of the
DFT calculations. The errors in bond length are less than 0.023 Å and bond angles are within 1–2° with
the exception of the Pd–S–CH3 bond angle which is overestimated by ≈ 6°.

The formation reaction pathway investigated for III and 6 is shown in scheme 5. The pathway studied
was based on that studied previously for the symmetrical examples [27], without the inclusion of an
additional base in order to study the fundamental metal–donor atom interactions [42,43]. The Pd(II)
source for C–H activation is modelled as monomeric PdCl2, as studied previously for Pd-based bond
activations [44]. The use of monomeric PdCl2 is analogous to the use of monomeric Pd(OAc)2, or even
the less computationally expensive Pd(η2-O2CH)2 [45], which are often used in calculations, instead of
Pd3(OAc)6 [46].

The commonly discussed concerted metalation–deprotonation mechanism [28,30,31,47] involves
assistance of deprotonation of the C–H bond by an acetate, carboxylate or pivalate base etc., resulting
in very low energy barriers for C–H bond activation. However, in this work this is not relevant, as in the
experimental conditions, these bases are not present.

Calculations were performed both without solvent to provide direct comparison with theoretical
results on symmetric palladacycles [27], and with the inclusion of solvent effects as an energy correction
using the polarization continuum model (PCM) [48,49] with acetonitrile as the solvent to model
experimental conditions.
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Scheme 6. Model formation reaction, where Y= SMe, to unsymmetrical palladacycles III (Y
′ = NMe2, n= 1) and 6 (Y
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Figure 7. Gibbs free energies (solvent corrected using PCM, acetonitrile) for formation reaction pathways to III and 6 with Y or Y′

coordinating to PdCl2 first. TS, transition state; Int, intermediate.

The pathway towards III and 6 is shown in scheme 6 where each can occur via Y-coordination first,
where Y = SMe, or via Y′-coordination first, where Y′ = NMe2 (III) or 2-pyridyl (6). The steps in the
reaction include the initial ligand coordination to PdCl2 in Int 1, followed by C–H bond activation in TS
1-2, leading the new Pd–C bond in Int 2 with a bridging HCl unit. The second ligand coordination step
displaced the HCl, yielding the HCl adduct of the palladacycle in Int 3, which is then eliminated to form
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Figure 8. AIM analysis of 6 showing BCP (blue dots) and ring critical points (orange dots). (a) Molecular graph showing the bond paths
between atoms in yellow, and (b) contour map of the electron density in the Cl–N–C plane of atoms coordinated to Pd showing the
variation in the electron density.

the final palladacycle III or 6. The solvent-corrected Gibbs free energies, with both Y and Y′ coordinating
first are shown in figure 7.

The energies for the formation reaction pathways (figure 7) show that both III and 6, regardless of
which ligand coordinates first are stable, with the formation of 6 slightly more energetically favourable
than III. (The slightly different final energy values for 6 are due to the different conformers of ligand 1
needed for each pathway, and slight differences in the final structure of 6.)

Insight into the role of the donor atoms can be gained by examining the stability of Int 1, where the
ligand coordinates to PdCl2. In all cases, the ligand coordination is energetically more favourable, by at
least 91 kJ mol−1, than the non-coordinated, free ligand. However, subtle differences emerge, depending
on the ligand and which donor atom coordinates to Pd first. For both structures, III and 6, N-coordination
is more favourable than S-coordination (the difference between S- and N-coordinations is approx. 14 kJ
mol−1 for both structures). In order to explain these differences, Bader’s AIM theory [50] has been used
to investigate the strength of the bonding between the palladium atom and either S or N in the formation
of 6.

In AIM analysis, chemical bonding can be characterized by first locating bond critical points (BCP):
the point where the electron density becomes a minimum value along the bond path between interacting
atoms, with key parameters at this point used to investigate the strength and nature of the bonding,
tabulated fully in the electronic supplementary material. The topology of 6 is shown in figure 8, with
BCP (blue dots) shown. In order to explain the more favourable N-coordination in Int 1 of III and 6, the
electron density, ρ(r), at the BCP can be used. The magnitude of ρ(r) can be used to indicate the strength
of a chemical bond [51]. Normally, ρ(r) is used to compare the strength of the same bond, for example,
Te–N intramolecular interactions in different systems [52]. However, it has also been applied to study
different bonds, such as M–H interactions for a variety of metals [53], or M–L bonds for a variety of
metals and ligands [54], as in this work.

For Int 1 in the formation pathway of 6, the ρ(r) value is larger for N-coordination (0.096 au) than for
S-coordination (0.087 au) indicating that the Pd–N bond is stronger than the Pd–S bond, attributed to
more efficient orbital overlap in the Pd–N bond (see the electronic supplementary material) explaining
the relative stabilities of the structures. The bond strengths of other key bonds are similar for the two
structures.

Another key step in the formation reaction is the C–H bond activation, occurring at TS 1-2. This
involves the cleaving of the C–H bond shown by decreasing ρ(r) values (from approx. 0.3 au in Int 1 to
approx. 0.1 au in TS 1-2), and the formation of a new Cl–H bond, resulting in a newly formed BCP. The
activation barriers for this step vary for III and 6 depending on whether S or N coordinates first. The C–H
bond activation barriers are smaller for S-coordination by 13 and 28 kJ mol−1 for III and 6, respectively
(figure 7). This difference has been investigated in terms of the Bader charge from the AIM analysis. The
palladium charge in PdCl2 is 0.683 au, and in TS 1-2 for pathway to 6 is 0.587 au with S coordinated to
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palladium, and 0.706 au with N coordinated to palladium. Clearly, the S donor is more electron donating
due to the smaller Pd charge than for the N donor (this is also true for Int 1). The electrophilic Pd(II)
centre [55] is therefore more stabilized by the S-coordination in the C–H bond activation step, resulting
in the lower barrier compared with the N-coordinated examples.

The largest difference in relative stabilities occurs at Int 2 (figure 7), which corresponds to the Pd
coordinated to one of the donor atoms of the pincer ligand after inserting into the C–H bond. These
energetic differences can be attributed to an interaction between H and the other donor atom. When the
Pd is coordinated by N first, the H interacts with SMe. Therefore, the energies of Int 2 in the formation
of III and 6 are very similar. However, in the formation of III when Pd coordinates to the S first, a very
strong H–NMe2 interaction occurs, forming a very stable structure. In the absence of solvent corrections
III is approximately 30 kJ mol−1 more stable that Int 2, but with the addition of the solvent corrections
(shown in figure 7) Int 2 is slightly more stable than the product III (by 9.3 kJ mol−1). This interaction is
slightly stronger than the H–pyridyl interaction in the formation of 6. This is supported by ρ(r) values at
the BCP between H and the respective donor atom (see the electronic supplementary material).

This analysis demonstrates the interplay between different bond strengths, with Pd–S interactions
being weaker than Pd–N interactions for Int 1 and TS 1-2, and the different bonding nature of S compared
with N with different electron donation abilities having significant effects on the thermodynamics and
kinetics of this cyclometallation mechanism. These effects could also have significance in the catalyst
activation pathway in the SM reaction where the palladacycle is reduced to the catalytically active Pd(0)
species [20,37,56–58].

3. Conclusion
Ligand 1 was readily synthesized via a key catalytic C–C bond forming reaction as one of the
synthetic steps. C–H activation of 1 with in situ generated Pd(MeCN)4(BF4)2 led to a mixture of pincer
palladacycles, which were converted to the desired unsymmetrical SCN pincer 6. The overall yield
from starting materials to the final product was 36%. Each SCN pincer palladacycle 6, 4b and 5 was
characterized in the solid state by X-ray crystallography. The monomeric chloride example 6 was tested
as a precatalyst in a number of SM reactions of sterically challenging and electronically deactivated aryl
bromides, showing favourable conversions in comparison to similar catalysts.

The bonding and stability of two unsymmetrical SCN palladacycles YCY′, III (Y = SMe, Y′ = NMe2,
n = 1) and 6 (Y = SMe, Y′ = 2-pyridyl, n = 0), have been investigated using DFT. It is shown, based
on a simple formation reaction with solvent effect of acetonitrile included through use of the PCM,
that both palladacycles are thermodynamically stable, with 6 more stable than III, and the formation
is spontaneous. For both structures two pathways were found, dependent on which donor atom
of the ligand coordinates to palladium first. It was found that for the rate determining C–H bond
activation step, in all cases, the barrier is influenced by the electron donating ability of the ligand
atoms, with barriers lower by 13–28 kJ mol−1 when sulfur is coordinated to palladium rather than
nitrogen. Unsymmetrical palladacycles clearly provide the opportunity for using the electron donating
ability of the ligand atoms to alter key reaction steps, which could have implications in the catalyst
activation pathway.

Future work will concentrate on exploiting our new synthetic method enabling late-stage
derivatization of the biaryls 2 and 3, enabling the potential synthesis of libraries of SCN, unsymmetrical
NCN and PCN pincer palladacycle analogues. The catalyst activation pathways are also being
investigated via DFT. Moreover, the introduction of unsymmetrical ligands should be useful in other
areas of pincer chemistry [8]. Structures 4b, 5 and 6 were given CCDC numbers 1033101, 1033102 and
1033103, respectively.

4. Experimental details
4.1. General details
Solvents and chemicals were purchased from commercial suppliers and used without further
purification, with most reactions taking place open to atmosphere and moisture. C–H activation reactions
were undertaken using Schlenk techniques, under nitrogen, in dry acetonitrile. MW reactions were
performed using CEM explorer equipment.
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4.2. Instrumentation
1H and 13C spectra were recorded on either a Varian 500 MHz or an ECP 400 MHz spectrometer. HRMS
was conducted with an ESI mass spectrometer using a Bruker Daltonics Apex III, with ESI source
Apollo ESI, using methanol as the spray solvent by Dr Alaa K. Abdul-Sada of the University of Sussex
Mass Spectrometry Centre. GC measurements were obtained using a Perkin Elmer Autosystem XL gas
chromatograph, using a flame ionization detector and a Supelco MDN-5S 30 m × 0.25 mm × 0.25 µm
column, with a He mobile phase. Elemental analyses were run by the London Metropolitan University
Elemental Analysis Service. Crystal structures were obtained by the UK National Crystallography
Service at the University of Southampton as described previously [59].

4.3. [3-(Pyridin-2-yl)phenyl]methanol (2)
(3-(Hydroxymethyl)phenyl)boronic acid (4.04 mmol, 614 mg), 2-bromopyridine (4.04 mmol, 0.393 ml),
Pd(PPh3)4 (0.16 mmol, 182 mg), 0.5 M K3PO4 (10 ml), toluene (7.5 ml) and EtOH (5 ml) were added to
a sealed 35 ml MW vial and stirred under MW irradiation (maximum power 300 W, using dynamic
heating) at 150°C for 20 min. The mixture was left to cool to room temperature, and the solvent was
removed in vacuo. The mixture was diluted with H2O (25 ml) and EtOAc (25 ml). The crude product
was extracted with EtOAc (2 × 25 ml), washed with H2O (2 × 25 ml) and brine (25 ml). The combined
organic layers were dried over anhydrous MgSO4, filtered and concentrated in vacuo. The crude material
was purified using flash column chromatography (7 : 3 DCM:EtOAc) yielding 694 mg of the expected
product 2 as a yellow solid in 93% yield.1H NMR (500 MHz, chloroform-d) δ 8.70 (d, J = 4.9 Hz, 1H), 8.02
(s, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.78–7.74 (m, 2H), 7.48 (dd, J = 7.6, 7.6 Hz, 1H), 7.44 (d, J = 7.6 Hz, 1H),
7.24 (ddd, J = 7.3, 4.9, 2.7 Hz, 1H), 4.80 (d, J = 6.0 Hz, 2H), 1.79 (t, J = 6.0 Hz, 1H). 13C NMR (126 MHz,
chloroform-d) δ 157.3, 149.7, 141.5, 139.7, 136.8, 129.0, 127.5, 126.2, 125.5, 122.2, 120.6, 65.4. HRMS. Calcd
for [C12H11NO + Na]+ 208.0733. Found 208.0731.

4.4. 2-[3-(Bromomethyl)phenyl]pyridine (3)
(3-(Pyridin-2-yl)phenyl)methanol (2) (3.03 mmol, 561 mg) and greater than or equal to 48% HBr in
H2O (5 ml) were added to a 10 ml round bottomed flask and stirred at 125°C for 8 h, then left to stir
overnight at room temperature. The reaction mixture pH was carefully adjusted to approximately 7.5 by
careful addition of a saturated NaHCO3 solution. The crude product was extracted with EtOAc (3 × 50
ml), washed with H2O (3 × 50 ml) and brine (50 ml). The organic layers were dried over anhydrous
MgSO4, filtered and solvent removed in vacuo. The crude product was purified using flash column
chromatography (9 : 1 DCM : EtOAc) yielding 568 mg of the expected product 3 as a yellow oil in 76%
yield. 1H NMR (500 MHz, chloroform-d) δ 8.70 (d, J = 4.9 Hz, 1H), 8.06 (s, 1H), 7.93–7.89 (m, 1H),
7.79–7.73 (m, 2H), 7.48–7.44 (m, 2H), 7.25 (ddd, J = 6.7, 4.9, 1.7 Hz, 1H), 4.58 (s, 2H). 13C NMR (126 MHz,
chloroform-d) δ 156.7, 149.7, 134.0, 138.4, 136.8, 129.6, 129.2, 127.6, 126.9, 122.4, 120.6, 33.4. HRMS. Calcd
for [C12H10BrN + H]+ 248.0069. Found 248.0071.

4.5. 2-{3-[(Methylsulfanyl)methyl]phenyl}pyridine (1)
2-(3-(Bromomethyl)phenyl)pyridine (3) (1.33 mmol, 331 mg), sodium thiomethoxide (1.62 mmol, 114
mg) and EtOH (4 ml) were added to a sealed MW vial and stirred under MW irradiation (maximum
power 300 W, dynamic heating) at 150°C for 20 min. After cooling, the solvent was removed in vacuo, and
the crude mixture was diluted with H2O (25 ml) and EtOAc (25 ml). The crude product was extracted
with EtOAc (2 × 25 ml), washed with H2O (2 × 25 ml) and brine (25 ml). The organic layers were dried
over anhydrous Na2SO4, filtered and concentrated in vacuo. The crude product was purified by flash
column chromatography (9 : 1 DCM:EtOAc) yielding 207 mg of the expected product 1 as a yellow oil in
72% yield. 1H and 13C NMR spectra are in agreement with prior literature values [32].

4.6. Complexes 4b and 5
Palladium chloride (0.49 mmol, 87 mg) and MeCN (25 ml) were placed in a round bottomed flask
and stirred under reflux (85°C) under a nitrogen atmosphere until all PdCl2 was dissolved. Silver
tetrafluoroborate (0.98 mmol, 191 mg) was added and left to stir under reflux in a nitrogen atmosphere
for 2 h. The mixture was then cooled and filtered over Celite. A solution of 1 (0.47 mmol, 100 mg) in
MeCN (10 ml) was added to the filtrate and the solution stirred under reflux and nitrogen atmosphere
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for 6 h. The mixture was cooled to room temperature and filtered. The filtrate was concentrated to give
305 mg of a yellow solid which was purified by chromatography (DCM : MeOH 95 : 5) to give 133 mg
of a light yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.42 (d, J = 5.6 Hz, 1H), 8.19–8.11 (m, 2H), 7.64
(d, J = 7.6 Hz, 1H), 7.53 (ddd, J = 7.3, 5.6, 1.8 Hz, 1H), 7.18 (dd, 1H, J = 7.6 Hz), 7.11 (d, J = 7.6 Hz, 1H),
4.46 (m, 2H), 2.82 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 164.4, 149.7, 148.6, 144.2, 141.4, 126.6, 125.8,
124.5, 123.5, 120.7, 46.4, 23.0 (1 carbon missing). 19F NMR (376 MHz, DMSO-d6) δ –148.33, –148.39. HRMS
shows the presence of a mixture of structures.

4.7. 2-{3-[(Methylsulfanyl)methyl]phenyl}pyridine chloro-palladacycle (6)
The C–H activation technique was repeated as per synthesis of 4b and 5, and the crude reaction mixture
was dissolved in MeCN (5 ml), and sodium chloride (19.9 mmol, 1.17 g) dissolved in H2O (5 ml) was
added, and the mixture was stirred at room temperature for 3 h. The solvent was removed in vacuo, the
crude mixture was then dissolved in DCM (35 ml) and H2O (35 ml) was added. The crude product was
extracted with DCM (2 × 35 ml), washed with H2O (2× 35 ml) and brine (35 ml), dried over anhydrous
MgSO4, filtered over Celite and the solvent was removed in vacuo. The crude product was purified
by flash column chromatography (100% DCM → 98 : 2 DCM:MeOH) yielding 244 mg of the expected
product 6 as a yellow solid in 71% yield. Crystals were grown by slow evaporation of DCM from a
solution of the sample. 1H NMR (500 MHz, chloroform-d) δ 9.06 (s, 1H), 7.83 (dd, J = 7.9, 7.9 Hz, 1H), 7.61
(d, J = 7.9 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.22 (m, 1H), 7.06 (dd, J = 7.6, 7.6 Hz, 1H), 7.01 (d, J = 7.6 Hz,
1H), 4.30 (m, 2H), 2.84 (s, 3H).13C NMR (100 MHz, chloroform-d) δ 165.7, 165.2, 150.4, 147.8, 144.3, 138.9,
125.1, 124.7, 122.8, 122.2, 118.7, 49.4, 23.7. HRMS. Calcd for [C13H12NPdS]+ 319.9720. Found 319.9710.
Anal. Calcd for C13H12NPdSCl: C, 43.84; H, 3.40; N, 3.93. Found: C, 43.71; H, 3.48; N, 3.93.

4.8. General method for Suzuki–Miyaura catalytic tests
The aryl bromide (1 mmol), boronic acid (1.5 mmol), K2CO3 (2 mmol), 6 (25 µl standard solution in
chloroform, concentration depending on catalyst loading) and o-xylene (3 ml) were added to a reaction
vessel and heated at 130°C. 0.1 ml aliquots were taken at various time intervals, washed with H2O and
extracted with Et2O. A sample of the Et2O solution was then used for GC analysis.

5. Computational details
The structures and energies of all structures were calculated using DFT as implemented in GAUSSIAN
09 [60]. Geometry optimization and frequency analysis was performed using the ωB97XD [61] exchange-
correlation functional. In each case, structural minima and transition states were verified by the
absence or the presence of a single imaginary vibrational mode, respectively. Transition states were
confirmed by eigenvector following calculations. For geometry optimizations, a 6-31++G(d,p) basis set
was used for all atoms except Pd, for which the standard SDD pseudopotential was used [62]; this
will be referred to as 6-31++G(d,p) [SDD]. The ωB97XD functional was chosen for this study after
testing a range of functionals on their ability to reproduce the geometries of known symmetric pincer
palladacycles [27]. Single point energy calculations were performed on both the X-ray structures and
the ωB97XD optimized structures at the ωB97XD/6-311++G(2df,2p)[SDD] level of theory. Solvation
effects were accounted for by performing single point energy calculations on the optimized geometries
using the self-consistent reaction field PCM [48,49] with universal force field atomic radii at the
ωB97XD/6-311++G(2df,2p)[SDD] level of theory. The solvent acetonitrile (ε = 35.688) was used in this
study.

The ωB97XD functional [61] was chosen for the energy calculations due to the benefits of variable
HF exchange with distance and the empirical dispersion correction. Furthermore, the reaction energy
benchmark study by Zhao & Truhlar [63] showed the ωB97XD functional to have one of the smallest
average mean unsigned errors of the 30 functionals tested.

The topological analysis of the electron density was performed using the AIM [64] method as
implemented in the Multiwfn program [65]. In order to obtain reliable AIM parameters, the effective
core potential basis set for Pd was replaced with the all electron basis set, DGDZVP [66], to generate the
wave function at the ωB97XD level of theory, i.e. using ωB97XD/6-311++G(2df,2p)[DGDZVP].
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