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∥German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
⊥Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-University and Buchmann Institute for Molecular Life Sciences,
Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany

*S Supporting Information

ABSTRACT: Many oncogenic mutants of the tumor suppressor p53 are conforma-
tionally unstable, including the frequently occurring Y220C mutant. We have previously
developed several small-molecule stabilizers of this mutant. One of these molecules,
PhiKan083, 1-(9-ethyl-9H-carbazole-3-yl)-N-methylmethanamine, binds to a mutation-
induced surface crevice with a KD = 150 μM, thereby increasing the melting temperature
of the protein and slowing its rate of aggregation. Incorporation of fluorine atoms into
small molecule ligands can substantially improve binding affinity to their protein targets.
We have, therefore, harnessed fluorine−protein interactions to improve the affinity of
this ligand. Step-wise introduction of fluorines at the carbazole ethyl anchor, which is
deeply buried within the binding site in the Y220C−PhiKan083 complex, led to a 5-fold
increase in affinity for a 2,2,2-trifluoroethyl anchor (ligand efficiency of 0.3 kcal mol−1

atom−1). High-resolution crystal structures of the Y220C−ligand complexes combined
with quantum chemical calculations revealed favorable interactions of the fluorines with
protein backbone carbonyl groups (Leu145 and Trp146) and the sulfur of Cys220 at the
mutation site. Affinity gains were, however, only achieved upon trifluorination, despite favorable interactions of the mono- and
difluorinated anchors with the binding pocket, indicating a trade-off between energetically favorable protein−fluorine interactions
and increased desolvation penalties. Taken together, the optimized carbazole scaffold provides a promising starting point for the
development of high-affinity ligands to reactivate the tumor suppressor function of the p53 mutant Y220C in cancer cells.

The introduction of fluorine atoms into organic small
molecules has become widespread in drug discovery.1−5

Indeed, between 20 and 25% of drugs on the market are
estimated to contain at least one fluorine atom.6 Apart from
modulating various important compound properties such as
logP, metabolic stability, basicity, and bioavailability, fluorine
substituents have also been successfully used for improving
ligand binding affinities.7−9 This can be achieved via intra-
molecular stabilization of favorable ligand binding conforma-
tions, modulation of polarity or basicity of neighboring
functional groups of the ligand, or direct fluorine−protein
interactions.1,8 These interactions can be further classified into
polar interactions with hydrogen bond donors (e.g., backbone
NH, polarized Cα−H, polar side chains, and protein bound
water), as observed in the binding of type II statins to the
HMGCoA enzyme,10 hydrophobic interactions with lipophilic
side chains, and orthogonal multipolar interactions, which can
be also described as n → π* interactions,11 with backbone

carbonyl groups, amide containing side chains (Asn and Gln),
and guanidinium groups (Arg).
A number of case studies on the use of fluorine interactions

in rational drug design have been reported. Olsen et al.
conducted a systematic fluorine scan with a thrombin inhibitor,
revealing favorable interactions with backbone amides and Cα

protons that yielded significantly improved binding affinity.12

The introduction of fluorine substituents also significantly
increased the potency of kinesin spindle protein inhibitors, abl
kinase inhibitors, and peptidic elastase inhibitors.13−16 Vulpetti
et al. identified fluorinated fragments binding to trypsin by 19F
NMR screening and crystal structure determination and
described a general approach to identify fluorophilic hot-spots
in proteins using crystal and computational analysis.17 Recently,
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Pollock et al. investigated the impact of fluorine−protein
interactions on the binding affinity of a menin−MLL inhibitor
and introduced their computational algorithm FMAP, which
aims to facilitate the rational design of fluorine−protein
interactions.18

Here, we have harnessed fluorine interactions for the
development of mutant p53 rescue drugs. The tumor
suppressor p53 plays a key role in regulating cell-cycle arrest,
DNA repair, apoptosis, or cellular senescence.19−21 In virtually
all human cancers, p53 is inactivated either by mutation or
overexpression of negative regulators such as MDM2 or
MDMX, which leads to proteasomal degradation of p53.22

The cancer mutation Y220C, which accounts for an estimated
100 000 new cancer cases per year worldwide, significantly
destabilizes the p53 DNA-binding domain (DBD) and impairs
its function via increased thermal denaturation.21,23 We have
previously developed small-molecule stabilizers of p53-Y220C,
such as Phikan083, PhiKan5196, and PhiKan7088 (Figure 1),

which bind to a mutation-induced surface crevice on the DBD,
thereby stabilizing the protein, slowing its unfolding and
aggregation, and in some cases restoring tumor suppressor
activity in cancer cells harboring the p53-Y220C mutation.24−28

In this study, we aimed at improving the potency of the
carbazole-based compound Phikan083 and employed ab initio
quantum-chemical calculations to probe potential interaction
energy gains upon fluorination of the ethyl anchor. We have
synthesized mono-, di-, and tri- fluorinated 9H-fluoroethyl
carbazoles; evaluated their binding affinities via differential
scanning fluorimetry (DSF) and isothermal titration calorim-
etry (ITC); and determined their binding mode by X-ray
crystallography. We found that trifluorination significantly
improved the binding affinity by approximately 5-fold
compared with PhiKan083 (1), whereas both monofluoro
and difluoro analogues were less potent than the parent
compound.

■ RESULTS AND DISCUSSION

Quantum Chemical Calculations. In the crystal structure
of p53-Y220C in complex with PhiKan083 (PDB: 2VUK), the
ethyl moiety of PhiKan083 is in close proximity to the carbonyl
groups of Leu145 and Trp146, and the thiol group of Cys220.
Given the frequent and well-characterized interactions between
organofluorine groups and protein backbone amides, as well as
the less frequently observed interactions between fluorine and
sulfur atoms,9 we investigated whether gains in binding affinity
could be achieved via fluorinated ethyl substituents using DFT-
D calculations at the BLYP-D3/def2-SVP level with a truncated
model of PhiKan083 bound to the p53-Y220C binding pocket
(Figure 2B). Except for the sulfur atom of Cys220, all heavy
atoms of the Y220C binding pocket as well as the nitrogen and
C-3 atom of the pyrrole ligand model were kept frozen during
the calculations.
Distances between the backbone amides of Leu145 and

Trp146 and the nearest C−F groups were between 3.0 and 3.3
Å in the optimized structures, which is in good agreement with
typical CF···CO distances (3.0−3.7 Å) for orthogonal
multipolar interactions.16 C−F···S and C−F···HS distances
ranged from 2.8 to 3.6 Å, which is also in good agreement with
experimentally observed distances for fluorine−sulfur contacts
(2.8−3.4 Å) in protein structures.9 Our DFT-D3 calculations
indicated that the relative interaction energies (ΔΔE) for all
fluorinated ethyl groups improved by at least −2 kcal/mol
compared with the N-ethyl reference energy ΔE (ΔE = Ecomplex
− (Ereceptor + Eligand); Figure 2B). The energetically most
favorable conformation (ΔΔE = −6.5 kcal/mol) of the 2-
fluoroethyl group was orientation 1 (Figure 2B), in which the
C−F vector points toward the backbone amides of Leu145 and
Trp146, predicting two potential orthogonal multipolar
interactions between the fluorine atom and both carbonyl
groups. Orientations 2 and 3 of the 2-fluoroethyl group, where
the fluorines were oriented toward the sulfhydryl group of
Cys220, were energetically less favorable, with respective ΔΔE
values of −2.2 kcal/mol and −3.7 kcal/mol. The relative
interaction energy of conformation 1 of the difluoro ethyl
moiety (ΔΔE = −6.9 kcal/mol) was similar to the most favored
2-fluoroethyl conformation (see Figure S1 for difluoro ethyl
conformations 2 and 3 and their DFT-D energies), whereas the
trifluoro-substituted ethyl anchor was energetically less
favorable with a ΔΔE value of −4.2 kcal/mol (Figure 2B).
However, the calculated DFT-D3 energies only yield an
estimate of the ligand−protein interaction at the chosen
computational level in a model system of small size and neglect
other contributions to the free energy of binding such as
entropic changes and desolvation penalties.

Compound Synthesis. We devised PhiKan083 (1)
analogues 2−4 (Figure 3) with a mono-, di-, or trifluoroethyl
anchor, in addition to their counterparts 5 and 6 bearing a
dimethylamine instead of a monomethylamine group. We
envisaged that, having different substitution patterns (e.g.,
secondary vs tertiary amine) at the level of the pendant, the
solvent exposed amino group would provide additional
structure−activity relationships and inform on the influence
of the amino side chain on the overall potency and binding
mode of 1 and fluorinated analogues.
Compounds 1 and 2 were obtained from commercial sources

(see Materials and Methods). The synthesis of 3, 4, 5, and 6
was straightforward, and is described in Scheme 1. Attempts at
alkylation of intermediate 9 were unsuccessful. Alkylation of

Figure 1. Chemical structures of the known small-molecule stabilizers
of p53-Y220C PhiKan083, PhiKan5196, and PhiKan7088.
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9H-carbazole-3-carbaldehyde (9)29 with the appropriate alkyl
halide or tosylate was achieved in the presence of Cs2CO3 in
DMF, and provided intermediates 7 and 8. Low yields were due
to a competing fluorine elimination pathway which has been
previously reported by Suehiro et al.30 Further introduction of
the amine side chain by reductive amination afforded 3, 4, 5,
and 6. Two reductive amination procedures were attempted,
titanium(IV) isopropoxide-sodium borohydride and sodium
triacetoxyborohydride, and yields in both cases were com-
parable.31,32 Indeed, the titanium-based method was used for
the reductive amination of 7 and 8, but we anticipate that
sodium triacetoxyborohydride would be equally effective.
Biophysical Evaluation. We tested PhiKan083 (1) and

analogues 2−6 for their stabilization of the p53-Y220C DNA-
binding domain (DBD) using differential scanning fluorimetry
(DSF; Table 1). The N-2,2,2-trifluoroethyl substituted

carbazoles 4 and 6 increased stability of the p53-Y220C DBD
by 1.2 K at a compound concentration of 125 μM, showing a
clear improvement over their N-ethyl substituted counterparts
PhiKan083 (1) and 5 (ΔTm = 0.8 K and ΔTm = 0.6 K,
respectively). In contrast, the difluorinated (2) and mono-
fluorinated (3) carbazoles were significantly worse than the
parent compound in terms of protein stabilization, with
respective thermal shifts of 0.3 and 0.4 K. Dissociation
constants (KD) were determined by isothermal titration
calorimetry (ITC; Table 1). The substitution pattern of the
solvent-exposed amine had a minor effect on affinity, with the
additional methyl group in 5 resulting in a 30% drop in affinity.
The trifluoro-substituted carbazoles 4 and 6 were the most
potent compounds and showed ITC KD values of 28 and 37
μM, respectively (Figure 4), which corresponds to a 5-fold
increase in affinity compared to the nonfluorinated parent

Figure 2. Binding mode of the p53-Y220C stabilizer PhiKan083 and fluorinated model systems. (A) Experimentally determined binding mode of
PhiKan083 (orange sticks) to the mutation-induced surface crevice of the p53 mutant Y220C (PDB code: 2VUK). (B) Snapshots of DFT-D
optimized models of the PhiKan083 N-ethyl group and its fluorinated derivatives (orange sticks) bound to the Y220C surface crevice. For the DFT-
D optimizations, truncated models of PhiKan083 (N-ethylpyrrole) and the p53-Y220C pocket (as depicted) were used (only non-hydrogen atoms
and polar protons are shown). Interaction energies of each ligand model were compared to the N-ethyl reference interaction energy ΔE to calculate
relative interaction energies (ΔΔE = ΔELigand − ΔEN‑ethyl). The three distinct orientations of local minima of the 2-fluoroethyl anchor showed
different interactions energies, indicating that orientation of the C−F vector toward the backbone carbonyl groups of Leu145 and Trp146 yields the
most favorable interaction energy. Pictures were rendered using pymol (www.pymol.org).
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compounds (1 and 5). Despite prediction of improved
interaction energies by DFT-D calculations, the mono- and
difluorinated analogues, 2 and 3, failed to display improved
affinities. They had KD values of 101 μM and 138 μM,
respectively (Figure S2).
Crystal Structures. We determined high-resolution crystal

structures of the p53-Y220C DBD in complex with 2, 3, and 6
(Table 2) in order to establish the binding modes of mono-, di-,
and trifluorinated Phikan083 derivatives. All structures were
determined in the same space group as for the parent

compound PhiKan083 and contained two molecules in the
asymmetric unit (chains A and B). There was excellent electron
density for the ligand in chain B in all cases. For the ligand in
chain A, there was only partial occupancy for compounds 2 and
3, consistent with the Y220C-PhiKan083 complex structure.24

Numbers given in the following therefore refer to chain B,
unless stated otherwise. The binding mode of the carbazoles
was almost identical to that of PhiKan083 (1). Small differences
in the orientation of the central carbazole scaffold can be
attributed to the different methylation state of the amine
moiety by comparison with other structures of Y220C ligand
complexes (Joerger AC unpublished data).
Upon monofluorination, the fluorine atom of 2 points

toward the carbonyl groups of Leu145 and Trp146 with a F···
CO interaction distance of 3.4 Å (Figure 5A). The C−F
vector and the planes of the backbone carbonyl group of
Leu145 and Trp146 show a nearly orthogonal arrangement,
with respective OC···F angles of 97.5° and 80.1°, which is in

Figure 3. Structures of compounds 1−6.

Scheme 1. Synthesis and Overall Yield of Compounds 3, 4, 5 and 6 Using the Two-Step Synthesis Described

aNot applicable, precursor was bought from TCI UK.

Table 1. Thermal Shift Data and KD Values

compound DSF ΔTm at 125 μM ITC KD (μM)

1 0.8 124a

2 0.4 138
3 0.3 101
4 1.2 28
5 0.6 169
6 1.2 37

aData taken from Boeckler et al.24
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good agreement with OC···F angles found in the PDB and
CSD for orthogonal multipolar interactions.9,16 This preferred
orientation of the C−F vector in the crystal structure is also in
good agreement with our initial DFT-D predictions (Figure
5A). Similar to the Y220C-Phikan083 complex, the side chain
of Cys220, in immediate vicinity of the ethyl anchor, adopts
two alternative, albeit very similar conformations.
For the N-2-difluoroethyl anchor of 3, we observed two

alternative conformations in the p53-Y220C binding pocket
(Figure 5B and C). In both conformations, one fluorine atom
interacts with the carbonyl groups of Leu145 and Trp146 in an
almost identical fashion as observed for compound 2. The
second fluorine interacts with the thiol group of Cys220,
pointing either toward Pro151 (Figure 5C) or toward Leu145
at the bottom of the binding pocket (Figure 5B), which is
essentially the result of a 120° rotation around the ethyl anchor
C−C bond. Interestingly, only one of the two Cys
conformations was observed in chain A, coinciding with a
preferential orientation of the difluoroethyl anchor in the
orientation highlighted in Figure 5B, whereby the fluorine
forms a weak hydrogen bond with the SH group of Cys220. In
both orientations, the fluorine atom interacts with the thiol
group at a distance of about 3.2 Å, which is more or less the
sum of the van der Waals radii of sulfur and fluorine (rF = 1.47
Å; rS = 1.80 Å).1,33

In the structure of the most potent compound 6, the CF3
group aligns well with the different fluorine positions observed
for monofluorinated 2 and difluorinated 3 (Figure 5D); i.e., it
interacts with the backbone carbonyl groups of Leu145 and
Trp146 as well as with the thiol group of Cys220. Analysis of
C−S···F angles in the complexes with di- and trifluorinated
compounds suggests that fluorine interacts with Cys220 via
weak hydrogen bonding with the polarized proton of the thiol
function and via sulfur σ-hole bonding34−36 at an angle close to
180°.

Figure 4. Binding of compounds 4 (A) and 6 (B) to p53-Y220C as characterized by isothermal titration calorimetry (ITC).

Table 2. X-Ray Data Collection and Refinement Statistics of
Y220C-Carbazole Complexes

compound 2 3 6

data collection
space group P212121 P212121 P212121
a (Å) 65.03 64.05 65.16
b (Å) 71.14 71.14 71.45
c (Å) 105.14 104.17 105.23
molecules/AU 2 2 2
resolution (Å)a 29.6−1.38 29.6−1.35 29.6−1.48

(1.45−1.38) (1.42−1.35) (1.56−1.48)
unique reflections 99,536 107,270 82,444
completeness (%)a 98.9 (98.6) 99.7 (99.9) 99.9 (100.0)
multiplicitya 4.8 (4.8) 4.9 (4.9) 5.4 (5.5)
Rmerge (%)

a 3.9 (50.6) 4.5 (54.9) 5.3 (48.7)
mean I/σ(I)a 19.2 (3.4) 16.2 (3.5) 16.5 (3.7)
Wilson B value (Å2) 13.4 11.8 13.0

refinement
Rwork (%)

b 14.6 14.7 14.4
Rfree (%)

b 17.0 16.9 17.1
no. of atoms
proteinc 3187 3166 3186
zinc 2 2 2
water 460 430 466
ligands 48 50 44
RMSD bonds (Å) 0.005 0.005 0.005
RMSD angles (deg) 0.08 0.8 0.8
mean B (Å2) 23.4 21.2 21.3
PDB ID 5G4M 5G4N 5G4O
aValues in parentheses are for the highest resolution shell. bRwork and
Rfree = ∑∥Fobs| − |Fcalc∥/∑|Fobs|, where Rfree was calculated with 5% of
the reflections chosen at random and not used in the refinement.
cNumber includes alternative conformations.
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■ DISCUSSION

Incorporation of fluorine atoms into the N-ethyl anchor of the
p53-Y220C stabilizer PhiKan083 (1) yielded two compounds,
4 and 6, with substantially increased p53-Y220C stabilization
(1.2 K at 125 μM) and Y220C binding affinity. Compared with
the parent compounds PhiKan083 (1) and 5, the ITC KD

values improved by a factor of 5 and the free energy of binding
by approximately −0.9 kcal/mol (at 293 K). Typically, C−F···
CO orthogonal multipolar interactions with optimal
geometry raise the binding free enthalpy by about −0.2 to
−0.3 kcal/mol,37 which suggests that the observed C−F···C
O interactions with the carbonyl groups of Leu145 and Trp146
are the main factor for the potency increase of the trifluorinated
PhiKan083 derivatives. The DFT-D calculations are also
consistent with the binding modes 2 and 3 observed in our
crystal structures, as the preferred orientation of fluorine
toward the backbone carbonyl groups of Leu145 and Trp146 in
these structures indicates that interactions of the protein
carbonyl groups with fluorine atoms contribute more strongly
to the affinity increase than interactions with the thiol group of
Cys220 or apolar protons of hydrophobic side chains. The
preferred interaction with the protein backbone then seems to
direct the orientation of additional fluorine atoms in the
binding pocket, interacting with the thiol group of Cys220 via
either a hydrogen bond or a planar sulfur σ-hole interaction.

Although DFT-D calculations predicted improved inter-
action energies for monofluorinated and difluorinated Phi-
Kan083 derivatives, this was not reflected in the experimentally
determined dissociation constants and stability data for
compounds 2 and 3, which were close to that of the parent
compound PhiKan083. These discrepancies between theoreti-
cal and experimental data are likely due to different desolvation
penalties associated with each fluorinated group. Fluorine can
act as a weak hydrogen-bond acceptor in a 2,2-difluoromethyl
group and even more strongly in a 2-fluoromethyl group,
although hydrogen-bond strength was found to be significantly
weaker than for the conventional hydrogen-bond acceptor
acetophenone.38 For example, difluoroalkyl groups have been
used as thiol surrogates in drug discovery because of their
similar steric properties and the acidity of the terminal
hydrogen resulting from the high polarization of the C−H
bond by the geminal fluorine atoms.39 To estimate desolvation
penalties of fluorinated N-ethyl anchors, we calculated solvation
energies for N-ethylcarbazole, N-2-fluoroethylcarbazole, N-2,2-
difluoroethylcarbazole, and N-2,2,2-trifluoroethylcarbazole with
Jaguar using the SM8 water model at the BLYP-D3/6-31G**
level of theory (Table 3 and Figure S3).40 Both mono- and
difluorinated carbazoles showed solvation energies that were by
−1.0 and −2.8 kcal/mol larger than the solvation energy of N-
ethylcarbazole. The solvation energy of the trifluorinated
carbazole was identical to N-ethylcarbazole (−3.1 kcal/mol).

Figure 5. X-ray structures of p53-Y220C with bound fluoro-derivatives of PhiKan083. Multipolar fluorine interactions are highlighted with magenta
broken lines and fluorine−sulfur contacts with yellow broken lines. (A) Y220C in complex with monofluorinated compound 2. (B,C) Alternative
conformations of the difluorinated compound 3 in chain B of the Y220C mutant. In chain A with only partial occupancy of 3, only one of the two
side-chain conformations of Cys220 was observed, with a preferential orientation of 3 as highlighted in panel B. (D) Y220C in complex with 6 (chain
B). Interactions with the main conformation of Cys220 are highlighted. The minor conformation of Cys220 is observed in chain B only.
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Hence, the higher polarity of the 2-fluoroethyl and 2,2-
difluoroethyl moieties in the PhiKan083 derivatives 2 and 3 and
the associated desolvation penalties are most likely the key
factors counteracting and quenching favorable fluorine−protein
interactions in these compounds.
In conclusion, targeting Cys220 and the backbone carbonyl

groups of Leu145 and Trp146 via fluorine bonding helped to
further optimize the carbazole scaffold. N-3,3,3-Trifluoroethyl
substituted carbazoles 4 and 6 exhibit a high ligand efficiency
(LE = 0.3 kcal mol−1 atom−1), although binding is still relatively
weak for these fragment-like molecules. Nevertheless, they
represent a promising starting point for the development of
high affinity small-molecule stabilizers of the oncogenic Y220C
mutant.

■ MATERIALS AND METHODS
Protein Expression and Purification. Stabilized p53-Y220C

DBD (residues 94−312) was expressed and purified as previously
described.26

Differential Scanning Fluorimetry (DSF). DSF was performed
as described.26 Briefly, melting temperatures (Tm) were determined
using 8 μM protein (stabilized p53-Y220C DBD) and 10 × SYPRO
orange (Life Technologies) in a 25 mM KPi (pH 7.2), 150 mM NaCl,
and 1 mM TCEP assay buffer at a final DMSO concentration of 5%
(v/v). ΔTm values were calculated as ΔTm = Tm (protein +
compound) − Tm (protein)). All samples were measured in triplicate.
Isothermal Titration Calorimetry (ITC). ITC experiments were

conducted as described.26 Samples for the cell unit contained 50 μM
protein in a 25 mM KPi (pH 7.2), 150 mM NaCl, 1 mM TCEP, and
5% (v/v) DMSO assay buffer. The syringe contained 2−5 mM
compound in the same assay buffer.
Quantum Chemical Calculations. QM calculations were

conducted with TURBOMOLE 6.4, applying a BLYP(RI)-D3-def2-
SVP (DFT-D3) level of theory. A truncated model of the p53 Y220C
binding pocket with an N-ethyl-pyrrole ligand (truncated PhiKan083
model), comprising 140 atoms, was derived from the crystal structure
(PDB code: 2VUK). For geometry optimization, all heavy atoms of
the binding pocket, except the sulfur atom of Cys220, and the nitrogen
atom plus one carbon atom of the ligand pyrrole ring were frozen (see
Supporting Information). Interaction energies were calculated as ΔE =
Ecomplex − (Ereceptor + Eligand). Global minimum conformers, which were
used as input structures for solvation energy calculations, were
determined by DFT-D3 calculations at the BLYP(RI)-D3-def2-TZVP
level of theory with TURBOMOLE 6.4. For N-2-fluoroethylcarbazole
and N-2,2-difluoroethylcarbazole, we rotated the C−C axis of the ethyl
moiety stepwise by 60° to obtain six different conformers that were
used as input structures for the DFT-D3 calculations. Solvation
energies were calculated with Jaguar 8.9 (Schrödinger, USA, NY) as
single point calculations using the SM8 water model at the BLYP-D3/
6-31G** level of theory.
X-Ray Crystallography. Crystals of the p53-Y220C DBD were

grown at 18 °C as described.41 Crystals were soaked for either 90 min
(6) or 4 h (2 and 3) in a 20 mM solution of compound in cyro buffer

(19% polyethylene glycol 4000, 20% glycerol, 10 mM sodium
phosphate, pH 7.2, 100 mM Hepes, pH 7.2, 150 mM NaCl) and
flash frozen in liquid nitrogen. X-ray data sets were collected at 100 K
at beamlines I03 and I04 of the Diamond Light Source, Oxford, UK.
Indexing of the data sets was performed using XDS42 and scaling using
the program SCALA43 within the CCP4 software suite.44 The
structures of the Y220C-carbazole complexes were then solved using
the program PHENIX:45 initial rigid body refinement was done using
PDB entry 2J1X as a starting model. The models were further refined
using iterative cycles of manual model building in COOT46 and
refinement with PHENIX. While there was clear electron density for
the ligands in chain B, there was only weak ligand density in chain A of
the Y220C complex with 2 and 3, indicating partial occupancy. The
same observation had been made for the parent compound
PhiKan083.24 Accordingly, alternative states of the binding pocket
were refined: bound ligand and water network of the ligand-free
structure. Data collection and refinement statistics are given in Table 2.
Structural figures were prepared using PyMOL (www.pymol.org). The
coordinates and structure factors of the complexes are deposited in the
Protein Data Bank (PDB ID: 5G4M, 5G4N, 5G4O).

General Procedures. All reactions were carried out in air unless
otherwise stated, using commercial grade starting materials, solvents,
and reagents. The progress of all reactions was monitored by thin layer
chromatography (TLC) using commercially available glass silica gel
plates (60 Å, F254). The mobile phase was generally a solvent mixture,
and the visualization was undertaken using UV light. Microwave
reactions were conducted in a CEM Discovery microwave reactor. All
NMR spectra were measured on a Varian NMR 500 spectrometer at
either 500 MHz (1H) or 126 MHz (13C). Chemical shifts are quoted
in parts per million (ppm; δ relative to a residual solvent peak for 1H
and 13C). Chromatographic purifications were undertaken using an
ISCO purification unit, Combi Flash RF 75 PSI, using Biotage silica
gel columns. LC-MS purity analyses were undertaken using a 5 μm
C18 110 Å column. Percentage purities were performed using a 30
min method in water/acetonitrile with 0.1% formic acid (5 min at 5%,
5−95% over 20 min, 5 min at 95%) with the UV set to 254 nm. All
high-resolution mass spectrometry was carried out at the EPSRC UK
National Mass Spectrometry Facility (NMSF), Swansea University,
using a Thermo Scientific LTQ Orbitrap XL spectrometer.

Materials. 1-(9-(2-Fluoroethyl)-9H-carbazol-3-yl)-N-methylme-
thanamine (2) was purchased from Enamine; its purity was assessed
by LC-MS and found to be higher than 95% (LC-MS purity > 95%
(UV), ret. time = 10.83 min). 9-Ethyl-9H-carbazole-3-carbaldehyde
was purchased from TCI UK (>98% purity by manufacturer). 1-Iodo-
2,2-difluoroethane and 2,2,2-trifluoroethyl p-toluenesulfonate were
purchased from fluorochem. 9H-Carbazole-3-carbaldehyde was
synthesized according to a known procedure.29 Final compounds
that were tested had an LC purity of >95%.

Representative Procedure for the Synthesis of Intermedi-
ates 7 and 8. 9-(2,2-Difluoroethyl)9H-carbazole-3-carbaldehyde
(7). To a suspension of 9H-carbazole-3-carbaldehyde (196 mg, 1
mmol) and Cs2CO3 (652 mg, 2 mmol) in anhydrous DMF (5 mL)
was added 1-iodo-2,2-difluoroethane (172 mg, 2 mmol). The resulting
suspension was stirred under microwave irradiation at 150 °C for 30
min. The suspension was cooled and diluted with H2O (20 mL).
Crude product was extracted with ethyl acetate (EtOAc; 3 × 20 mL).
The organic extracts were washed with brine (3 × 20 mL) and dried
over anhydrous MgSO4. The suspension was filtered and was
concentrated to dryness in vacuo. Crude product was purified by
chromatography on silica gel using dichloromethane (DCM) as an
eluent to yield product as a pale yellow solid, yield 44% (115 mg, 0.44
mmol). 1H NMR (500 MHz, DMSO-d6): δ 10.06 (s, 1H), 8.73 (s,
1H), 8.33−8.17 (m, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.4 Hz,
1H), 7.76−7.66 (m, 1H), 7.60−7.47 (m, 1H), 7.36−7.24 (m, 1H),
6.50 (tt, 2JFH = 54.5 Hz, 3JHH = 3.2 Hz, 1H), 4.97 (td, 3JFH = 16.1 Hz,
3JHH = 3.2 Hz, 2H). 13C NMR (126 MHz, DMSO-d6): δ 192.3, 144.6,
141.7, 129.4, 127.3, 127.2, 124.0, 123.0, 122.8, 121.1, 121.0, 115.1 (t,
1JFC = 241.9 Hz), 110.9, 110.8, 45.0 (t, 2JFC = 24.5 Hz). HRMS-ESI
(m/z) found: 260.0884. Calcd: 260.0881 for [C15H11F2NO+H]

+.

Table 3. Calculated Solvation Energies for DFT-D3
Optimized Carbazoles

carbazole anchora solvation energy (kcal/mol)b

N-ethyl −3.1
N-2-fluoroethyl −5.9
N-2,2-difluoroethyl −4.1
N-2,2,2-trifluoroethyl −3.1

aSubstitution of 9H-carbazole. Structures of DFT-D3 optimized
compounds are shown in Figure S3. bSolvation energies were
calculated from single point calculations of the global minimum
conformation of each compound in Jaguar at the BLYP-D3/6-31G**
level using the SM8 water model.
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9-(2,2,2-Trifluoroethyl)-9H-carbazole-3-carbaldehyde (8). Using
2,2,2-trifluoroethyl p-toluenesulfonate as an electrophile, the reaction
was carried out on a 0.48 mmol scale. Pale yellow solid, yield 50% (68
mg, 0.24 mmol). 1H NMR (500 MHz, DMSO-d6): δ 10.07 (s, 1H),
8.75 (s, 1H), 8.28 (d, J = 8.3 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.90
(d, J = 8.5 Hz, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.61−7.49 (m, 1H),
7.40−7.25 (m, 1H), 5.51 (q, 3JFH = 9.3 Hz, 2H).13C NMR (126 MHz,
DMSO-d6): δ 192.3, 144.2, 141.3, 129.8, 127.5, 127.4, 125.4 (q,

1JFC =
281.8 Hz), 124.0 123.3, 122.9, 121.5, 121.2, 110.9, 110.8, 44.1 (q, 2JFC
= 33.5 Hz). HRMS-ESI (m/z) found: 278.0789. Calcd: 278.0787 for
[C15H10F3NO+H]+.
Representative Procedure for the Synthesis of Compounds

3, 4, 5, and 6. 1-(9-(2,2-Difluoroethyl)-9H-carbazol-3-yl)-N-
methylmethanamine (3). To a solution of 7 (75 mg, 0.29 mmol)
in anhydrous EtOH/DCM (10 mL) was added methylamine
hydrochloride (39 mg, 0.58 mmol), triethylamine (61 μL, 0.44
mmol), and titanium(IV) isopropoxide (172 μL, 0.58 mmol). The
resulting solution was stirred at RT for 18 h before the addition of
sodium borohydride (22 mg, 0.58 mmol). The solution was stirred at
RT for 8 h before pouring into 2 M aqueous ammonia (25 mL). The
suspension was filtered through Celite, and to the filtrate was added
H2O. Crude product was extracted with DCM, dried over anhydrous
K2CO3. The suspension was filtered, and the filtrate was concentrated
in vacuo to yield crude product that was purified by chromatography
on silica gel using DCM/MeOH 9:1 as an eluent to yield the product
as a pale yellow oil, yield 58% (46 mg, 0.16 mmol). 1H NMR (500
MHz, acetonitrile-d3): δ 8.19−8.13 (m, 1H), 8.10 (s, 1H), 7.62−7.56
(m, 1H), 7.56−7.45 (m, 3H), 7.32−7.25 (m, 1H), 6.31 (tt, 2JFH = 55.0
Hz, 3JHH = 3.2 Hz, 1H), 4.76 (td, 3JFH = 15.6 Hz, 3JHH = 3.2 Hz, 2H),
3.89 (s, 2H), 2.43 (s, 3H) (NH missing due to D-H exchange). 13C
NMR (126 MHz, acetonitrile-d3): δ 141.1, 139.9, 132.5, 126.6, 125.9,
122.9, 122.8, 120.1, 119.7, 119.6, 114.8 (t, 1JFC = 241.9 Hz), 109.3,
109.0, 55.7, 44.9 (t, 2JFC = 25.6 Hz), 35.1. LC-MS purity = 96% (UV),
ret. time = 11.01 min. HRMS-ESI (m/z) found: 275.1353. Calcd:
275.1354 for [C16H16F2N2+H]

+.
1-(9-(2,2,2-Trifluoroethyl)-9H-carbazol-3-yl)-N-methylmethan-

amine (4). The reaction was carried out on a 0.31 mmol scale. The
product was isolated as a pale yellow solid, yield 40% (37 mg, 0.12
mmol). 1H NMR (500 MHz, acetonitrile-d3): δ 8.20−8.14 (m, 1H),
8.12 (s, 1H), 7.64−7.58 (m, 1H), 7.58−7.47 (m, 3H), 7.36−7.28 (m,
1H), 5.07 (q, 3JFH = 9.1 Hz, 2H), 3.89 (s, 2H), 2.43 (s, 3H) (NH
missing due to D-H exchange). 13C NMR (126 MHz, DMSO-d6)
140.9, 140.2, 128.3, 127.7, 126.6, 126.1 (q, 1JFC = 281.2 Hz), 122.9
122.8, 121.3, 120.6, 120.5, 110.4, 110.1, 53.9, 44.0 (q, 2JFC = 33.4 Hz),
34.2. LC-MS purity = 97% (UV), ret. time = 11.55 min. HRMS-ESI
(m/z) found: 293.1259. Calculated: 293.1260 for [C16H15F3N2+H]

+.
1-(9-Ethyl-9H-carbazol-3-yl)-N,N-dimethylmethanamine (5). The

reaction was carried out on a 0.44 mmol scale. The product was
isolated as a white solid, yield 82% (91 mg, 0.36 mmol). 1H NMR
(500 MHz, chloroform-d): δ 8.14−8.10 (m, 1H), 8.06 (s, 1H), 7.51−
7.34 (m, 4H), 7.26−7.20 (m, 1H), 4.37 (q, J = 7.2 Hz, 2H), 3.64 (s,
2H), 2.33 (s, 5H), 1.45 (t, J = 7.2 Hz, 3H). 13C NMR (126 MHz,
chloroform-d): δ 140.28, 139.3, 129.3, 127.1, 125.5, 122.9 (2C −
quaternary), 121.0, 120.4, 118.7, 108.4, 108.1, 64.7, 45.3 (2C), 37.5,
13.8. LC-MS purity 97% (UV), ret. time = 11.36 min. HRMS-ESI (m/
z) found: 208.1120. Calculated: 208.1121 for [C15H14N]

+ (loss of
NMe2).
1-(9-(2,2,2-Trifluoroethyl)-9H-carbazol-3-yl)-N,N-dimethylme-

thanamine (6). The reaction is carried out on a 0.10 mmol scale. The
product was isolated as a white solid, yield 56% (17 mg, 0.05 mmol).
1H NMR (500 MHz, chloroform-d): δ 8.04−8.00 (m, 1H), 7.99 (s,
1H), 7.45−7.39 (m, 2H), 7.37−7.29 (m, 2H), 7.27−7.20 (m, 1H),
4.73 (q, 3JFH = 8.7 Hz, 2H), 3.62 (s, 2H), 2.28 (s, 6H). 13C NMR (126
MHz, chloroform-d): δ 140.9, 140.1, 129.8, 127.8, 126.4, 124.3 (q, 1JFC
= 281.5 Hz), 123.6, 123.4, 121.3, 120.6, 120.4, 108.7, 108.5, 45.3 (q,
2JFC = 35.7 Hz), 44.9 (2C). LC-MS purity >99% (UV), ret. time =
11.68 min. HRMS-ESI (m/z) found: 307.1419, Calcd: 307.1417 for
[C16H17F3N2+H]

+.
1-(9-Carbazol-3-yl)-N,N-dimethylmethanamine (9). To a solution

of 9H-carbazol-3-carbaldehyde (45 mg, 0.26 mmol) in anhydrous

THF (5 mL) was added dimethylamine (130 μL, 2.0 M solution in
THF, 0.26 mmol) and acetic acid (12 μL, 0.26 mmol). Sodium
triacetoxyborohydride (80 mg, 0.39 mmol) was added, and the
resulting solution was stirred for 18 h. Solvent was removed under
reduced pressure, and to the residue was added DCM and H2O. The
solution was filtered through a hydrophobic frit, and the filtrate was
concentrated in vacuo to yield crude product, which was purified by
chromatography on silica gel (using DCM/MeOH 9/1 as an eluent)
to yield product as a pale yellow solid, yield 88% (51 mg, 0.22 mmol).
1H NMR (500 MHz, chloroform-d): δ 8.59 (s, 1H), 8.09−8.03 (m,
1H), 8.02 (s, 1H), 7.46−7.38 (m, 3H), 7.38−7.33 (m, 1H), 7.25−7.18
(m, 1H), 3.77 (s, 2H), 2.40 (s, 6H).13C NMR (126 MHz, chloroform-
d): δ 139.9, 139.2, 127.5, 126.8, 125.9, 123.3, 123.0, 121.4, 120.3,
119.4, 110.7, 110.6, 63.9, 44.2 (2C). HRMS-ESI (m/z) found:
180.0805. Calculated: 180.0808 for [C13H10N]

+ (loss of NMe2).
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