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What is the relationship between
visual environment and the form
of ant learning-walks? An in silico
investigation of insect navigation

Alex DM Dewar1, Andrew Philippides2 and Paul Graham1

Abstract
The learning walks of ants are an excellent opportunity to study the interaction between brain, body and environment
from which adaptive behaviour emerges. Learning walks are a behaviour with the specific function of storing visual infor-
mation around a goal in order to simplify the computational problem of visual homing, that is, navigation back to a goal.
However, it is not known at present why learning walks take the stereotypical shapes they do. Here we investigate how
learning-walk form, visual surroundings and the interaction between the two affect homing performance in a range of vir-
tual worlds when using a simple view-based homing algorithm. We show that the ideal form for a learning walk is envi-
ronment-specific. We also demonstrate that the distant panorama and small objects at an intermediate distance,
particularly when the panorama is obscured, are important aspects of the visual environment both when determining
the ideal learning walk and when using stored views to navigate. Implications are discussed in the context of behavioural
research into the learning walks of ants.

Keywords
Insect navigation, learning walks, view-based homing, visual navigation in ants

1 Introduction

The ability to navigate between important locations is
found in almost all mobile organisms, and, because it is
so widespread, navigation provides a valuable bench-
mark for understanding general principles of cognitive
organization across taxa (e.g. Cheng, 2010). For a
researcher, navigational behaviours are particularly
amenable to study. There is a clearly defined aim (i.e.
‘move towards the goal’) and animals’ internal ‘state’ is
evident in directions of motion. This close link between
control system, body, behaviour and world sits well with
the ‘embodied’ view of cognition, where body, brain and
environment are treated as a single system, with beha-
viour as an emergent property (Brooks, 1999; Pfeifer &
Scheir, 1999). Thus, even apparently complex cognitive
systems can often be reduced to a set of simple, task-
specific competencies (Brooks, 1999). Indeed, such a basic
‘toolkit’ of abilities is thought to underlie navigation in
ants (see Wehner, 2008). Here we leverage the complete-
ness of the ant navigation model to investigate the rela-
tionship between visual homing and active learning.

Visual homing, which is employed by many species
(Wang & Spelke, 2002; Wiener et al., 2011), involves an

agent storing knowledge of how the world appears from
a goal location so that future returns can be guided by
comparisons between the current view and the stored
view(s). How these stored views are learned initially is
poorly understood (reviews: Collett, Graham, Harris, &
Hempel de Ibarra, 2006; Zeil, 2011), though in insects,
learning is thought to take place mostly during the
stereotypical orientation behaviours performed on leav-
ing the nest or a food-source (Collett, 1995; Collett &
Lehrer, 1993; Jander, 1997; Zeil, 1993a, 1993b); in ants
these are known as ‘learning walks’. The first time an
ant leaves the nest or food-source is when she will spend
longest performing her learning walk; the duration
declines thereafter (Graham & Collett, 2006; Nicholson,
Judd, Cartwright, & Collett, 1999; Wehner, Meier, &
Zollikofer, 2004). A large change in the visual
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surroundings, as with the introduction of a prominent
new object, results in a resurgence of these behaviours
(Müller & Wehner, 2010). During learning walks and
flights, it is not known whether learning takes place con-
tinuously or at discrete points (Collett & Lehrer, 1993),
though the latter is suggested by the presence of multi-
ple discrete points within a learning walk where the ant
faces the nest, something which is seen in the learning
walks of multiple species. For instance, Ocymyrmex
robustior ants intermittently pause and turn to face the
(invisible) nest entrance during their learning walks
(Müller & Wehner, 2010). We know that these learning
behaviours are almost certainly tailored to the sur-
roundings (Wystrach, personal communication, 4
November 2013; see also Wei & Dyer, 2009; Wei,
Rafalko, & Dyer, 2002), although the details are not
known. Here, we are interested in the theoretical ques-
tion of whether there are optimal places to store discrete
nest-oriented views and how this depends on visual
environment.

In order to understand how learning walks provide
suitable visual information, we need to understand how
visual information can be used for homing. The mechan-
isms underlying visual homing can be simple. For
instance, view-based navigation (i.e. navigation to the
location where a single view was stored) can be carried
out by performing gradient descent on the output of a
basic image difference function (IDF) between the stored
goal view and aligned views from nearby locations
(Philippides, Baddeley, Cheng, & Graham, 2011; Zeil,
Hofmann, & Chahl, 2003), as, even in natural scenes,
image difference increases smoothly with distance (Zeil et
al., 2003). An alternative strategy is to use a stored view
to recall a heading, by making comparisons between the
goal views and the current view at all possible rotations,
then heading in the direction for which the difference is at
a minimum: this is the rotational image difference func-
tion (RIDF) (Philippides et al., 2011; Wystrach, Mangan,
Philippides, & Graham, 2013; Zeil et al., 2003). With the
RIDF, combining the information from multiple views
into a single heading is computationally simple (e.g. with
a weighted average), making it more appropriate for
modelling learning walks with multiple ‘nest saccades’,
such as those in Müller and Wehner (2010). Moreover,
the types of movement required by the RIDF algorithm
(forward locomotion and sampling multiple directional
views) match up well with the ways in which ants move
while navigating. A forager can sample the world over a
range of directions either by stopping and turning on the
spot, before heading in a new direction (Philippides et al.,
2011; Wystrach, Philippides, Cheng, & Graham, sub-
mitted) or as a by-product of her typically sinuous path
(Lent, Graham, & Collett, in press). Evidence is mount-
ing that such scanning is a mechanism for obtaining a
heading based on visual information and is accordingly
performed far more frequently by ants placed in unfami-
liar environments.

We investigated learning walks with a series of in
silico experiments examining the relationship between
the locations where visual information is acquired and
subsequent homing success. The aims of this study are,
first, to ask what distinguishes a ‘good’ from a ‘bad’
learning walk, as defined by how easy or difficult it ren-
ders subsequent homing efforts, and, second, to better
understand the interaction between learning walks and
environment. In this way we will shed light on the navi-
gational strategies used by ants in practice.

2 Methods

2.1 Virtual reality system

The virtual reality (VR) system we use is the same as
that presented in Baddeley, Graham, Husbands, and
Philippides (2012). Briefly, the generated environments,
or ‘worlds’, are designed to resemble the visually sparse,
semi-arid habitat of Melophorus bagoti and so consist
of a random assortment of tussocks, bushes and trees
(Figure 1A). Matlab� (MathWorks, Natick, MA,
USA) is used throughout, both to generate the worlds
and to perform testing and analysis.

Views recorded from worlds are panoramic, as is
(almost) the case for real ants’ eyes, covering 360� in azi-
muth and 68� in elevation. Acuity is reduced to an ‘ant
level’ by local averaging so that each pixel is equivalent to
4� of visual angle (Schwarz, Narendra, & Zeil, 2011;
Zollikofer, Wehner, & Fukushi, 1995). The visual ‘objects’
(tussocks, bushes and trees) are generated from sets of
pre-defined triangles in random configurations. They are
also subject to random rotation and reflection. Both their
relative size and distribution within worlds are roughly to
scale; accordingly, we describe distances in this paper in
terms of metres. The tussocks are rendered in 3d, whereas
distant bushes and trees were 2d objects placed in the 3d
world as they were sufficiently far from the portion of the
world where testing was performed that full 3d was redun-
dant. All the images we use are greyscale.

In all worlds, the centre (0, 0) is the ‘nest entrance’
or goal. The ‘far object-band’, a random assortment of
bushes and trees, begins at a radius of 12 m from the
nest entrance. The number of such objects varies ran-
domly: for each of 99 iterations of a loop there was a
probability of 0.5 for whether the object was placed or
not. Tussocks are placed within the 12 m radius.
Although their exact placement varies between experi-
ments, they are never placed within 3 m of the nest
entrance (Figure 1C). For each world we use images
from a grid of 9845 positions, xj, which correspond to
locations ;6 cm apart within a radius of 3 m.

2.2 Navigation algorithm

2.2.1 From image differences to a new heading. Any two
images can be compared with an IDF in order to obtain
a measure for the degree of difference. The IDF here is
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r.m.s. pixel difference (Zeil et al., 2003), chosen for its
simplicity. Other possibilities, such as mutual informa-

tion (Kim, Szenher, & Webb, 2009), exist but had a neg-

ligible difference on results when tested (presumably

because our images have uniform contrast).
For a position x1 at rotation f in world W , the view

will be V (W , x1,f), with the pixel in column m and row
n denoted as V (W , x1,f)m, n. The r.m.s. image difference
between two views is:

d(W , x1,f, x2, u)=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPw
m= 1

Ph
n= 1

(V (W , x1,f)m, n � V (W , x2, u)m, n)
2

wh

vuuut
ð1Þ

where w is image width (here: 90 px) and h is image
height (here: 17 px).

Figure 1. One example world, from various perspectives, with homing performance shown for a particular SVP. A: Example world.
B: Panoramic views from the centre of the world. High resolution (top); resolution at a level comparable to that of an ant’s eye, as
used in the homing algorithm (bottom). C: Bird’s-eye view of the centre portion of the world. Outside of the outermost circle is the
far object-band (not shown). The nest entrance is denoted with a cross in the centre and possible snapshot positions are indicated
by dots. D: An example of successful homing within the world. The SVP used is indicated by the × s and the + in the centre
indicates the nest entrance.
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For each world, views from 24 different positions
(si) facing the nest entrance are set as potential snap-
shots. These view positions are arranged on a radial
grid centred on the nest, at three different radii (0.5 m,
1 m and 1.5 m) and eight different (evenly spaced)
angles (Figure 1C). A set of view positions (SVP) uses
four of the possible 24, with the further constraint that
only one view can be on each radial arm of the grid.
This gives a total of 5670 potential SVPs. The choice of
four stored views follows preliminary tests that showed
that homing performance plateaus with increasing
number of views after four, and aligns with Graham,
Philippides, and Baddeley (2010).

To get a heading from a stored view, at position si,
we use the RIDF (Philippides et al., 2011; Zeil et al.,
2003), which involves making multiple IDF comparisons
between the stored and current views with the current
view rotated incrementally through 360�. This yields a
range of difference values, with the angle at which the
minimum occurs indicating the best-matching direction:

r(W , si,x)= min
u

d(W , si, x, u) ð2Þ

ĥ(W , si, x)= argmin
u

d(W , si, x, u) ð3Þ

where u 2 48, 88, . . . , 3608f g, r(W , si, x) is the RIDF
minimum value and ĥ(W , si, x) is the corresponding
heading. Note that we lose the dependency on f as
stored views are always oriented toward the nest.

To use an SVP S for homing, RIDFs comparing the
current view V (W , xj, u) with each of the snapshot
views, at position si, are calculated giving r(W , si, xj)
and ĥ(W , si, xj) for each si 2 S. The four headings
ĥ(W , si, xj), each an estimate of the direction to the
nest, are then combined by weighting items by their
‘goodness of match’, wi, where

rmin(W , S, xj)= min
si2S

r(W , si, xj)

w(W , S, si, xj)=
rmin(W , S, xj)

r(W , si, xj)

Hence, by definition, a weight of one is given to the
best-matching view, with other views’ contributions to
the heading weighted according to their ‘goodness of
match’ relative to this benchmark. The weighted circu-
lar mean is then calculated as follows (circular statistics
toolbox for Matlab: Berens, 2009):

Ĥ(W , S,xj)= arg
P
si2S

w(W , S, si,xj) � exp (ĥ(W , si, xj) � i)
 !

where i is the imaginary unit. Other combinations of
weightings were trialled with no qualitative effects on
results.

2.3 Calculating the error on the homeward component

A measure commonly used for determining perfor-
mance on a homing task is the average homeward

component (AHC; see Batschelet, 1981), which varies
from zero, for an estimated heading 5908 from the
true heading, to one, for a completely accurate esti-
mated heading. Here, so as to have an error rather than
a performance measure, we use a slight variant, the
error on the homeward cmponent (EHC), which we
define as one minus the AHC. Hence, the error
E(W , S, xj) at a given position in the world xj for a
heading Ĥ(S, xj) is

e(W , S, xj)= jĤ(W , S, xj)� H(xj)j ð4Þ

E(W , S, xj)=

1� cos (e(W , S, xj)) for e(W , S, xj)\908

1 for e(W , S, xj)5908

�
ð5Þ

where e(W , S, xj) is the angular difference between esti-
mated heading, Ĥ(W , S, xj), and the true heading to the
nest, H(xj). This measure accordingly gives 04E(W ,
S, xj)\1 when e(W , S, xj)\908, and E(W , S, xj)= 1 oth-
erwise. The value in doing this is that all ‘bad’ headings
(i.e. those pointing away from the goal) are given a
value of one, and we then distinguish only between
‘good’ headings.

The mean error over all positions xj for a set of SVP
P in a world W is then

�E(W ,P)=
1

9845 � jPj
X
S2P

X9845

j= 1

E(W , S, xj) ð6Þ

2.4 Experiments

2.4.1 Initial experiments. Ten randomly generated
worlds were used for the initial experiments. In these
worlds, there were six tussocks in the near object-band
and 40 in the intermediate object-band. Placement in
the near object-band was pseudo-random: the experi-
menter selected from among random configurations
ones where the tussocks were relatively evenly spaced
around the nest entrance. This was done to avoid gen-
erating unrealistically asymmetric environments that
might lead to a strong directional bias. The tussocks in
the intermediate object-band were placed completely at
random. The far object-band contained 2d objects as
described in Section 2.1.

2.4.2 Varying the environment. The purpose of these
experiments was to investigate the relationship between
components of the world, SVPs and homing perfor-
mance. To this end, we divided worlds into three
‘object-bands’ (near: 3–6 m, intermediate: 6–12 m and
far: .12m) with different ‘types’ of cue. The near
object-band contained one large tussock (height =
1.11 m) and the far object-band contained the horizon
as before. In order to observe the effect of changing the
‘level of clutter’, we generated eight intermediate

4 Adaptive Behavior
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object-bands that varied in number of tussocks (0, 33,
54, 75, 96, 117, 138 or 159; Mheight = 0:550, SDheight =
0:323). To see the effect of objects in each object-band,
we compared worlds in which objects in one band were
rotated at angles of 0�, 90�, 180� and 270�. By choosing
worlds that differ only in the rotation of one object-
band, we can effectively ‘pit’ that band against the
other two.

The logic of these experiments is perhaps best illu-
strated with an example. Imagine we have worlds A, B

and C, with B differing from A only in that the near
object-band is rotated by +90� and C differing from A

only in that the intermediate and far object-bands are
rotated by –90�. If we have the set of the 100 ‘best’ SVPs
for A, G, the mean homing error for G in A is �E(A,G)
(equation (6)). The change in error when the near band
is rotated is then given by eN = �E(A,G)� �E(B,G), and
when both the intermediate and far object-bands are
rotated, by eI&F = �E(A,G)� �E(C,G). Based on which
of the error changes is greater for these two conditions,
we can see whether the near object-band contributes
more to which SVPs perform best than the intermediate
and far object-bands combined (i.e. eN.eI&F) or vice
versa (eI&F.eN).

2.4.3 Descriptive measures for SVPs. To analyse perfor-
mance as a function of SVP, we used a number of sim-
ple measures.

Spread of stored views. For an SVP S the spread of
stored views §(S) is

§(S)=

P
si2S

P
sj 6¼si

jjsi � sjjj

n(n� 1)

where n is the number of stored views in the SVP (four
in our case) and si is the coordinates of the ith view in S.

View dissimilarity. This is the mean of the r.m.s. differ-
ences between each of the images in the SVP,

D(W , S)=

P
si2S

P
sj 6¼si

d(W , si, 0, sj, 0)

n(n� 1)

where n is the number of stored views and
d(W , si, 0,W , sj, 0) is the r.m.s. difference (equation (1))
between the stored views at si and sj in a world W .

Nest distance. This is the median distance of the stored
views from the nest entrance.

‘Surroundedness’. This is the circular standard devia-
tion (Batschelet, 1981) of the angles of the view posi-
tions, si, in the SVP relative to the nest. An SVP where
the nest entrance has views distributed all around it will

score higher than one where the views are closer
together.

‘Oppositeness’. This was defined as the number of pairs
of stored views that were in line with each other and
with the nest entrance; in other words, a straight line
could be drawn connecting these three points. As four
stored views were used in each SVP and only one can
be on each radial arm, this means the possible values
for this measure are zero, one and two.

3 Results

The aim of this study is to investigate what comprises a
‘good’ learning walk and to ask how this relates to the
visual environment. The ultimate goal is to better
understand what visual-homing strategies are used by
ants. To do this, we implemented a simple, biologically
plausible visual-homing method in VR worlds. We
experimented with sets of views, asking how good a
given set of views is for homing from locations through-
out the environment. We also looked at how the visual
surroundings affect the optimal placement of views. As
we are investigating the form of learning walks, we care
about where views are taken relative to the nest
entrance, and we have dubbed this information a ‘set of
view positions’. Note that the term refers only to view
locations: the same SVP in two different worlds will
contain different images as each world looks different.

3.1 Natural image statistics of artificial worlds

We first verified that the image data drawn from these
virtual worlds were qualitatively similar to ‘real-world’
data. Graphs of IDFs (Figure 2A,C) and RIDFs
(Figure 2B,D) were found to resemble those generated
from natural images (Philippides et al., 2011; Zeil et al.,
2003). Specifically, there are smooth gradients in image
difference as one moves away from the location of a
goal image. The IDFs also give ‘catchment areas’, gen-
erally for several metres around the goal, within which
an agent would always be able to return to the goal.
Also, the goal image can be compared to rotated ver-
sions of images at other locations in order to recapture
the orientation at the goal image over similar distances.
Information from multiple locations can then be used
to navigate back to the goal (Section 2; Figure 1D).
This suggests we have a meaningful simulation and
homing algorithm for investigating how learning walks
depend on visual environment.

3.2 Are SVPs world-specific?

After verifying that a biologically plausible and parsi-
monious algorithm produces reliable homing in our
environments (Figures 1 to 3), we turned to the ques-
tion of how optimal view locations (SVPs) relate to

Dewar et al. 5
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visual environment. For two worlds we compared SVPs
ranked by mean error (equation (6)). We found that,
whilst an SVP that performed well in one world would
not necessarily perform well in another, some SVPs per-
formed reasonably well across worlds, albeit with much
variability. This is shown in Figure 3, where homing
success (defined as e\458) is indicated by light grey and
failure by dark grey. It can be seen that an SVP, a, that
performs well in World #1 (Figure 3A) does not per-
form well in World #2 (Figure 3C). A second SVP, b,

however, performs poorly in World #1 (Figure 3B) but
well in World #2 (Figure 3D). Note that placement of
tussocks influences what regions of the world the agent
is able to home from successfully: in cases where tus-
socks are directly in between the location and the nest
entrance, performance is often poorer. We show that
ranks are significantly different (ranks for SVPs in
World #1 vs ranks in World #2: Figure 3E). As well as
these specific examples (Worlds #1 and #2, SVPs a and
b), we also compared ranks for all SVPs across 10 test
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Figure 2. A comparison of IDF and RIDF minimum surfaces for two different worlds. A and B represent one world; C and D,
another more complex world. The goal view was from the nest entrance in each of the worlds, that is, (0, 0). As the RIDF is the
best match for all rotations, at any given point in space the score will be less than or equal to that for the IDF (i.e. with no rotation).
Note that the RIDF graphs indicate the quality of the best match and not the best-matching direction. The best directions, however,
were almost always within a few degrees of the orientation of the reference view, supporting the use of the visual compass for
homing. For B, almost all headings aligned with the reference image (i.e. to 0�; mean error = 12.1�; SD= 30:3�), although for D there
was more scatter (mean error = 69.9�; SD= 49:5�), presumably owing to the greater complexity of the environment.
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Figure 3. Is there an ideal SVP for all worlds? A–D: ‘Success/fail’ plots (success: light grey; fail: dark grey) for a range of locations in
two worlds using two SVPs. Homing was deemed successful for locations where heading error was less than or equal to 45�. A and B
are the results for one world; C and D are the results for another. The same SVP was used in A and C, and another was used in B and
D. The positions of views are shown in white, and those of tussocks in black. E: error vs rank for World #1 (line; A and B) and the
error for the same SVP in World #2 (dots; C and D). The positions on the graph for the different ‘tests’ (A–D) are labelled. Inset is a
scatter plot of how the rank of SVP differs between the two worlds. The difference in median ranks of SVPs between worlds was
significant: Friedman test, w2 (9, N = 51022) = 61:26, p < 10�9. Kendall’s W was 0.59, indicating strong differences between worlds.

Dewar et al. 7
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worlds (Section 2.4.1). This indicates that SVP perfor-
mance depends on the environment to some extent.

An interesting side point is that we can also see
patches of unsuccessful homing centred on the nest
entrance, which might seem counterintuitive. The prob-
lem is that once the agent is closer to the nest entrance
than the view positions, all views will give a good
match and the algorithm will not give a clear heading.
Of course, this would not be an issue for ‘real’ ants, as
close to the nest entrance other cues, such as conspeci-
fics or carbon dioxide emanating from the nest
(Buehlmann, Hansson, & Knaden, 2012), can be used,
with systematic search as a fallback (e.g. Wehner &
Srinivasan, 1981). We make no claim that visually
guided homing alone suffices for navigation, although
it is certainly a, if not the, critical part of the ant’s navi-
gational repertoire (Cheng, Narendra, Sommer, &
Wehner, 2009; Wehner, 2008).

We have shown that SVP success can be affected by
the visual environment, although it seems intuitively
sensible that there will be properties of SVPs that make
them more likely to be successful, regardless of the
visual environment; this is examined in the next section.

3.3 Properties of SVPs which perform well across worlds

To investigate how the form of SVPs relates to perfor-
mance, we categorized SVPs with the measures
described in Section 2.4.3. The aim was to test our

intuitions about what properties of an SVP might best
facilitate homing. We initially investigated whether
high-performing SVPs were frequently just rotated ver-
sions of one another, but this was not borne out
(Monte Carlo simulation; data not shown). This sug-
gests that the measures that best predict SVP perfor-
mance will likely relate to the broad rather than the
fine structure of SVPs.

The first property we examined was what we termed
‘spread of views’, or mean Euclidean distance between
views (Figure 4A). One might expect that the best per-
formance would be obtained from SVPs with more
separated views, presumably giving a greater range of
information about the environment; indeed, there was
a clear trend in this direction. There is a similar pattern
for ‘view dissimilarity’ (Figure 4B), a measure that
should correlate strongly with spread of views. We next
looked at ‘surroundedness’, or azimuthal spacing of
view positions (Figure 4E). It might also be expected
that SVPs that are more angularly spaced will also per-
form better, and, although the most spread-out group
(S(SVP)=81:038) had a markedly lower mean error
than the others (;25% less), the others did not differ
from one another. Another, similar, measure is median
distance of view positions from the nest (‘nest dis-
tance’). By the same reasoning as before, it seems plau-
sible that an SVP with views further from the nest
entrance will perform better. Yet there was only a very
slight effect for nest distance (Figure 4D), with less

Figure 4. How does the form of an SVP relate to performance? For SVPs we looked at how their mean error (EHC) varied as a
function of the descriptive measures described in Section 2.4.3. A–E: SVP performance versus ‘spread of views’, ‘view dissimilarity’,
‘oppositeness’, ‘nest distance’ and ‘surroundedness’, respectively; N(worlds)= 10; N(SVP)= 5670. Error bars indicate standard error.
Data in A and B are grouped into five unevenly sized bins because of uneven distribution of possible values for the measures.
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than 2% difference in mean error between the nearest
and furthest groups. However, we note that in ants, the
mechanism for orienting toward the nest is likely to be
path integration and thus have an error dependent on
distance. Among these similar measures, ‘spread of
views’ seems the most useful. Another measure investi-
gated is what we called ‘oppositeness’ (Figure 4C), or
the number of pairs of views that are opposite each
other (with the nest entrance in the middle); this one is
perhaps slightly less intuitive but was found to be a reli-
able predictor of homing success. As we are using four
views, the possible values are zero, one and two. For
oppositeness (Figure 4C), there was only a 1% differ-
ence between mean error scores for SVPs with zero or
one pairs of ‘opposite’ views, but a ;27% improve-
ment in error scores between one and two pairs.

Of course, these measures are not independent of
one another: views with a large angular distance
between them are likely to be further apart in Euclidean
space, too. The extremes of performance for different
measures are probably being driven by many of the
same SVPs. The purpose, then, of this section is not an
exhaustive investigation of SVP properties, but rather
an examination of whether there are any simple, easy-
to-calculate measures that are predictive of the homing
success for a given SVP.

Overall, our various measures show that views should
be spread around the nest, though, interestingly, the dis-
tance of the views from the nest is not too important.

3.4 What aspects of a world ‘resonate’ with
particular SVPs?

3.4.1 Comparing SVPs between worlds. We have shown
above that how an SVP performs is partly determined
by its form, independently of the world in which it
finds itself, although the structure of the world is also
important. We next examine which parts of visual
worlds affect the performance of SVPs. To do this, we
defined three different ‘object-bands’, which together
describe the worlds used in this set of experiments: the
near object-band, comprised of a single, large tussock,
which from the nest entrance always appeared higher
than the horizon; the intermediate object-band, con-
taining small tussocks; and the far object-band, which
contained 2d bushes and trees (Section 2.4.1). Another
manipulation involved varying the number of tussocks
in the intermediate object-band (in eight even levels,
04N 4 159); we call this ‘level of clutter’. Each
object-band could be rotated independently of the oth-
ers or removed entirely. We generated worlds for all
combinations of clutter level and object-band rotations.
Comparisons between relevant worlds were then used
to estimate the relative contribution of each object-
band to determining which SVPs perform well in that
world.

As an aside, we should explain why, with an agent
that does not segregate its visual environment, we feel
it necessary to run trials in worlds which we have our-
selves divided into ‘object-bands’. This division is sim-
ply so that we can ask how the homing mediated by
particular SVPs is impacted by certain large-scale
alterations to the environment. Of course, from the per-
spective of the algorithm, there is no division between
object-bands and none contributes to homing perfor-
mance independently of the others; for us, views are an
undifferentiated mass of pixels, not a set of extracted
and labelled visual features.

The aim of these experiments was to see what effect
changes to the visual environment have on which SVPs
perform well. To do this we took the 100 best-
performing SVPs for a ‘reference world’ and assessed
how their performance changed with the rotation of
one or two object-bands. There were four trials for
each condition (a rotation of 0�, 90�, 180� or 270�) with
the 100 SVPs changing depending on which performed
best in the relevant reference world. Small changes in
error indicate that the SVPs are not markedly better
suited to the reference world or test world and so sug-
gest that similar learning walks would be effective in
both and that the visual environment is not so impor-
tant in determining which SVPs perform well. When
the score changes, however, we can compare the
changes in mean error between test worlds where one
(‘Rotate 1’) or two (‘Rotate 2’) object-bands are
rotated to see which properties of the environment
‘resonate’ with the well-performing SVPs. Note that we
are looking at view positions (SVPs) not view images
(to which we turn in the next section).

We first compared the effect of rotating the far
object-band with that of rotating the near and inter-
mediate object-bands together (Figure 5A). Which of
the error changes is more, when rotating the far
(‘Rotate 1’) or intermediate and near object-bands
(‘Rotate 2’), indicates which of these rotations has the
greatest effect on homing performance for the best-
performing SVPs. An error change of zero would indi-
cate that the SVPs perform equally well in reference
and test worlds, or, in other words, that as ‘strategies’
they are as viable in either world and thus that there is
no value in tailoring a learning walk to the object-
band(s) under examination. As shown in Figure 5, the
error change was significantly less when rotating the
near and intermediate object-bands than the far object-
band, which shows that the far object-band is more
important in determining the SVPs that were good for
the reference world. This is presumably because the far
object-band is the furthest away and therefore less sub-
ject to visual translation, making it a reliable cue over
space.

Next we compared the near with the intermediate
and far object-bands together (Figure 5B). If rotation
of the near object-band had a greater effect than
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rotation of the intermediate and far object-bands on
the performance of the best-performing SVPs, we
would expect a greater error change for the ‘Rotate 1’
than the ‘Rotate 2’ condition. However, the opposite
was observed, indicating that the intermediate and far
object-bands together are a significantly bigger deter-
minant of which SVPs perform best.

We then compared the intermediate with the near
and far object-bands together (Figure 5C). We would
expect a greater error change when rotating the inter-
mediate object-band (‘Rotate 1’) than the near and far
object-bands (‘Rotate 2’) if the intermediate is
more important. This is indeed what was observed,
indicating the greater importance of the intermediate
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Figure 5. How is SVP performance influenced by changes to the visual environment? The 100 best SVPs for a ‘reference world’
were implemented in new versions of the world with one band of visual objects rotated or removed; we analysed SVP performance
when aligned with the focal object-band or aligned with the other two object-bands. Bar charts show the change in mean error
score (EHC), where a positive value represents a decrease in performance. The analysis was performed for seven levels of clutter in
the middle band of landmarks, shown from white (low clutter) to black (high clutter). A–C: the focal visual object-bands were far
(A), near (B) and intermediate (C). For a given level of clutter, changes in mean error are reported for three conditions: Rotate 1
(1); Rotate 2 (2) or Absent (–), where Rotate 1 means that SVP stay aligned with the focal object-band, Rotate 2 means SVP are
aligned with the other two object-bands, and Absent means that the focal object-band is removed. A: Rotate 1 has higher error than
Rotate 2 (sign test; 8/8; p< 0:005); Rotate 2 has a higher error than Absent (sign test; 7/8; p< 0:01). B: Rotate 2 has higher error
than Rotate 1 (sign test; 8/8; p< 0:005); Rotate 1 has a higher error than Absent (sign test; 7/8; p< 0:01). C: Rotate 1 has higher
error than Rotate 2 (sign test; 8/8; p< 0:005); Rotate 2 has a higher error than Absent (sign test; 7/8; p< 0:01).
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object-band in determining optimal SVPs. This is per-
haps surprising given that the intermediate object-band
is comprised solely of small tussocks which might be
thought to act as ‘clutter’, acting only to obscure infor-
mation in the far object-band; however, this result
shows that sufficient information is discernible from
these small tussocks for reliable homing.

To examine this further, we looked at the effect of
removing object-bands completely (‘Absent’) on the
best-performing SVPs. This is because the previous
manipulations (the rotations) in effect change the world
in two ways: the object-band being rotated has been
removed from its original location and it has been
placed in a new one. Hence, it is not surprising that in
all three sets of experiments the ‘Absent’ condition had
a significantly lower error change than both the ‘Rotate
1’ and the ‘Rotate 2’ conditions, with one exception: the
‘near vs ...’ trials with no clutter (clutter level 0). For
this latter case, the error change was greater instead,
presumably because, without the far object-band or the
intermediate object-band, the homing is driven solely
by the near object-band, which covers only a small por-
tion of the visual field, so giving a high level of visual
mismatch. The influence of removing an object-band is
particularly pronounced for the ‘intermediate vs ...’
trials, where removal of the intermediate band led to a
decrease in error, reflecting better homing without than
with the intermediate object-band. Yet we also know
that the intermediate object-band is important, as
shown by the rotation trials. This indicates that the far
object-band is the most reliable cue, but if it is obscured
by the intermediate object-band this in turn becomes
the most important.

Lastly, we varied the ‘level of clutter’ in order to see
if the increase in number of objects, with a concomitant
decrease in the visibility of the distant panorama,
affects the direction of these trends or homing perfor-
mance generally. It appears not to have a big impact
on the direction of trends, although the mean error for
the reference world did increase with increasing levels
of clutter (data not shown), intuitively suggesting that
high-clutter environments are more difficult to navigate
within.

Thus, the far and intermediate object-bands have a
substantial effect, whereas, perhaps counterintuitively,
a prominent nearby object does not. Note that this does
not imply that the near object-band necessarily contains
no useful information; simply that SVPs should be tai-
lored to the intermediate and far object-bands, but not
the nearby object. We next turn to the question of what
happens to homing performance when object-bands are
rotated after views have been learned from the unro-
tated world.

3.4.2 Comparing sets of view images between worlds. In the
previous section we investigated how SVP performance

varies between worlds differing along certain specific
parameters. Note that it was the set of positions and
not the image content of views being investigated; the
same SVP contains different images in different worlds
(as the worlds look different). We next looked at what
happens if the image content of views is conserved
between reference and test worlds; in other words, we
looked at sets of view images (SVIs) rather than SVPs.
The ‘real-world’ analogue of these experiments would
be observing the effect on an experienced forager’s
homing after the environment is suddenly altered.

These experiments were mostly of the same form as
those in the previous section, but with one crucial dif-
ference: whereas previously the same SVPs were used
across worlds, but with the SVIs varying (i.e. because
each world looks different), here, the same SVIs, drawn
from the reference world, were used throughout. This
enables us to investigate whether specific view sets are
robust to large changes in the visual world. In this
instance, the 100 best-performing SVPs from the refer-
ence world were used as the baseline.

For this analysis the pattern of results was similar to
the SVP experiments (Figure 5) for the ‘far vs ...’ and
‘intermediate vs ...’ conditions (Figure 6A,C), but was
in the opposite direction for the ‘near vs ...’ conditions
(Figure 6B): in other words, there was greater increase
in error for ‘Rotate 1’ than ‘Rotate 2’. Though the
intermediate object-band ‘wins out’ from among these
pairwise comparisons, the far object-band is still impor-
tant, as indicated by the relatively greater error changes
for ‘Rotate 1’ in the ‘far vs ...’ compared with ‘Rotate 1’
in the ‘intermediate vs ...’ conditions. Hence, for this set
of experiments, as before, it is the movement of objects
at intermediate and far distances that have the greatest
effect on homing performance. However, there is also a
(slight) effect for the near object-band, indicating that
moving prominent nearby objects will substantially
impact upon homing performance. This suggests that,
though the learning walks of ants near to a prominent
object may be similar regardless of where the object is,
nonetheless, moving it may trigger a fresh bout of learn-
ing walks (Müller & Wehner, 2010).

3.5 The relation of image difference to SVP and SVI
performance

We also examined whether the pattern of error changes,
for all of the conditions mentioned above, is predicted
by the r.m.s. difference between images from the ‘refer-
ence’ and ‘test’ worlds (see Figures 7 and 8). There
could conceivably be a relation between image differ-
ence and homing performance, as we know the former
indicates how different two scenes are and we would
presume that on average a similar ‘test’ world should
have smaller scene-differences and a small increase in
error change compared to the reference world. Yet the
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trend was weak, with a large variance. For view-based
homing there must be a function relating image differ-
ence and error. These results show how the particulars
of homing success as a function of image differences
are dependent, in non-trivial ways, on the distribution
of objects in the world.

4 Discussion

The purpose of this study was to examine how homing
performance is affected by learning-walk form, the

visual environment and the relation between the two.
To do this we used a simple view-based homing algo-
rithm in VR worlds, which were composed of 3d tus-
socks and 2d bushes and trees. Stored views were
drawn from a number of positions, fixed relative to the
nest entrance, and subsets of these views (SVIs) were
used for homing. We investigated how different combi-
nations of views perform relative to one another and
how this differs between worlds, in order to see which
properties of SVPs and worlds are important, and how
they depend upon one another.
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Figure 6. How is SVI performance influenced by changes to the visual environment? Conventions as in Figure 5, though data refer
to SVI rather than SVP performance across conditions. Hence, views drawn from the reference world were used as the basis for
homing in the test worlds. A–C: the visual object-bands were far (A), near (B) and intermediate (C). The three conditions were as
before (see Figure 5): Rotate 1 (1), Rotate 2 (2) and Absent (–). A: Rotate 1 has higher error than Rotate 2 (sign test; 8/8;
p< 0:005); Rotate 2 has a higher error than Absent (sign test; 8/8; p< 0:005). B: Rotate 1 has higher error than Rotate 2 (sign test;
7/8; p< 0:01); Rotate 2 has a higher error than Absent (sign test; 8/8; p< 0:005). C: Rotate 1 has higher error than Rotate 2 (sign
test; 8/8; p< 0:005); Rotate 2 has a higher error than Absent (sign test 8/8; p< 0:005).
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Our major findings were that certain intuitive prop-
erties of SVPs, such as ‘spread of views’ and ‘view dis-
similarity’, are partially predictive of homing
performance irrespective of the visual environment.
However, no single SVP performed well in all worlds,
indicating that it is also advantageous to tailor learning
walks to the surroundings. Further investigation found
that a large, salient object adjacent to the nest is likely
not to be the most important aspect of a visually rich
environment. The distant panorama (our ‘far object-
band’) will generally be important, as will objects at an
intermediate distance from the nest when there is no
clear line of sight to the horizon. This seemingly coun-
terintuitive finding is in line with results that show ants

failing to extract and utilize information from a salient
beacon-like object (Wystrach, Beugnon, & Cheng,
2011; Wystrach & Graham, 2012). A second intuition
was that our results might be predicted by simple image
differences. For instance, differences in error scores fol-
lowing experimental manipulation may correlate with
r.m.s. differences between images in the original and
transformed worlds, but the relationship was weak
(Figures 7 and 8).

Of course, visual homing is bound to be more com-
plex in real ants, as, among other things, they do not
have a completely panoramic field of view (though it is
broad: e.g. forM. bagoti, ;150� per eye: Schwarz et al.,
2011). Additionally, M. bagoti ants have larger anterior
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Figure 7. Relationship between changes in error score and image difference for the 100 best-performing SVPs. For all the data in
Figure 5 we look at the relationship between change in error score and the r.m.s. image difference. Image differences are calculated
for all 9845 locations in the worlds before and after the rotation of one or two object-bands, or the removal of one, with data
divided between five bins of equal width on the basis of image difference. Error bars give standard error. Note that there is not a
clear positive trend for any of the conditions, indicating that image difference alone is not predictive of relative homing success.
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than posterior facet diameters (cf. Cataglyphis bicolor:
Zollikofer et al., 1995), which could equate to a 50%
difference in resolution (Schwarz et al., 2011). We also
know that ants must employ early visual filtering to dis-
tinguish sky from skyline, among other things, using a
green–UV colour-opponent system (Möller, 2002).
These factors might change the fine detail of the results,
though the broad pattern would remain the same.

4.1 Modelling navigation with ant-like constraints

The value of simulation work is that one can close the
loop between behaviour, environment and computa-
tional algorithm, because one has control over all three.

As we are interested in biological questions, we have
tried to constrain these three things so that they are ant-
like. Although the relationship between simulation stud-
ies and biology is strong (Webb, 2000), especially with
respect to insect navigation, there are few modelling
studies where the constraints on the system are ‘ant-
like’. Since the original homing models (see Cartwright
& Collett, 1983) describe agents at a fixed orientation in
space, many follow-up works have maintained this con-
straint and thus there are few ant-specific models of
visual homing. Möller (2012) presents a neural network-
based model of ant navigation that relies on predicting
changes to the environment from visual translation. It
makes use of ‘scanning’ in order to find a heading, as
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Figure 8. Relationship between changes in error score and image difference for the 100 best-performing SVIs (i.e. with view images
drawn from the reference world; see Figure 7). For all the data in Figure 6 we look at the relationship between change in error
score and the r.m.s. image difference. Image differences are calculated by comparing all 9845 locations before and after the rotation
of one or two object-bands (or removal of one). Error bars give standard error. Again, there is not a strong positive relationship
between image difference and relative homing success.
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does the model of Baddeley et al. (2012). Basten and
Mallot (2010) investigated homing performance in an
ant-like world using either pixel intensity or skyline
height for the stored views and either average landmark
vector (ALV) (Lambrinos, Möller, Labhart, Pfeifer, &
Wehner, 2000) or gradient ascent algorithms to inform
the agent’s movement, but relied on only one stored
view at a time, and images were aligned as with ‘snap-
shot’ (sensu Cartwright & Collett, 1983) models.

In order to maintain ant-like constraints, we
employed an RIDF-based homing algorithm (Graham
et al., 2010; Narendra, Gourmaud, & Zeil, 2013;
Philippides et al., 2011) across a range of virtual envir-
onments (shown to be realistic: see Figure 2), primed
with views drawn from different possible SVPs. The
algorithm performed well, with reliable homing
achieved across a range of worlds and of possible
SVPs. This work thus represents the first attempt to
investigate the active learning of views for homing with
biologically realistic, ant-like constraints on visual envi-
ronment, motor system and behaviour.

4.2 Relation to biological data

Our simulation studies make a number of predictions
about real-life learning walks. First, we predict that a
single large landmark near the nest entrance will alter
learning walks substantially only in a relatively feature-
less environment. Second, we expect the distant panor-
ama to act as a reliable cue, as it is relatively invariant
with motion of the forager. Yet although there is poten-
tially a high level of information on the horizon, it will
often be obscured by visual ‘clutter’ (such as tussocks)
at intermediate distances from the nest. In this case, we
would expect the clutter itself to be a useful cue; there
will be a small effect of visual translation when com-
pared to very proximal objects and if there is a clear line
of sight it can be reliable over space.

Unfortunately, there is very little in the way of
detailed learning-walk data in the literature with which
to compare our results. One exception is found in
Müller and Wehner (2010), who present several
Ocymyrmex robustior learning walks, which the ants
executed following placement of a large black cylinder
near the nest entrance. The authors show two learning
walks, roughly spiral-shaped, but asymmetric and sub-
stantially different from each other. All fixations were
directed at the invisible nest entrance; the cylinder,
despite being highly salient in an otherwise featureless
environment, attracted no fixations, even though its
placement triggered the learning walks in the first place.
This fits with the idea that important visual cues can be
useful to homing without being fixated. However, the
ants’ prior experience (number and direction of previ-
ous foraging bouts) is not specified, so its potential
influence on these learning walks is unknown. The
other important work is by Nicholson et al. (1999),

who trained ants to a feeder next to which were placed
one, two or no black cylinders. In this case, however,
the ants fixated the cylinders rather than the goal. The
discrepancy in results could be due to the difference in
context (nest entrance vs feeder) or in species (O. robus-
tior vs F. rufa; for species differences in homing beha-
viours, see Schwarz & Cheng, 2010).

As the ultimate aim of this project is to understand
how learning walks function in ants, further beha-
vioural work will be extremely informative. Of course,
detailed recordings, across species and ecologies, will
prove useful to many interested in the natural history of
learning walks. However, are for an in-depth, mechan-
istic understanding of the phenomenon systematic
manipulations to environments are needed, with obser-
vations of how this changes learning walks. We hope
that the results here will provide a ‘starting-off point’
for such investigations and will stimulate discussion
about the simple computational mechanisms that could
underlie this critically important behaviour.
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