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Abstract 

In less than 20 years, neonicotinoids have become the most widely used class of insecticides with a global 

market share of more than 25%. For pollinators this has transformed the agrochemical landscape. These 

chemicals mimic the acetylcholine neurotransmitter and are highly neurotoxic to insects. Their systemic 

mode of action inside plants means phloemic and xylemic transport that results in translocation to pollen and 

nectar. Their wide application, persistence in soil and water and potential for uptake by succeeding crops and 

wild plants make neonicotinoids bioavailable to pollinators in sublethal concentrations for most of the year. 

This results in the frequent presence of neonicotinoids in honeybee hives. At field realistic doses, 

neonicotinoids cause a wide range of adverse sublethal effects in honeybee and bumblebee colonies, 

affecting colony performance through impairment of foraging success, brood, larval development, memory 

and learning, damage to the central nervous system, susceptibility to diseases, hive hygiene etc. 

Neonicotinoids exhibit a toxicity than can be amplified by various other agrochemicals and they 

synergistically reinforce infectious agents such as Nosema ceranae which together can produce colony 

collapse. The limited available data suggest that they are likely to exhibit similar toxicity to virtually all other 

wild insect pollinators. The worldwide production of neonicotinoids is still increasing. Therefore a transition 

to pollinator-friendly alternatives to neonicotinoids is urgently needed for the sake of the sustainability of 

pollinator ecosystem services. 

 

Introduction 

The introduction to the market in the early 1990s of imidacloprid and thiacloprid opened the neonicotinoid 

era of insect pest control [1]. Acting systemically, this new class of neurotoxic insecticides is taken up by 

plants, primarily through the roots, and translocates to all parts of the plant through xylemic and phloemic 

transport [2]. This systemic property combined with very high toxicity to insects allowed formulating 

neonicotinoids for soil treatment and seed coating with typical doses from 10 to 200 g ha-1 high enough to 
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provide long lasting protection of the whole plant from pest insects. 

 

Neonicotinoids interact with the nicotinic acetylcholine receptors (nAChRs) of the insect central nervous 

system. They act mainly agonistically on nAChRs on the post-synaptic membrane, mimicking the natural 

neurotransmitter acetylcholine by binding with high affinity [3-8]. This induces a neuronal hyper-excitation, 

which can lead to the insect’s death within minutes [6,9]. Some of the major metabolites of neonicotinoids 

are equally neurotoxic, acting on the same receptors [10-12] thereby prolonging the effectiveness as systemic 

insecticide. The binding sites in vertebrate nAChRs in the nervous system are different from those in insects, 

and in general they have lower numbers of nicotinic receptors with high affinity to neonicotinoids, which are 

the reasons that neonicotinoids show selective toxicity for insects over vertebrates [9,13]. 

 

The main neonicotinoids presently on the market are imidacloprid, thiamethoxam, clothianidin, thiacloprid, 

dinotefuran, acetamiprid, nitenpyram and sulfoxaflor [12,14,15]. Since their introduction, neonicotinoids 

have grown to become the most widely used and fastest growing class of insecticides with a 2010 global 

market share of 26% of the insecticide market [16] and imidacloprid the second most widely used (2008) 

agrochemical in the world [17]. The worldwide production of neonicotinoids is still increasing [18]. Large-

scale use in Europe and US started around 2004. Neonicotinoids are nowadays authorized in more than 120 

countries for more than 1,000 uses [19] for the treatments of a wide range of plants including potato, rice, 

maize, sugar beets, cereals, oil rapeseed, sunflower, fruit, vegetables, soy, ornamental plants, tree nursery, 

seeds for export, and cotton.  
 

When used as a seed coating, only 1.6 to 20% of the amount of active substance applied actually enters the 

crop to protect it [20], and the remaining 80 to 98.4% pollutes the environment without any intended action 

to plant pests. Diffusion and transformation of pesticides in the environment leads to various environmental 

concentrations and bioavailability, all strongly dependent on the properties of the substance [21]. Because of 

their high leaching potential, neonicotinoids tend to contaminate surface water and ground water [22-25]. 

Due to sorption to organic matter in soil and sediments [24,26], the equilibrium partitioning over soil and 

water varies with soil type and is typically 1 to 3 (log P = 0.57) [25]. In countries where monitoring data are 

available, high levels of neonicotinoid pollution in surface water have been reported [27-30]. In the 

Netherlands, 45% of 9037 water samples taken from 801 different locations in a nation-wide routine water 

quality monitoring scheme over the period 1998 and 2003-2009 exceeded the 13 ng l-1 imidacloprid water 

quality standard, the median concentration being 80 ng l-1 and the maximum concentration found being 320 

µg l-1, which is acutely toxic to honeybees [27]. In the US, neonicotinoids were also found in surface water. 

In 108 water samples collected in 2005 from playa wetlands on the Southern High Plains, thiamethoxam was 

found at an average concentration of 3.6 µg l-1 and acetamiprid at 2.2 µg l-1 [30]. 

Neonicotinoids and their metabolites are highly persistent in soil, aquatic sediments and water. To give an 

example: Six years after a single soil drench application of imidacloprid, residue levels up to 19 µg kg-1 

could be recovered in Rhododendron shrub blossoms [31]. Clothianidin has a half-life in soil between 148-



Accepted (24 May 2013) for publication in Current Opinion in Environmental Sustainability 2013, 5(4)  
 

3 
 

6,900 days [32], and imidacloprid 40-997 days [33]. Consequently, neonicotinoids exhibit a potential for 

accumulation in soil following repeated applications [23] and can be taken up by succeeding crops up to at 

least two years after application [34]. Imidacloprid has been detected in 97% of 33 soil samples from 

untreated fields on which treated corn seeds were used 1 or 2 years before the sampling [34]. Concentrations 

in these soil samples ranged from 1.2 to 22 µg kg-1 [34]. Several studies recovered neonicotinoids in wild 

flowers near treated fields [35,36]. However, it remains a knowledge gap to what extent the presence in wild 

flowers results from systemic uptake from polluted soil and water or from direct contamination of the 

flowers by contaminated dust from seed drilling. 

 

At their introduction, neonicotinoids were assumed to be more efficient than the organophosphates and 

carbamates that they replaced [37]. As a seed treatment they could be used in much lower quantities and they 

promised to be less polluting to the environment. It is however not the quantity that is relevant but the 

potency to cause harm, which results from toxicity, persistence and bioavailability to non-target species. 

Indeed, soon after the introduction of neonicotinoids, exposure of its residues in pollen, nectar, sowing dust 

etc., to non-target pollinating insects became clear. This led to various harmful effects [10, 37-43]. 

 

Ecosystem services of pollinators 

Amongst the wide diversity of pollinating species [44], bees are the most important. Although bee research 

mostly focusses on the domesticated Apis mellifera, over 25,000 different bee species have been identified 

(FAO: Pollination; URL: http://www.fao.org/agriculture/crops/core-themes/theme/ 

biodiversity/pollination/en/). Bees provide a vital ecosystem service, playing a key role in the maintenance of 

biodiversity and in food and fibre production [45-51]. Pollination comprises an integrated system of 

interactions that links earth’s vegetation, wildlife and human welfare [52]. Of all flowering plants on earth, 

87.5% benefits from animal pollination [53]. Globally, 87 of the leading food crops (accounting for 35% of 

the world food production volume) depend on animal pollination [45]. Pollinator mediated crops are of key 

importance in providing essential nutrients in the human food supply [54]. The history of apiculture goes 

back to pre-agricultural times [55,56] and later co-developed with agriculture [57,58]. In addition, wild bees 

deliver a substantial and often unappreciated portion of pollination services to agriculture and wildflowers 

[59,60]. Bees and apiary products have a pharmacological [61,62], scientific and technological [63], poetic 

[64], aesthetic (springs filled with buzzing bumblebees) culinary (e.g. keeping alive traditional cuisine of 

patisseries with honey) and cultural value.  

 

Global pollinator decline and emerging bee disorders 

Long-term declines have been observed in wild bee populations around the world [47, 65-70]. Over the past 

decades, a global trend of increasing honeybee disorders and colony losses has emerged [71-77]. Winter 

mortality of entire honeybee colonies has risen in many parts of the world [72-75]. When neonicotinoids 

were first used, beekeepers started describing different disorders and signs ranging from: bees not returning 

to the hive, disoriented bees, bees gathered close together in small groups on the ground, abnormal foraging 
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behaviour, the occurrence of massive bee losses in spring, queen losses, increased sensibility to diseases and 

colony disappearance [38,40-43,77]. None of these individual signs is a unique effect of neonicotinoids, 

other causal factors or other agrochemicals could produce similar signs, which complicates the establishment 

of a causal link. 

 

Scientific research appears to indicate no single cause explaining the increase in winter colony losses. All 

viruses and other pathogens that have been linked to colony collapse have been found to be present year-

round also in healthy colonies [78]. That colonies remain healthy despite the presence of these infectious 

agents, supports the theory that colony collapse may be caused by factors working in combination. Farooqui 

[79] has analyzed the different hypotheses provided by science when searching for an explanation of Colony 

Collapse Disorder (CCD). Research points in the direction of a combination of reciprocally enhancing 

causes. Among those, the advance of neonicotinoid insecticides has gained more weight in light of the latest 

independent scientific results [80-82]. In the present article, we synthesise the state of knowledge on the role 

of neonicotinoids in pollinator decline and emerging bee disorders. 

 

Multiple ways of exposure 

Neonicotinoids are authorized for a wide range of agricultural and horticultural plants that flower at different 

times of the year. The systemic properties of neonicotinoids imply translocation to pollen, nectar, and 

guttation droplets [34,37,83,84]. The persistency and potential contamination of wild plants and trees 

surrounding the treated crops [36] and the possibility for traveling far outside the fields via surface and 

ground water [27] and the potential to contaminate wild plants and crops that take up polluted water, means 

that pollinating insects are likely to be exposed for much of the year to multiple sources of multiple 

neonicotinoids in their foraging area, but often at very low doses. 

 

Honeybees’ exposure to neonicotinoids can occur through ingestion, contact and inhalation (aerosols). Many 

possible exposure pathways can exist [85]. Here, we aggregate exposure pathways into: (a) intake of food 

that contain residues; (b) nesting material (resin, wax etc.); (c) direct contact with spray drift and dust drift 

during application; (d) contact with contaminated plants, soil, water; (e) use of cooling water in the hive; and 

(f) inhalation of contaminated air. For bumble bees and other wild bees that nest in soil, contact with 

contaminated soil is an additional pathway of concern. Leafcutter bees use cut leaf fragments to form nest 

cells and can thus be exposed to residues in leaves. There are many other conceivable exposure routes, for 

instance, a bee hive could have been made from timber from trees treated with neonicotinoids and may thus 

contain residues. However, the best researched exposure pathway is via intake of food. Food with residues 

can be sub-divided into self-collected raw food (nectar, pollen, water, honeydew, extrafloral nectar, guttation 

droplets, various other edible substances available in the foraging area etc.), in-hive processed food (honey, 

beebread, royal jelly, wax etc.), and food supplied by bee keepers (high fructose corn syrup, sugar water, 

sugar dough, bee candy, pollen, pollen substitutes based on soybean flower and other vegetable protein 

supplements etc.).  
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Given the large numbers of crops in which neonicotinoids are used and the large scale of use, there is a huge 

variability in space and time for each possible exposure pathway as well as in their relative importance for 

the overall exposure at a given place and time. This is further complicated by the fact that the foraging area 

of a honeybee colony can extend to a radius of up to 9 km around the hive which is never a homogenous 

landscape [86]. Additionally, suburban areas have become a stronghold for some wild bee species due to the 

abundance of floral resources in gardens and parks [87]. Thus, bees may be exposed to systemic insecticides 

which are widely used on garden flowers, vegetables, ornamental trees, and lawns. The relative importance 

of exposure pathways will also vary according to bee species as they have different foraging ranges, 

phenologies, and flight times in a day. This can be exemplified by Osmia bees in corn growing areas for 

which intake of guttation droplets may be more important than for honeybees. 

 

Different categories of honeybees could be exposed in different ways and to varying extents [42]. For 

example, pollen foragers (which differ from nectar foragers) do not consume pollen, merely bringing it to the 

hive. The pollen is consumed by nurse bees and to a lesser extent by larvae which are thus the ones that are 

exposed to residues of neonicotinoids and their metabolites [88]. The exposure of nectar foragers to residues 

of neonicotinoids and metabolites in the nectar they gather can vary depending on the resources available in 

the hive environment. In addition, foragers take some honey from the hive before they leave for foraging. 

Depending on the distance from the hive where they forage, the honeybees are obliged to consume more or 

less of the nectar/honey taken from the hive and/or of the nectar collected, for energy for flying and foraging. 

They can therefore ingest more or less neonicotinoid residues, depending on the foraging environment [42]. 

Oral uptake is estimated to be highest for forager honeybees, winter honeybees and larvae [85]. 

 

Little is known about the real exposure to contaminated food for different categories of honeybees in a 

colony, either in terms of contact with pollen or contact with, and possible consumption of, nectar if needed. 

For wild bees very few data exist on exposure in the field. The amount that wild bees actually consume in the 

field has not been measured. EFSA estimated that worker bees, queens and larvae of bumblebees and adult 

females and larvae of solitary bees are likely to have the highest oral uptake of residues [85]. 

 

In 2002, 69% of pollen samples collected by honeybees at various places in France contained residues of 

imidacloprid and its metabolites [89]. In a systematic sampling scheme covering 5 locations over 3 years, 

imidacloprid was found in 40.5% of the pollen samples and in 21.8% of the honey samples [90,91]. Based on 

data from authorization authorities, neonicotinoids residues in nectar and pollen of treated crop plants are 

estimated to be in the range of below analytical detection limit (0.3 µg kg-1) to 5.4 µg kg-1 in nectar, the 

highest value corresponding to clothianidin in oilseed rape nectar, and a range of below detection limit (0.3 

µg kg-1) to 51 µg kg-1 in pollen, the highest value corresponding to thiamethoxam in alfalfa pollen [85]. A 

recent review reports wider ranges: for pollen: >0.2 to 912 µg kg-1 for imidacloprid and <1.0 to 115 µg kg-1 

for thiacloprid [92]. Residues of imidacloprid, dinotefuran, and thiamethoxam plus metabolites in pumpkin 
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treated with United States label rates reaches average levels up to 122 µg kg-1 in pollen and 17.6 µg kg-1 in 

nectar [93]. Up to 346 mg l-1 for imidacloprid and 146 mg l-1 for thiamethoxam and 102 mg l-1 clothianidin 

and has been found in guttation drops from leaves of plants germinated from neonicotinoid-coated seeds 

[84,94]. In melon, guttation levels up to 4.1 mg l-1 imidacloprid were found 3 d after a top (US) label rate soil 

application [95]. In a US wide survey of pesticide residues in beeswax, pollen and honeybees during the 

2007-2008 growing seasons, high levels of neonicotinoids were found in pollen (included in [92]) but 

imidacloprid was also found up to 13.6 µg kg-1 in wax [96]. In Spain, neonicotinoids were found in beeswax 

samples from apiaries near fruit orchards: 11 out of 30 samples tested positive in ranges from 11 µg kg-1 

(acetamiprid) to 153 µg kg-1 (thiacloprid) [97]. 

Little is known on the presence of neonicotinoids in honeydew. Given differences in life span of aphids and 

bees, concentrations in plant sap too low to kill aphids could translocate to honeydew and could still produce 

sublethal effects and chronic toxicity mortality in bees and bee colonies. 

 

Acute and chronic effects of lethal and sublethal exposure 

Pesticides can produce four types of effects on honeybees: lethal effects and sublethal effects from acute or 

chronic exposures.  

Acute toxicity is expressed as the lethal dose (LD) at which 50% of the exposed honeybees die within 48 

hours: abbreviated to ‘LD50 (48 hours)’. Neonicotinoids are highly toxic (in the range of ng/bee) to 

honeybees [98], both when administered orally and by contact. They also have high acute toxicity to all other 

bee species so far tested, including various Bombus species, Osmia lignaria and Megachile rotundata [99-

102]. Osmia lignaria is more sensitive to both clothianidin and imidacloprid than is B. impatiens, with 

Megachile rotundata more sensitive still [100]. In an acute toxicity test under semi field condition on the 

Indian honeybee Apis cerana indica, clothianidin showed the highest toxicity, followed by imidacloprid and 

thiamethoxam [103].  

 

For mass-dying of bees in spring nearby and during sowing of corn seeds coated with neonicotinoids there 

now is a one to one proven causal link with acute intoxication though contact with the dust cloud around the 

pneumatic sowing machines during foraging flights to adjacent forests (providing honeydew) or nearby 

flowering fields [104-109]. Such mass colony losses during corn sowing have also been documented in Italy, 

Germany, Austria and Slovenia [110,111,104]. In response to the incidents, the adherence of the seed coating 

has been improved owing to better regulations, and an improved sowing-technique has recently become 

compulsory throughout Europe, [112]. Despite the deployment of air deflectors in the drilling machines or 

improved seed coating techniques, emissions are still substantial and the dust cloud is still acutely toxic to 

bees [105,109,111,113-115]. Acute lethal effects of neonicotinoids dispersed as particulate matter in the air 

seem to be promoted by high environmental humidity which accelerates mortality [105]. Honeybees also 

bring the toxic dust particles they gather on their body into the hive [106]. Sunny and warm days also seem 

to favour the dispersal of active substances [35]. 
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Lethal effects from chronic exposure refer to honeybee mortality that occurs after prolonged exposure. In 

contrast to acute lethal effects, there are no standardised protocols for measuring chronic lethal effects. 

Therefore, in traditional risk assessment of pesticides they are usually expressed in three ways: LD50: the 

dose at which 50% of the exposed honeybees die (often, but not always, within 10 days); NOEC (No 

Observed Effect Concentration): the highest concentration of imidacloprid producing no observed effect; and 

LOEC (Lowest Observed Effect Concentration): the lowest concentration of imidacloprid producing an 

observed effect. However, for neonicotinoids and its neurotoxic metabolites, lethal toxicity can increase up to 

100,000 times compared to acute toxicity when the exposure is extended in time [10]. There has been some 

controversy on the findings of that study, which is discussed in detail by Maxim and Van der Sluijs [40,42]. 

However, the key finding that exposure time amplifies the toxicity of neonicotinoids is consistent with later 

findings. Micro-colonies of bumblebees fed with imidacloprid showed the same phenomenon [102]: at one 

tenth of the concentration of the toxin in feed, it took twice as long to produce 100% mortality in a 

bumblebee microcolony. At a 100 times lower dose, it took ca. four times longer to produce 100% mortality. 

The measurable shortening of the life span cease to occur only when a dose was administered, for which the 

(extrapolated) chronic intoxication time would be longer than the natural life span of a worker bumblebee. 

This implies that the standard 10 day chronic toxicity test for bees is far too short for testing neonicotinoids. 

Indeed, honeybees fed with 1/10th of the LC50 of thiamethoxam showed a 41.2% reduction of life span 

[116]. Recent studies have shown that chronic toxicity of neonicotinoids can more adequately be expressed 

by time to 50% mortality instead of by the 10 day LD50 [117-122]. There is a linear relation between log 

daily dose and log time to 50% mortality [118,120,121]. In experiments with honeybee colonies similar long 

term chronic effects have indeed been found with typical times of 14-23 weeks to collapse 25 to 100% of the 

colonies exposed to imidacloprid contaminated food at 20 µg kg-1 [123] and 80-120 days for 1 mg kg-1 

dinotefuran and 400 µg kg-1 clothianidin [76]. Note that these studies used concentrations that are on the high 

end of the currently reported ranges of concentrations found in the field. However, such data are sparse and 

limited to a few crops, so it cannot yet be concluded whether such concentrations are rare or common in the 

field. 

 

At low concentrations of neonicotinoids, sublethal effects can occur. Sublethal effects involve modifications 

of honeybee behaviour and physiology (e.g. immune system). They do not directly cause the death of the 

individual or the collapse of the colony but may become lethal in time and/or may make the colony more 

sensitive (for example, more prone to diseases), which may contribute to its collapse. For instance, an 

individual with memory, orientation or physiological impairments might fail to return to its hive, dying from 

hunger or cold. This would not be detected in standard pesticide tests, which focus on acute mortality. A 

distinction can be made between acute and chronic sublethal effects. Acute sublethal effects are assessed by 

exposing bees only once to the substance (by ingestion or by contact), and observing them for some time 

(variable from one laboratory to another, from several minutes to four days). Chronic sublethal effects are 

assessed by exposing honeybees more than once to neonicotinoids during an extended period of time (for 

example, each 24 hours, for 10 days). Both acute and chronic sublethal effects are expressed as NOEC and/or 
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LOEC (No or Lowest Observable Effect Concentration, respectively) [42]. 

 

In an extensive review Desneux et al. found that sub-lethal effects of neonicotinoids exist on 

neurophysiology, larval development, moulting, adult longevity, immunology, fecundity, sex ratio, mobility, 

navigation and orientation, feeding behaviour, oviposition behaviour, and learning [124]. All these effects 

have been reported for pollinators and all have the potential to produce colony level, population level and 

community level impacts on pollinators.  

 

At field realistic concentrations (1 µg l-1) imidacloprid repels pollinating beetles while at concentrations well 

below the analytical detection limit (0.01 µg l-1) it repels pollinating flies [125]. This implies that 

imidacloprid pollution may disrupt pollination both in polluted nature and in agricultural lands. On 

honeybees, imidacloprid has no repelling effect at field realistic concentrations: it starts being repellent at 

500 µg l-1 [126]. In some plant protection formulations, neonicotinoids are mixed with bee repellents. 

However, the persistence of neonicotinoids exceeds that of the repellence and their systemic properties differ. 

Besides, if bees are effectively repelled and avoid the contaminated flowers, pollination is disrupted because 

plants are not visited by bees. 

 

Sublethal doses of neonicotinoids impair the olfactory memory and learning capacity of honeybees [127-

130] and the orientation and foraging activity [131]. The impact of sublethal exposure on the flying behavior 

and navigation capacity has been shown through homing flight tests [82,126,132,133]. Exposed to a very low 

concntration (0.05 µg kg-1) imidacloprid honeybees show an initial slight increase in travel distance. 

However, with increasing concentration, starting at 0.5 µg kg-1 imidacloprid decreases distance traveled and 

interaction time between bees, while time in the food zone increases with concentration [134]. Imidacloprid 

disrupts honeybee waggle dancing and sucrose responsiveness at doses of 0.21 and 2.16 ng bee–1 [135]. 

 

If honeybee brood is reared at suboptimal temperatures (the number of adult bees is not sufficient to maintain 

the optimal temperature level), the new workers will be characterised by reduced longevity and increased 

susceptibility to pesticides (bee-level effect) [136]. This will again result in a number of adult bees 

insufficient to maintain the brood at the optimal temperature, which may then lead to chronic colony 

weakening until collapse (colony-level effect). 

 

Sublethal effects seem to be detected more frequently and at lower concentrations when bumblebees 

(Bombus terrestris) have to travel to gather food, even when the distances are tiny. No observable impacts of 

imidacloprid at field realistic concentrations on micro-colonies of B. terrestris provided with food in the nest 

were found, but when workers had to walk just 20 cm down a tube to gather food they exhibited significant 

sublethal effects on foraging activity, with a median sublethal effect concentration (EC50) of 3.7 µg kg-1 

[102]. In queenright bumblebee colonies foraging in a glasshouse where food was 3 m from their nest, 20 µg 
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kg-1 of imidacloprid caused significant worker mortality, with bees dying at the feeder. Significant mortality 

was also observed at 10 µg kg-1, but not at 2 µg kg-1 [102]. Bumblebees exhibit concentration dependent 

sublethal responses (declining feeding rate) to imidacloprid starting at 1 µg l-1 in syrup, while honeybees 

seemed unaffected [137]. 

 

Field-relevant concentrations of imidacloprid, used alone or in mixture with λ-cyhalothrin, were shown to 

impair pollen foraging efficiency in bumblebee colonies [138]. In an attempt to fulfil colony needs for 

pollen, more workers were recruited to forage instead of taking care of brood. This seemed to affect brood 

development resulting in reduced worker production [138]. Bumblebee colonies have been exposed to field 

realistic levels of imidacloprid (0.7 µg kg-1 in nectar, 6 µg kg-1 in pollen) for two weeks in the laboratory. 

When subsequently placed back in the field and allowed to develop naturally for the following six weeks, 

treated colonies showed an 85% reduction in queen production and a significantly reduced growth rate [81]. 

Effects on bumblebee reproduction occur at imidacloprid concentrations as low as 1 µg l-1 [139] which is 

highly field-realistic. 

 

It has also been shown that pesticides like imidacloprid act on the hypopharyngeal glands of honeybee nurses 

by degenerating the tissues [140-142], which induces a shift from nest to field activities. In the native 

stingless bee Melipona quadrifasciata anthidioides, imidacloprid causes impairment of the mushroom bodies 

which are involved in learning [143]. Imidacloprid and clothianidin have been shown to be potent 

neuromodulators of the honeybee brain, causing mushroom body neuronal inactivation in honeybees, which 

affect honeybee cognition and behaviour at concentrations that are encountered by foraging honeybees and 

within the hive [8]. Sublethal doses of imidacloprid were also found to have cytotoxic activity in the 

Malpighian tubules in honeybees that make up the excretory and osmoregulatory system [144]. Exposure to 

thiamethoxam has also been shown to result in morphological impairment of the bee brain and bee midgut 

[116]. 

 

Exposure to neonicotinoid residues lead to a delayed development of honeybee larvae, notably in the first 

state (day 4 to day 8) [145]. This can favour the development of the Varroa destructor parasitic mite within 

the colony. Likewise, the life span of adult bees emerging from the exposed brood proved to be shorter. 

 

Short and mid-term sublethal effects on individuals or age groups result in long-term effects at the colony 

level, which follow weeks to months after the exposure, such as honeybee colony depopulation and 

bumblebee colony queen production [76,81,123,138]. As it has recently been acknowledged, the field tests 

on which the marketing authorization of the use of neonicotinoids is essentially based were not developed to 

detect sublethal nor long-term effects on the colony level, and the observations of the performance of 

colonies after experimental exposure do not last long enough [85]. Major weaknesses of existing field studies 

are the small size of the colonies, the very small distance between the hives and the treated field and the very 

low surface of the test field. As a consequence of these weaknesses the real exposures of the honey bees 
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during these field tests is highly uncertain and may in reality be much smaller than what has been assumed in 

these field studies. [85] 

In addition, the meta-analysis [146] demonstrates that field tests published until now on which European and 

North American authorizations are based, lack the statistical power required to detect the reduction in colony 

performance predicted from the dose-response relationship derived from that meta-analysis. For this purpose, 

the tests were wrongly designed, there were too few colonies in each test groups, and the follow up time 

monitoring the long term colony level impacts were too short to detect many of the effects described above. 

Nonetheless, these field studies have been the basis for granting the present market authorizations by 

national and European safety agencies. The meta-analyses combined data from 14 previous field tests, and 

subsequently demonstrated that at exposure to field realistic doses, imidacloprid does have significant 

sublethal effects, even at authorized levels of use, impairs performance and thus weakens honeybee colonies 

[146].  

A further limitation of field studies is their limited reproducibility due to the high variability in 

environmental conditions in the foraging area of honeybees, which extends up to a 9 km radius around the 

hive. Observations made in a particular field experiment need not be representative of the range of effects 

that could occur in real conditions. Due to the large variability of factors that cannot be controlled (e.g. other 

stressors, soil structure, climate, combination of plants attractive for bees etc.), current field experiments only 

give information about the particular situation in which they were done. 

 

The challenges of field studies became also clear in the debates over the highly contested field study recently 

conducted by the Food and Environment Research Agency (FERA) which resorts under the UK Department 

for Environment, Food and Rural Affairs (DEFRA). This study was set up in response to the Science 

publication that showed that a short term exposure of bumblebees to field realistic imidacloprid 

concentrations cause a long term 85% reduction in queen production [81]. At three sites 20 bumblebee 

colonies were exposed to crops grown from untreated, clothianidin-treated or imidacloprid-treated seeds. The 

agency concluded that “no clear consistent relationships” between pesticide levels and harm to the insects 

could be found [FERA: URL: 

http://www.fera.defra.gov.uk/scienceResearch/scienceCapabilities/chemicalsEnvironment/documents/reportP

S2371Mar13.pdf]. However, it turned out that the control colonies themselves were contaminated with the 

pesticides tested. Further, thiamethoxam was detected in two out of the three bee groups tested, even though 

it was not used in the experiment. [147] The major studies that have measured neonicotinoid residues in 

pollen collected by honeybees clearly show that neonicotinoids are found in pollen all over the year and in 

all studied regions, not only after the sowing or during the flowering period [89,91,96]. With the present 

scale of use, it will be very difficult to find a control site where bees cannot come into contact with 

neonicotinoids. 

 

Given all the major limitations to the reliability of outcomes of field studies, it is recommendable to give 

more weight in the risk assessment to reproducible results from controlled lab studies and use the ratio 
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between the environmental concentration and the no effect concentration as the main risk indicator [40,42]. It 

could perhaps be linked to modelling to explore how and to what the degree the various well-known 

sublethal effects on individual bees can weaken the colony [148]. 

 

A key aspect in honeybee biology is that the colony behaves as a ‘superorganism’ [149]. In a colony, 

sufficient membership, so that the number of organisms involved in the various tasks to maintain that colony, 

is critical, not the individual quality of a task performed by an individual bee. Varying between winter and 

summer, the 10,000 – 60,000 honeybees that typically form a colony function as a cooperative unit, 

maintaining intraorganismic homeostasis as well as food storage, nest hygienic, defence of the hive, rearing 

of brood etc. Hence, sublethal effects affecting how many individuals perform specific functions can 

influence the functioning of the whole colony. In a simplified theoretical modelling approach, colony failure 

can be understood in terms of observed principles of honeybee population dynamics [150]. A colony 

simulation model predicts a critical threshold forager death rate above which rapid population decline is 

predicted and colony failure is inevitable. High forager death rates draw hive bees towards the foraging 

population at much younger ages than normal, which acts to accelerate colony failure [150]. 

 

Synergistic effects: pesticide-pesticide & pesticide-infectious agents 

A synergy occurs when the effect of a combination of stressors is higher than the sum of the effect of each 

stressor alone. When neonicotinoids are combined with certain fungicides (azoles, such as prochloraz, or 

anilides, such as metalaxyl) or other agrochemicals that block cytochrome P450 detoxification enzymes, 

their toxicity increases by factor from 1.52 to 1,141 depending on the combination [151,152]. The strongest 

synergism has been found for triflumizole making thiacloprid 1,141 times more acutely toxic to 

honeybees[151]. This synergistic effect is the subject of patents by agrochemical companies [152,153]. 

 

Synergy has also been demonstrated for neonicotinoids and infectious agents. Prolonged exposure to a non-

lethal dose of neonicotinoids renders beehives more susceptible to parasites such as Nosema ceranae 

infections [39, 154-156]. This can be explained either by an alteration of the immune system or by an 

impairment of grooming and allogrooming that leads to reduced hygiene at the individual level and in the 

nest, which gives the pathogens more chances to infect the bees. The same mechanism, where the balance 

between an insect and its natural enemies is disturbed by sublethal exposure to neonicotinoids that impairs 

grooming, is well known and often used in pest management of target insects [158-161]. 

 

Conclusion and prospects 

In less than 20 years, neonicotinoids have become the most widely used class of insecticides. Being used in 

more than 120 countries in more than 1000 different crops and applications, they now account for at least 

one quarter of the world insecticide market. For pollinators, this has transformed the agrochemical landscape 

to one in which most flowering crops and an unknown proportion of wild flowers contain varying 

concentrations of neonicotinoids in their pollen and nectar. Most neonicotinoids are highly persistent in soil, 
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water and sediments and they accumulate in soil after repeated use. Severe surface water pollution with 

neonicotinoids is common. Their systemic mode of action inside plants means phloemic and xylemic 

transport that results in translocation to pollen and nectar. Their wide application, persistence in soil and 

water and potential for uptake by succeeding crops and wild plants make neonicotinoids bioavailable to 

pollinators in sublethal concentrations for most of the year. This results in the frequent presence of 

neonicotinoids in honeybee hives. Neonicotinoids are highly neurotoxic to honeybees and wild pollinators. 

Their capacity to cross the ion-impermeable barrier surrounding the central nervous system (BBB, blood-

brain barrier) [7] and their strong binding to nAChR in the bee’s central nervous system are responsible for a 

unique chronic and sublethal toxicity profile. Neonicotinoid toxicity is reinforced by exposure time. Some 

studies indicate a non-monotonic [162] dose-response curve at doses far below the LD50. Mass bee dying 

events in spring from acute intoxication have occurred in Germany, Italy, Slovenia and France during 

pneumatic sowing of corn seeds coated with neonicotinoids. Bees that forage near corn fields during sowing 

get exposed to acute lethal doses when crossing the toxic dust cloud created by the sowing machine.  

At field realistic exposure levels, neonicotinoids produce a wide range of adverse sublethal effects in 

honeybee colonies and bumblebee colonies, affecting colony performance through impairment of foraging 

success, brood and larval development, memory and learning, damage to the central nervous system, 

susceptibility to diseases, hive hygiene etc. Neonicotinoids synergistically reinforce infectious agents such as 

Nosema ceranae and exhibit synergistic toxicity with other agrochemicals. The large impact of short term 

field realistic exposure of bumblebee colonies on long term bumblebee queen production (85% reduction) 

could be a key factor contributing to the global trends of bumblebee decline. Only a few studies assessed the 

toxicity to other wild pollinators, but the available data suggest that they are likely to exhibit similar toxicity 

to all wild insect pollinators. The worldwide production of neonicotinoids is still increasing. In view of the 

vital importance of the service insect pollinators provide to both natural ecosystems and farming, they 

require a high level of protection. Therefore a transition to pollinator-friendly alternatives to neonicotinoids 

is urgently needed for the sake of the sustainability of pollinator ecosystem services. The recent decision by 

the European Commission to temporary ban the use of imidacloprid, thiamethoxam and clothianidin in crops 

attractive to bees is a first step in that direction [163]. 
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