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Why do pollinators visit proportionally fewer flowers in large
patches?
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Pollinators collect resources that are patchy, since flowers are usually aggregated on
several spatial scales. Empirical studies have established that pollinators almost
invariably visit a smaller proportion of flowers as patch size increases. This has not
been adequately explained. Here I present data on the payoff curve achieved by
bumblebees, Bombus lapidarius, when visiting patches containing different numbers
of inflorescences, and use the marginal value theorem to predict the optimum
duration of stay within patches. The data demonstrate that visiting a declining
proportion of inflorescences as patch size increases is an optimal strategy, if we
assume that bees are attempting to maximise their rate of reward acquisition. I argue
that this occurs because searching for the remaining unvisited inflorescences is easier
in a small patch. On large patches, bees visited more inflorescences per patch than
predicted (although still visiting a declining proportion). I suggest that this may occur
because bees are using simple departure rules which result in near-optimal behaviour.
I show that a departure rule based on two successive encounters with empty
inflorescences closely predicts observed behaviour.

D. Goulson, Biodi6ersity and Ecology Di6., School of Biological Sciences, Uni6. of
Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton, UK
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Flowers typically exhibit a patchy distribution at a
number of levels; flowers are often clustered into infl-
orescences, several flowers or inflorescences may be
clustered on each plant, and the plants themselves are
likely to be patchily distributed. Flower visitors must
make decisions concerning how best to exploit this
patchy distribution. Studies of the response of pollina-
tors to varying patch sizes have found that foragers
spend longer and visit more flowers in large patches, as
one would intuitively expect (Schmitt 1983, Geber 1985,
Andersson 1988, Schmid-Hempel and Speiser 1988,
Klinkhamer et al. 1989, Klinkhamer and de Jong 1990,
Eckhart 1991, Dreisig 1995, Robertson and Macnair
1995, Brody and Mitchell 1997). More interestingly,
studies of a diverse range of plant – pollinator systems
have also found that the pollinators visit a smaller
proportion of the available flowers in larger patches
(Beattie 1976, Heinrich 1979, Zimmerman 1981,

Schmitt 1983, Geber 1985, Morse 1986, Andersson
1988, Schmid-Hempel and Speiser 1988, Thomson
1988, Klinkhamer et al. 1989, Klinkhamer and de Jong
1990, Pleasants and Zimmerman 1990, Dreisig 1995,
Harder and Barrett 1995, Robertson and Macnair 1995,
Brody and Mitchell 1997, Goulson et al. 1998a, Ohashi
and Yahara 1998) (although Sih and Baltus 1987 found
that bumblebees visited a higher proportion of flowers
in large patches of Nepeta cataria). The explanation for
this pattern is not obvious.

One approach to understanding forager behaviour
which has proved to be fruitful is the use of optimality
models. Although optimality models have in the past
received criticism (e.g. Pierce and Ollason 1987), they
remain a valuable starting point for generating hy-
potheses to explain behaviour. Optimal foraging models
assume that foragers maximize their rate of resource
acquisition (Charnov 1976). This is a reasonable as-
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sumption for workers of social insects since they are
freed from many of the constraints which are likely to
affect the behaviour of other foragers (Pyke 1978a).
However, it is perhaps less reasonable for insects such
as butterflies which intersperse nectaring with activities
such as searching for mates or oviposition sites, and so
regularly indulge in longer flights than do most forag-
ing bees (Schmitt 1980, Waser 1982, Goulson et al.
1997).

The marginal value theorem is an optimality model
for examining the behaviour of foragers exploiting
patchy resources (Charnov 1976). The theorem states
that a forager should leave a patch when the rate of
food intake in the patch falls to that for the habitat as
a whole. This can be used to predict the optimal
duration of stay of a forager in a patch, if the shape of
the payoff curve for staying within a patch and the
mean travel time between patches are known. Can the
marginal value theorem explain why pollinators visit a
decreasing proportion of flowers in a patch as patch
size increases? Several researchers have applied the
marginal value theorem to pollinators foraging on flow-
ers held in vertical racemes (Pyke 1978b, 1981, 1984,
Hodges 1981, Zimmerman 1981, Best and Bierzychudek
1982, Pleasants 1989). The aim of these studies was to
predict when the insect should move to a new inflores-
cence, and to examine what departure rules might be
used to achieve the most efficient strategy. However,
this is a rather special case. Vertical racemes are easy to
search systematically (insects typically start at the bot-
tom and work upwards, Heinrich 1975, 1979), and
usually have a predictable, declining reward in succes-
sively higher florets (Pyke 1978c). More commonly, a
pollinator has to search amongst loose aggregations of
flowers or inflorescences with no clear spatial structur-
ing. Here the search strategy employed by the pollina-
tor will largely determine the shape of the payoff curve
that it gains from visiting a patch of flowers. If we can
ascertain the shape of the payoff curve in different
patch sizes, then it will be possible to predict the
optimal duration of stay (sometimes known as the
‘‘give up time’’, Charnov 1976).

Two models have been developed applying the mar-
ginal value theorem to pollinators exploiting patches
within which flowers were haphazardly arranged (Goul-
son 1999, Ohashi and Yahara 1999). Both models
predict that pollinators should visit a greater propor-
tion of flowers in small patches if they forage systemat-
ically and so are able to avoid flowers that they have
just depleted. However, quantification of the relevant
parameters had not been made, so only qualitative
predictions were possible.

The assumption of non-random foraging within a
patch is a reasonable one. Both bees and Lepidoptera
are able to remember their direction of arrival at a
flower, and tend to continue in the same direction when
they leave (reviewed in Waddington and Heinrich 1981,

Pyke 1983, 1984, Schmid-Hempel 1984, 1985, 1986,
Cheverton et al. 1985, Dreisig 1985, Ginsberg 1985,
1986, Ott et al. 1985, Plowright and Galen 1985,
Schmid-Hempel and Schmid-Hempel 1986, Soltz 1986,
Kipp 1987, Kipp et al. 1989, Pyke and Cartar 1992).
Superimposed on the general tendency for foragers to
exhibit directionality, they may also adjust their turning
rates and movement distances according to the size of
rewards so that they quickly leave areas with few
flowers or unrewarding flowers, and remain for longer
in patches which provide a high reward or where
flowers are dense (Pyke 1978a, Heinrich 1979, Pleasants
and Zimmerman 1979, Thomson et al. 1982, Rathcke
1983, Real 1983, Cibula and Zimmerman 1987, Kato
1988, Cresswell 1997). If they encounter flowers that
they have already emptied, bumblebees and honeybees
are able to avoid entering them using the presence of
repellent scent marks placed on their previous visit,
although they still incur a small time penalty due to the
time it takes to detect the scent mark (Núñez 1967,
Wetherwax 1986, Giurfa and Núñez 1992a, Giurfa
1993, Giurfa et al. 1994, Goulson et al. 1998b, Stout et
al. 1998).

It seems probable that a forager will be unable to
carry out a systematic search of all the flowers on a
large plant without re-encountering flowers that it has
depleted. Thus we would expect the rate of reward
acquisition to begin to decline after a period of time
spent within the patch. If travel time between patches is
short, then an insect should depart soon after this
decline begins (Goulson 1999). We do not know what
proportion of flowers on a patch an insect can visit
before it begins to have difficulty locating new flowers
without making mistakes. And we do not know how
this proportion changes with patch size. Once these
relationships are known, we will be able to make
testable predictions as to when a bee should depart
from a patch.

Here I describe an empirical study intended to test
whether visiting a declining proportion of flowers as
patch size increases is the optimal strategy. I quantify
the travel time between patches and the shape of the
payoff curve for bees foraging in a range of patch sizes.
These parameters are then used to predict the optimum
duration of stay within patches, and these values are
compared to observed durations. Departure rules are
considered which may explain the observed behaviour.

Methods

Experiments were conducted during July 1998. Patches
of inflorescences of white clover, Trifolium repens, were
created by mowing a sward of flowers in a meadow in
Warwickshire, UK. Patches were circular, contained an
approximately even density of inflorescences, and were
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situated a minimum of 2 m apart. All flowers were
removed from areas between patches, and any other
flower species present in the experimental area were
removed. The patches contained 5, 10, 20 or 50
inflorescences.

The vast majority of visits to T. repens at the study
site were by Bombus lapidarius (L.) (Hymenoptera;
Apidae); all experimental observations were of this
species. To exclude insects, patches were covered with
ventilated plastic sheeting for one hour before observa-
tions. Once the sheeting was removed, the first natu-
rally foraging bee to visit the patch was observed. A
dictaphone was used to record events, and subsequently
transcribed using a stopwatch to record times. The time
taken to locate and to handle each successive inflores-
cence was recorded, and also the number of inflores-
cences visited before departure. If a bee returned to an
inflorescence that it had already visited, this was
recorded separately. If any other bee approached the
patch during recording, it was guided away as unobtru-
sively as possible (following Inouye 1978). Five bees
were observed foraging on each patch, with the patches
being covered with sheeting for 1 h before each visit.
Each patch size was replicated five times (five separate
patches were created of each size). Travel times between
patches were recorded for 40 bees that departed one
patch and then visited another within the experimental
array (these observations were made when the sheeting
was not in place on any patch). It is possible that some
bees were observed on more than one occasion, but this
was unavoidable as marking them may have influenced
their behaviour. Since the local population was large, it
is unlikely that this occurred often.

Analysis

The five bees that visited each replicate patch cannot be
considered independent replicates, since attributes of
the patch may have influenced behaviour. Hence data
from all five bees was combined as means for subse-
quent analysis, leaving five true replicates per patch
size. The search time to find each consecutive new
inflorescence was analysed in GLIM (Crawley 1991)
according to patch size and the proportion of inflores-
cences already visited, to determine whether search
times increased as the number of unvisited inflores-
cences remaining declined, and whether this relation-
ship differed between patch sizes. Handling times of
inflorescences were subjected to the same analysis.

Having quantified search and handling times, we can
construct payoff curves for bees visiting each patch size,
assigning a reward value of one for each inflorescence
handled. This assumes that rewards per inflorescence
are independent of patch size. Line of best fits for
curves were explored in SPSS 8.0. These were then used
to calculate the optimum duration of stay within

patches in relation to patch size, and compared to
observed durations.

Results

The mean travel time between patches was 2.2990.63
s. Predictably, search time within patches increased as
the proportion of inflorescences visited increased
(F1,271=47.1, pB0.001). For patch sizes of greater
than five inflorescences, this increase in search rate is
not apparent until more than half of the inflorescences
have been visited (Fig. 1). Interestingly, there was also
a significant overall difference in the search rate accord-
ing to patch size (F1,271=3.88, pB0.05). Search times
were shorter by an average of approximately 0.6 s in
the smallest patch size (five inflorescences), compared to
the larger patches all of which were approximately
similar with a mean search time of about 1.6 s (Table
1). There was no significant interaction between the

Fig. 1. Search times for successive inflorescences within
patches (9SE). Values shown were calculated by taking the
means for five bees that visited each patch, and using these
means from five replicate patches to calculate a grand mean
and standard error. The bees’ arrival at the first inflorescence
in a patch was deemed to be the time of arrival in the patch,
so there is no search time for the first inflorescence.
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Table 1. Mean search times for inflorescences in patches of
different sizes with SE and sample sizes.

Patch size Search time SE N

5 1.03 0.16 19
10 1.60 390.22
20 811.71 0.14
50 1.69 1400.13

Table 2. Equations best describing payoff curves of reward
received against time for bees foraging in four different sizes
of patch. All equations are quadratic (reward=at+bt2), and
necessarily pass through the origin. The SE of each term is
given below in brackets. It should be noted that the high
values of r2 result from use of a constant handling time in
constructing the payoff curve.

r2baPatch size

5 0.10145 −0.00015 1.0
(0.00038) (8.50×10−5)
0.0972610 −8.20×10−5 0.99998

(0.00068) (7.39×10−6)
0.99998−4.56×10−50.0963120

(0.00032) (1.75×10−6)
50 0.09317 −1.70×10−5 0.99994

(9.72×10−7)(0.00040)

effects of patch size and the proportion of inflores-
cences visited on search times (F3,271=0.21, p\0.05).

The mean handling time (all patches combined) was
9.79 s per inflorescence (S.E.=0.35, n=320). Patch
size had no effect on handling time (F3,315=0.82, p\
0.05), and handling time did not change as the propor-
tion of inflorescences visited in a patch increased
(F1,315=0.50, p\0.05). There was no significant inter-
action between the two (F3,315=0.27, p\0.05). As
handling time is independent of patch size, the assump-
tion that reward per inflorescence is equal across patch
sizes appears to be valid, since inflorescence handling
time is closely correlated to reward received (Harder
1986, Kato 1988). Thus we can construct payoff curves
for each patch size, allocating an equal reward per
inflorescence handled (Fig. 2). All four of these curves
are very closely described by quadratic equations, with
each linear and quadratic term significantly improving
the fit of the line (Table 2). From these equations we
can calculate the predicted optimum duration of stay in
each patch, by calculating the point of contact between
the curve and a tangential straight line plotted through
coordinate (−2.29, 0) (following Charnov 1976) (Ap-
pendix 1). The optimum duration of stay increases with
patch size, but is less than proportional so that to
achieve a maximal rate of reward per time bees should
visit a smaller proportion of inflorescences in larger
patches (Table 3). For the smallest patch size, the

predicted optimum duration of stay is close to the
observed value, but as patch size increases, observed
and predicted values diverge. Bees remain in large
patches for longer than predicted, although they still
visit a declining proportion of inflorescences as patch
size increases (Table 3). The maximum rate of reward
acquisition varies little with patch size; including travel
time to reach the patch, it is predicted to be 0.089,
0.088, 0.090 and 0.089 inflorescences s−1 for patch sizes
of 5, 10, 20 and 50, respectively. The actual mean rates
of reward acquisition were 0.095, 0.078, 0.074 and
0.083 inflorescences s−1.

Discussion

As has been found in the vast majority of previous
studies, the proportion of inflorescences visited within a
patch declined with increasing patch size. Bees visited
on average 75% of inflorescences in small patches com-
pared to 33% in the largest patches. Does this follow

Fig. 2. Payoff curves for bees
visiting patches of different
sizes. Curves are constructed
from measured search times,
which increase as the
proportion of inflorescences
within the patch that have
already been visited increases.
Handling time is independent of
patch size with a mean of
9.79 s per inflorescence; this
value is used for constructing
curves. Reward is measured as
number of inflorescences
handled. The optimum duration
of stay and number of
inflorescences handled in each
patch size is marked (dotted
lines). �=observed duration
of stay within patches.
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the predictions of the marginal value theorem? To my
knowledge this is the first attempt to quantify payoff
curves for pollinators foraging within patches of infl-
orescences. Search times for each successive inflores-
cence increased in all patch sizes as the duration of stay
increased. This is what one would expect for any for-
ager exploiting a patch of resources; as resource densi-
ties are depressed, it becomes increasingly hard to
locate them. Since handling times were not affected by
patch size or duration of stay, it is this increasing
search time that results in the typical payoff curve with
a declining slope (Charnov 1976). It is the shape of the
curve (and the travel time between patches) that deter-
mines the optimal duration of stay. Travel time be-
tween patches was short (2.27 s), as is generally the case
in studies of pollinators (Dreisig 1995). The predicted
optimum duration of stay is close to the observed value
for the smallest patch size, but the predicted values
become less than those observed as patch size increases.
However, even in the largest patch size where the
discrepancy between observed duration of stay and the
predicted optimum is greatest, the bees are still achiev-
ing a rate of reward acquisition very close to the
optimum due to the shape of the payoff curve (Fig. 2d).
So although bees are apparently behaving in a sub-opti-
mal way in larger patches (assuming that calculation of
the payoff curves is accurate and that the assumptions
of the model are met), they are only very slightly
sub-optimal.

Both observed and predicted durations of stay result
in a declining proportion of inflorescences being visited
as patch size increases. It appears that visiting a declin-
ing proportion is optimal, but why is it optimal? The
answer must lie in the changing patterns in search time.
I have previously argued that, in small patches, use of
a systematic search pattern could enable pollinators to
visit all of the inflorescences without mistakes, and thus
without an increase in search time (the payoff curve
would be a straight line) (Goulson 1999). Similarly,
Ohashi and Yahara (1999) suggest that pollinators are
able to memorize and avoid the last few flowers that
they visited, so that when the number of flowers in the
patch is less than or equal to the number that can be

memorized, the pollinator should visit every flower in
the patch. Clearly if pollinators can memorize the posi-
tions of flowers that they have visited, they can do so
for only a very few (less than four). Even in patches
containing just five inflorescences, search time exhibited
a marked increase with the fifth inflorescence taking on
average 2.5 times as long to locate as the second.
However, the mean search time in small patches was
lower than that in large patches, even though bees were
visiting a larger proportion of the inflorescences
present. Why might this be? Presumably searching for
the remaining unvisited inflorescences is simpler in a
small patch than in a large one. In this respect pollina-
tors visiting flowers represents a rather different situa-
tion to that for which the marginal value theorem was
originally developed (predators searching for prey) be-
cause the flowers remain after they have been visited.
By doing so they render locating the remaining unvis-
ited flowers more difficult. The explanation as to why
search times overall are longer in bigger patches may be
illustrated by a simple numerical example. Consider a
bee foraging in a patch of five inflorescences, that has
already visited three of them. If it visits the next
inflorescence at random, it has a 2/5 chance of locating
one of the unvisited ones on its first attempt. However,
the simple movement rules of bees render it unlikely
that it will visit the inflorescence it has just left, so it
actually has a chance of 2/4 of locating an unvisited
flower on the first attempt. In contrast, consider a bee
in a patch of 50 flowers, of which it has visited 30 (the
same proportion). When it departs from the 30th flower
it has a 20/49 chance of striking an unvisited flower on
its first attempt, a value substantially less than 2/4.
Finding the fourth flower of five, and so achieving an
80% visitation rate (as most bees did), is substantially
easier than locating the 31st, 32nd, … 40th flower in a
patch of 50 (and very few bees did so). This argument
does not require the pollinator to memorize the posi-
tions of flowers that it has recently visited, only that it
does not immediately visit the flower that it just de-
parted from.

Another way of considering this is to examine what
cues stimulate departure from a patch. Factors trigger-

Table 3. Estimated optimums and observed values for the duration of stay in each patch (s) and the number of inflorescences
visited before departure. Error are given as (9SE) or if the errors were asymmetrical, as a range.

Patch size

5020105

Optimum duration of stay (s) 41.20 54.46 71.88 114.3
(40.09–42.38) (52.09–57.17) (70.47–73.39) (111–117.9)

Observed duration of stay 37.4 73.3 155.1 194.6
(969.9)(940.2)(914.6)(97.78)
10.46.695.053.92Optimum no. inflorescences visited per patch

(3.83–4.03) (4.84–5.29) (6.56–6.82) (10.1–10.7)
Observed no. inflo./patch 3.76 5.92 11.68 16.40

(90.21) (90.89) (91.45) (92.65)
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ing departure from inflorescences or patches of flowers
have been studied in some detail. In both bumblebees
and solitary bees, low rewards promote movement
among inflorescences (Cresswell 1990, Kadmon and
Shmida 1992). Similarly in bumblebees and honeybees,
low rewards trigger longer flights and so often result in
departure from the plant or patch (Heinrich et al. 1977,
Pyke 1978a, Thomson et al. 1982, Zimmerman 1983,
Kato 1988, Dukas and Real 1993a, Giurfa and Núñez
1992b). For some time it was thought that departure
from a patch was triggered by the reward from a single
flower falling below a threshold (Pyke 1978a, Best and
Bierzychudek 1982, Hodges 1981, 1985, Pleasants
1989). It subsequently became apparent that a simple
threshold departure rule was not strictly accurate, but
rather that the probability of departure increases with
decreasing reward (Cresswell 1990, Dukas and Real
1993a). In fact recent studies have demonstrated that
various bee species are able to integrate information
over several flower visits (not just the last one) in
making decisions about departure from a patch
(Hartling and Plowright 1978, Waddington 1980,
Cibula and Zimmerman 1987, Kadmon and Shmida
1992, Dukas and Real 1993a, b).

For simplicity, let us suppose that a bee departs from
a patch if it encounters two inflorescences in a row that
it has already visited (and which are thus more-or-less
empty). If we assume, as above, that the bee is equally
likely to encounter any inflorescence (excluding the one
that it just left), then it is simple to calculate the
probability that this inflorescence has already been
visited, and to square this to obtain the probability of
this happening twice and the bee departing from the
patch. We can thus calculate the probability of a bee
departing after one visit, two visits, and so on, and use
this to calculate the expected mean number of inflores-
cences visited per patch for bees using this departure
rule. For the patch sizes used in this study, we would
predict mean numbers of inflorescences visited per
patch to be 3.95, 6.06, 9.88 and 18.48. These values are
remarkably close to those observed (Table 3). Whether
this is coincidence is hard to say without explicitly
studying the departure rules used in this system, but
nonetheless this example illustrates an important point;
that a simple departure rule can result in pollinators
visiting more inflorescences per patch but a declining
proportion of inflorescences per patch, exactly as is
observed in nature.

Although it seems that we can explain the declining
proportion of inflorescences visited by pollinators in
larger patches, this does not explain the discrepancy
between our observed duration of stay and that pre-
dicted by the marginal value theorem. There are several
possible explanations. Implicit in the model used is the
assumption that energy expenditure is constant. If flight
between patches were more costly than foraging within
patches, this may result in bees spending longer in each

patch. Secondly, since bees had been excluded from the
patches for 1 h, the rate of reward was presumably
high. Thus the bee may perceive the experimental patch
to be more rewarding than the average patch based on
its previous experience; this too could lead to an ex-
tended duration of stay. It may simply be that there is
not a simple departure rule that bees can use to achieve
an optimal strategy. Since whatever rule they are using
at present achieves something close to the predicted
optimum, selection pressure to improve will be weak.

To summarise, I demonstrate that pollinators spend
proportionally less time in larger patches, a familiar
result. I show that this broad pattern is predicted by the
marginal value theorem, and argue that this occurs
because searching for unvisited inflorescences is easier
in a small patch. A simple departure rule based on two
successive encounters with inflorescences that have al-
ready been visited closely predicts observed behaviour.
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Appendix 1. Calculating the optimum duration of stay
within patches.

The pay-off curve is described by a curve of the 1
form: r=ct+dt2

where r is the reward (number of inflorescences visited),
t is the time elapsed in the patch, and c and d are
constants.

This curve has a slope of c+2dt 2
3The equation of the tangential line to this curve is:

r=at+b
Where a and b are constants
Let travel time between patches=6. Eq. 3 must pass

through (−6, 0).
4Hence b=6a
5Thus the equation of the straight line is: r=at+6a

This line forms a tangent to the curve when the slopes of
the curve and line are equal, when

6a=c+2dt
And when line and curve intercept at
At+6a=ct+dt2 7
Substituting in value for a from eq. 6:
t(c+2dt)+6(c+2dt)=ct+dt2 8
Rearranging:
Tc+2dtt+6c+26dt=ct+dtt 9

10Dtt+6c+26dt=0
Since 6, c and d have been estimated, we can

calculate t.
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