1 Title

2 Two Bee-pollinated Plant Species Show Higher Seed Production When Grown in Gardens

3 Compared to Arable Farmland.

4

5 Authors and Affiliations

6 John Cussans¹, David Goulson², Roy Sanderson³, Louis Goffe³, Ben Darvill² and Juliet L. Osborne^{1*}

⁷ ¹Plant and Invertebrate Ecology Department, Rothamsted Research, Harpenden, AL5 2JQ, UK.

8 ²School of Biological & Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK.

³School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

10 *email: juliet.osborne@bbsrc.ac.uk

11

12 Abstract

13 Background

14 Insect pollinator abundance, in particular that of bees, has been shown to be high where there is a

15 super-abundance of floral resources; for example in association with mass-flowering crops and also

16 in gardens where flowering plants are often densely planted. Since land management affects

17 pollinator numbers, it is also likely to affect the resultant pollination of plants growing in these

18 habitats. We hypothesised that the seed or fruit set of two plant species, typically pollinated by

19 bumblebees and/or honeybees might respond in one of two ways: 1) pollination success could be

20 reduced when growing in a floriferous environment, via competition for pollinators, or 2) pollination

21 success could be enhanced because of increased pollinator abundance in the vicinity.

22 Methodology / Principal Findings

23 We compared the pollination success of experimental plants of *Glechoma hederacea* L. and *Lotus*

24 corniculatus L. growing in gardens and arable farmland. On the farms, the plants were placed either

- 25 next to a mass-flowering crop (oilseed rape, *Brassica napus* L. or field beans, *Vicia faba* L.) or next to
- a cereal crop (wheat, *Triticum spp.*). Seed set of *G. hederacea* and fruit set of *L. corniculatus* were
- 27 significantly higher in gardens compared to arable farmland. There was no significant difference in

28 pollination success of *G. hederacea* when grown next to different crops, but for *L. corniculatus*, fruit

29 set was higher in the plants growing next to oilseed rape when the crop was in flower.

30 Conclusions / Significance

31 The results show that pollination services can limit fruit set of wild plants in arable farmland, but

32 there is some evidence that the presence of a flowering crop can facilitate their pollination

33 (depending on species and season). We have also demonstrated that gardens are not only beneficial

to pollinators, but also to the process of pollination.

35

36 Introduction

37 The anthropogenic introduction of large quantities of flowering plants has occurred both in arable 38 and urban habitats. In urban gardens high densities of flowering plants are cultivated for their 39 amenity value, while in agriculture the cultivation of mass-flowering crops such as oilseed rape 40 (Brassica napus L.) and field beans (Vicia faba L.) in the UK has been arguably the most dramatic 41 change to the floral landscape for centuries. Oilseed rape crops began to be cultivated on a large 42 commercial scale in the mid-1970's in the UK and are now grown on an unprecedented scale. In 43 2009 oilseed rape was cultivated on approximately 15% of UK arable land (~600 000ha [1]), and it 44 has become a familiar part of our spring landscape, yet the potential ecological impacts of this 45 change in agricultural practice are only just starting to be recognised [2,3,4,5]. It is possible that, 46 during the flowering period, the nectar and pollen provided by these crops greatly exceeds that 47 provided by all other flowers combined in arable landscapes. A similar situation exists in urban gardens where floral resources provided by cultivated plants are plentiful over large areas. In the 48 49 case of garden plants though, there tends to be nectar and pollen available from different species 50 through most of the year [6] whereas the mass-flowering crops only provide resources from one 51 species over a relatively short period of a few weeks.

52 For mass-flowering crops, there is sparse evidence of the impact that this brief glut of floral 53 resources has on the seed or fruit set of flowers that share pollinators with the crops. Do they 54 impact negatively on levels of seed set in wild flowers in neighbouring hedgerows through 55 competition for pollinators, or do they have a positive impact (facilitation) through attracting more 56 pollinators to the area and thus boosting pollination and subsequent seed production? Diekotter et 57 al [2] found no effect of the proportion of landscape covered with oilseed rape on seed set in red 58 clover (Trifolium pratense L.); although they did detect a positive effect of the amount of semi-59 natural vegetation in the area. In contrast, our study examines the local effect of a neighbouring 60 crop, and utilises plant species that share pollinators with the crops. There has been growing 61 interest in the possible effects of co-flowering plant species on pollen limitation [7,8,9], particularly 62 in relation to invasive alien species of flowering plant affecting native plant species. Evidence of 63 effects is variable, with some species positively affected, others negatively [10,11,12,13]. The 64 direction of a response in seed or fruit production is likely to vary depending on the species of 65 pollinators and the species of wild flowers.

In agricultural settings there is some evidence that the species of the crop sown in the field, or the
management thereof, can influence the abundance of bumblebees and other pollinators in the field
margin in the short term as a result of re-distribution of bees [3,5,14] and possibly in the longer term
as a result of increase colony density and growth [4,15].

70 If there are effects on plant pollination (positive or negative) then they may be temporally localised 71 if they are a result of changed pollinator behaviour, for example if their choice of forage is changed 72 and they are attracted into the area in large numbers. Alternatively the effects may be spread out 73 over the season if the copious floral resources (in gardens or farmland) are driving changes in the 74 insect pollinators' population dynamics. The variety, abundance and continuity of floral resources 75 provided in gardens is thought to positively affect bumblebee populations [6,16,17,18]. Against a 76 backdrop of evidence that urbanization generally leads to species loss and reduction in biodiversity 77 [19,20] there is increasing evidence pointing to the potential for urban areas to act as a refuge for

78 certain bumblebee species. Several studies have found bee abundance and diversity to be high in

- r9 urban and suburban areas [21,22] although it depends on the degree of urbanisation [23,24] and
- 80 Osborne et al [25] found there was a higher density of bumblebee nests in gardens compared to
- 81 largely agricultural countryside. In addition Fetridge, Ascher & Langellotto [26] found the bee
- 82 (Apoidea) fauna of suburban gardens closely resembled that found in nearby natural forest.
- 83 Goulson et al [27] found that the survival of bumblebee nests from May to August was positively
- 84 associated with the area of gardens in the vicinity of the colony. This relatively positive picture for
- social bees may be at odds with the global picture of urbanization but, for these species at least,
- 86 urban areas can provide an important resource for population survival. This positive impact of
- 87 gardening on bumblebee populations may have a knock-on effect on pollination levels of plants
- 88 growing in the surrounding environment.
- 89 Although studies comparing urban and agricultural settings have assessed bee abundance, as have 90 studies comparing the field margins of mass flowering crops with other crops, to our knowledge no 91 studies have reported on the relative seed production of insect-pollinated wild plants growing in 92 these different settings. We carried out a replicated experiment to determine whether mass-93 flowering crops and the floral resources in gardens have a competitive or facilitatory effect on 94 pollination and seed-set of Glechoma hederacea L. (ground ivy) and Lotus corniculatus L. (birdsfoot 95 trefoil). These species were selected because they are entirely or largely self-incompatible, relying 96 on insect pollination, primarily by social bees [28,29,30]. They vary in morphology and phenology 97 and occur naturally in field margins and hedgerows in the study area.
- 98 We tested the null hypothesis that pollination, and resultant seed and fruit set of *G.hederacea* and 99 *L.corniculatus* were not different when the plants were growing in contrasting locations. If the null 100 hypothesis is rejected, we predict one of the two following outcomes for the wild flowers: 1) the 101 presence of a mass flowering crop in the near vicinity or placement in a suburban garden has a 102 facilitatory effect on pollination, resulting in increased fruit or seed-set; or 2) the presence of a 103 flowering crop or placement in a suburban garden reduces pollination and consequent fruit or seed-104 set, because of competition and increased pollen limitation [9].
- We tested these predictions using oilseed rape and field beans. Seed yield in both crops is increased
 by insect pollination (although self pollination also occurs, and wind pollination in oilseed rape), and
- 107 when pollinated by insects the two crops have contrasting pollinator guilds. Oilseed rape is
- 108 pollinated by short-tongued pollinating insects (including honeybees) whilst field beans are
- 109 pollinated by long-tongued bumblebees (although the flowers are frequently robbed by short-
- 110 tongued bees). The control treatment was winter wheat which is not visited by bees. In addition a 111 comparison was made with suburban domestic gardens. We also quantified relative abundance of
- comparison was made with suburban domestic gardens. We also quantified relative abundance of flowers and bees in the vicinity, because our hypotheses assume that changes in the relative
- abundance of pollinators would be the likely mechanism for increased or decreased seed and fruit
- 114 set in the experimental plants. The results will increase our ability to predict the impact of
- agricultural practices and urbanisation on populations of wild plants in the landscape.

116 Materials and Methods

- 117 *G.hederacea* and *L.corniculatus* plants were bought as small plugs and reared in a glasshouse to
- ensure they were of similar age, provenance and growth stage. The plants were transferred into

large, 25cm pots which were placed in 80 litre tubs of sand (60cm in diameter). Plants in natural

120 populations are highly variable, depending on the conditions in which they grow, so we used pot-

121 grown experimental plants to ensure that, as far as possible, resources were controlled to prevent

122 differences in plant growth and development between treatments and sites.

123 The experimental sites were on 15 field margins on commercial farms within 10 km of Rothamsted 124 Research station, Harpenden, Hertfordshire, UK (Ordnance Survey coordinates TL 13415 13598) and 125 five domestic garden sites in the urban area of Harpenden (Fig 1). In April four tubs, each containing 126 one *G. hederacea* plant and one *L. corniculatus* plant, were placed in a group (subsequently referred 127 to as a patch) at each of the 20 sites. For each species, the number of flowers in these patches gave

densities similar to the sparse and small natural patches found in the field margins (see results).

129 The field margins were on five farms (considered as blocks in the analysis) which were at least 1750 130 m apart and there were three crop treatments on each farm (Fig 1). So within each block there was 131 a patch of tubs on a margin adjacent to winter oilseed rape, one adjacent to winter field beans and 132 one adjacent to wheat (the control). These margins were located within a circle of 1000 m on each 133 farm. We consider the blocks to have insect pollinators from different colonies or populations as 134 most individuals are likely to fly less than the separation distance of 1750 m [31,32]; but within each 135 farm, the same individuals are likely to be choosing between treatments. It was not feasible to 136 spread the sites more widely. The field margins were each 4-6 m wide, sown with grass or naturally 137 regenerated with a mixture of grass/herbaceous species and adjacent to a hedgerow. The tubs were 138 placed adjacent to the hedge to prevent shading from the different crop treatments.

At each of the five domestic garden sites (Fig 1), a patch of four tubs was placed adjacent to a border or boundary. It is difficult to ensure comparability between the farmland and garden sites because of the different structures of these habitats. However, we aimed to make them as comparable as possible by using the most "linear" features in each garden, for example a herbaceous or perennial border next to a lawn, or a boundary hedge. At all 20 sites (in both farmland and gardens), the tubs were positioned adjacent to south-facing boundaries to reduce the effects of differential shading or shelter between sites.

- When the plants were placed at the sites, they were all of similar size and growth stage; and the soil and space available to the plants were matched. During the course of the experiment a watering system was set up so that all the tubs were maintained at the same soil moisture. These steps were taken to ensure that the plants' access to nutrients, water and light were controlled and comparable among treatments and sites. Records of flower abundance, bee visitor abundance and seed set were taken during each of four observation periods from April to August. Each period was about
- 152 four weeks long to fit in all the observations required (start dates: 18 April, 25 May, 25 June, 27 July)

153 Test for self-incompatibility

154 In a separate experiment seed set in plants grown in insect-proof cages versus open-pollinated

155 plants was compared to confirm that the plant species used were at least partially self-infertile (this

156 can vary between races and populations) and require insects to mediate pollen transfer. Twelve

- 157 plants each of *L. corniculatus* and *G. hederacea* were grown. At the point at which the plants began
- to flower, six plants of each were transferred into an insect-proof cage. On each plant, 15 flowers

- 159 were individually marked with coloured tape (Scotch[®] 35 Colour Coding PVC Electrical Insulation)
- 160 and the seed or fruit set for each flower was assessed as described below.

161 Local flower abundance

162 During each of the four observation periods an assessment was made of the flower density of a) the 163 sown wild plants in tubs, b) the crop and c) other flowering plants in the margins or garden border 164 next to the tubs. The number of flowers of each plant species present in a 200 m length of each field 165 margin were counted (Table S1). In each garden, a transect counting flowers of each plant species 166 was also walked during each period. The transect incorporated the garden boundary or border next 167 to the tubs and utilised other linear features in the garden (e.g. around the perimeter). In some 168 cases it was not possible to walk a 200 m length (we only had access to individual gardens) so the 169 resulting data are expressed per 200 m to make comparisons with the field margins. Every plant 170 species encountered during the margin transects was assigned a score for the likely usage by 171 bumblebees and honeybees: 0 = not used as forage; 1 = used as forage (Table S1). These scores 172 were assigned using the methods of Osborne et al [32] who examined records in comparative forage 173 studies and reviews and using the combined observational experience of the authors. Visitation 174 records were verified using Knuth [30,33,34]. A score of zero represented an absence of positive 175 records of visitation by bees in any of the above references. Species given a score of 1 were included 176 in the list of "bee forage plant species" and used in the analysis. It was not possible to record 177 attractiveness or reward levels in further detail in this experiment.

178 Local flower visitor abundance

179 To assess the local abundance of potential pollinators, flower visitors were surveyed by observing 180 the number and species of all flower visits taking place along the same length of field margin or 181 garden boundary that was used to assess local flower abundance using a standard walk, between 182 10.00 h and 17.30 h in standard weather conditions (temperature above 13 °C with at least 60% 183 clear sky or above 17 °C in any sky conditions apart from heavy rain; Beaufort wind speed of less 184 than 5) [3]. One transect was performed during each observation period. Counts of the number of 185 insects visiting the experimental patches of plants were taken during 4 x 10 minute sessions spent 186 watching each patch during each observation period during standard weather conditions (above),

187 but the numbers were too low for analysis.

188 Seed and fruit production

189 The number of flowers produced on the plants in tubs during each of the four observation periods 190 was determined by marking the stems with coloured tape (Scotch® 35 Colour Coding PVC Electrical 191 Insulation) at the beginning and end of the period, and counting the number of flowers in between 192 the coloured tape marks. Seed heads were gathered from these marked stems before seed shed in order to assess seed production. When they were gathered, seed heads that showed signs of 193 194 herbivory or contained larvae were not included in the analyses. For G. hederacea an average of 195 352.5 (± 17.3) flowers per patch were collected in each of the first two sampling periods (n=40). A 196 count was made of the number of seeds formed in each flower (with four ovules), including flowers 197 which produce no seeds (from here on described as 'seed-set'). The seeds mature at different rates 198 both within and between the plant species. G.hederacea stems were sampled 1 -2 weeks after the 199 flowers were counted, when the "youngest" seeds near the tops of the stems were swollen and 200 green. The "older" seeds further down the stem were mature and some had already been shed, but 201 it was possible to score them from the scars left at the flower base. There were not enough G.

202 *hederacea* flowers present during the third and fourth observation period to collate seed-set data.

- 203 *L.corniculatus* ripe fruits were collected approximately four weeks after the flowers were marked
- and counted. A mean of 96.9 (± 3.9) flowers were sampled from the four plants in each patch during
- 205 each time period (n=80). The proportion of these flowers producing fruits was counted (from here
- 206 on described as 'fruit-set'). A repeated measure ANOVA showed that the number of flowers sampled
- per patch was not significantly different between treatments or observation periods for either plant
 species.

209 Statistical analysis

- 210 Repeated measures ANOVAs were used to examine the effect of treatment and observation period 211 on the abundance of bee forage flowers (Table S1) in the margins, social bee abundance along the
- 212 margins and experimental plant seed or fruit production. The bee abundance data were
- transformed to log₁₀ (bees + 1) because the data were highly skewed and the transformation
- ensured the data fitted assumptions of normality more closely. An additional variable was derived
- weighting bee abundance by forage availability (= log_{10} (bees + 1) / no. bee forage flowers) and a
- repeated measures ANOVA was also performed on this. With the experimental design described,
- two statistical comparisons were possible: 1) the comparison between urban gardens and arable
- field margins, and 2) the comparison between the three different arable crops. It should be noted that because of the spatial design of the experiment (farms as blocks, and gardens in a different
- area) it was not possible to make statistical comparisons between individual arable crop margins and
- 221 urban gardens. The repeated measures analyses were also used to test if there were interactions
- between these treatments effects and the observation periods. For *G. hederacea*, an average value
- of seed set per flower was used for each patch (1 patch x 4 treatments x 5 sites x 2 time observation
- 224 periods). For *L.corniculatus*, an average proportion of flowers setting fruit per plant was used, and
- there were 4 plants per patch (4 plants per patch x 4 treatments x 5 sites x 4 observation periods).
- 226 Since the number of sampled flowers was so high, the data (although proportional) were
- 227 approximately normally distributed and did not require transformation.
- 228 The experiment was structured for the above analyses, and it was not statistically appropriate to
- 229 include flowers as a co-variate in the bee analysis; or to include bees as a covariate in the seed or
- fruit analyses. Instead, and in order to explore the observed patterns more fully, three simple
- 231 regressions were performed (post-hoc). For the margin/border data, the relationship (at the site
- level) between bee numbers (log₁₀ (bees+1)) and margin bee forage flowers was examined using
- 233 linear regression. For the pollination data, linear regressions (at the site level) were performed for a)
- 234 *G.hederecea* seed set and margin bee abundance; b) *L.corniculatus* fruit set and margin bee
- abundance.

236 **Results**

237 Test for self-incompatibility

238 For *G. hederacea* the number of seeds produced per flower was significantly higher (Mann-Whitney

- U test: P=0.02, n=12) in the open-pollinated plants (mean = 3.53 ± 0.25) compared to the caged
- plants (mean = 0.05 ± 0.05). The proportion of *L. corniculatus* flowers producing fruits was
- significantly higher (Mann-Whitney U test: P=0.02, n=12) for open-pollinated plants (mean = 0.88 ±
- 242 0.05) than for caged plants (0.13 \pm 0.04). This effectively demonstrates that both of the populations
- of plants used in this experiment benefited significantly from insect visits to set fruit and seed.

244 Local flower abundance

- The oilseed rape crop flowering coincided with the first observation period (April-May), and the first part of the second period (May-June). The field bean crop flowering coincided with the second observation period (May-June). From the field margin and garden border transects, *G.hederacea* was observed growing naturally at eight of the 20 sites (1 garden and 7 field margins). The average density of the species (where it occurred) was 51 flowers per 200 m of garden border and 48 flowers per 200 m of arable field margin. For *L.corniculatus* the number of sites where plants were observed
- 251 in the vicinity of the experimental tubs was four (1 garden site and 3 field margins). The average
- density of the species (where it occurred) was 388 flowers per 200 m of garden border and 278 per
- 253 200m of field margin transect.
- 254 For bee forage plant species in the 200 m margin and border transects (Table S1), there were
- significantly more flowers in garden borders than in field margins (of oilseed rape, wheat and bean
- crops) over all observation periods (Fig 2A; F_{1,8}= 5.39; P=0.049;). There were no significant
- 257 differences between the average number of bee forage flowers per 200 m observed in the margins
- 258 of the different arable crops (Fig 2B) and no significant interaction between the observation period
- and the treatment effects.

260 Local flower visitor abundance

- The frequency of insect visits to the experimental plants was low such that the data were too few to analyse statistically. Qualitatively, *G. hederacea* received most visits (total for observations given in brackets) from *Bombus hortorum* (17) and *Bombus pascuorum* (14), with some visits from *Bombus*
- 264 *terrestris/lucorum* (7; not separated taxonomically) and *Bombus lapidarius* (2). *L. corniculatus*
- received most visits from *B. pascuorum* (25) with a few visits from unidentified solitary bees (5), *B.*
- 266 *lapidarius* (3) and *B. hortorum* (1).
- 267 Table 1 shows the number of flower visitors belonging to different insect groups observed in the
- 268 field margin and garden border transects. The number of individuals of each species was low, so
- they have been combined into bumblebees, honeybees, solitary bees and other visitors (a group
- dominated by small flies). Most visitors were social bees (bumblebees and honeybees) and since
 these are considered the most likely pollinators, and were observed on the experimental plants, we
- 272 focussed our analysis on this group. Significantly more social bees were observed visiting flowers in
- the garden borders than in the arable field margins (Fig 3A; $F_{1,8}$ = 8.33; P = 0.02). There were no
- significant differences between the average number of social bees foraging per 200 m of margins of
- the different arable crops (Fig 3B) and no significant interaction between the observation period and
- the treatment effects.
- 277 The number of social bees $(\log_{10}(x+1))$ per margin or border transect was positively and significantly
- 278 correlated with number of bee forage flowers per transect (n = 20; R^2 = 0.64, P < 0.001). When a
- 279 repeated measures ANOVA was performed on the ratio of bees to flowers $(\log_{10} (bees + 1) / no. bee$
- 280 forage flowers), then there were no significant differences between gardens and arable field margins
- 281 ($F_{1,8}$ =2.83; P = 0.131), suggesting that the higher relative abundance of bees at the garden sites was
- 282 partly due to the increased number of bee forage flowers available.

283 Seed and fruit production

During the first two observation periods (which coincided with oilseed rape and field bean flowering times respectively) there was significantly higher *G. hederacea* seed set in gardens than in the arable field margin settings (Fig 4A; $F_{1.8}$ = 7.07; P = 0.029). Neither the observation period nor the

287 placement next to different arable crops had a significant effect on *G. hederacea* seed set (Fig 4B).

288 For L. corniculatus, fruit-set was also significantly different between the gardens and the arable field 289 margin setting (Fig 5A; $F_{1.8}$ = 7.69; P = 0.02). For this species there was also a significant interaction 290 between the treatment (garden versus arable) and the observation period ($F_{3, 197}$ = 12.50; P < 0.001). 291 Fruit-set was consistently high over the season for plants placed in gardens, but was lower in later 292 observation periods for plants placed in the arable margins. The contrast between garden and arable 293 locations was highest at the 4th sample date (Fig 5A). For the plants placed next to field margins, 294 there was no significant difference in fruit set between crop treatments, but there was a significant 295 interaction between observation period and crop treatment (Fig 5B; $F_{6, 197} = 2.94$; P = 0.014). The 296 strongest pattern was seen for the L. corniculatus plants situated next to oilseed rape fields where 297 fruit set was highest in April-May when the oilseed rape was in flower, and then lower in the

298 following observation periods (Fig 5B).

299 Linear regressions showed that G.hederacea seed set was significantly positively correlated with the

number of bees observed visiting flowers in the margins and borders (n = 20; R^2 = 0.24, P = 0.017)

and *L.corniculatus* fruit set was also significantly positively correlated with bees in the margins (n = $20; R^2 = 0.15, P = 0.048$).

303 Discussion

For two plant species, *G. hederacea* and *L. corniculatus* for which seed set is significantly enhanced by insect pollination, measurements of seed and fruit set (respectively) showed there were significantly higher levels of pollination in plants growing in tubs in gardens, compared to those growing in tubs in arable field margins in Hertfordshire (Fig 4; Fig 5). The pollination in gardens was consistently higher throughout the season, as was the density of other flowers in the locale (Fig 2) and the number of pollinating insects visiting these other flowers (Fig 3).

310 This effect on seed and fruit set could be a result of differing patterns of insect pollination: including 311 visit quantity or quality. Unfortunately the sampling effort on the tubs did not give enough data on 312 insect visitation rate to experimental plants to allow correlations to be made. Interpretation of the 313 patterns is therefore made with caution using the surrogate measure of the abundance of social 314 bees foraging in the adjacent margin or border, and the abundance of co-flowering bee forage plants 315 in the margin (and the presence or absence of a flowering crop). There were more co-flowering 316 forage plants in the gardens than in the arable margins (Fig 2), and there were relatively more bees 317 foraging in the garden borders than in the margins (Fig 3). These figures, combined with the seed 318 and fruit set data suggest that there is a facilitatory effect of other co-flowering plants within the 319 gardens, providing a good "pollination environment" for the experimental plant species. The co-320 flowering species attracted foraging bees into the vicinity in proportion to the floral abundance 321 (there was a high correlation between flower abundance and bee abundance). When the data for 322 social bee abundance in margins were expressed as the number of bees per flower, there was no 323 significant difference between treatments. Thus in this experiment, the number of bees per 200 m

324 (Fig 3A) which did vary significantly between treatments, was the more suitable variable to be

- 325 correlated with seed and fruit set in both species. The significant positive correlations suggest that
- 326 some of the differences in seed and fruit set can be explained by local pollinator abundance per unit
- area (rather than the number of bees per flower).

328 It is possible that other differences in abiotic and biotic conditions between field margins and garden 329 borders also contribute to differences in seed and fruit set, but the experiment was designed to keep 330 abiotic conditions (e.g. microclimate, shading and resources) as constant as possible. Herbivory and 331 seed predation could also be important factors in overall reproduction of the plants but were not

- responsible for the observed effects because flowers that showed herbivory damage, or contained
- larvae, were removed from the samples before the seed and fruit counts were done.
- It is also likely that the characteristics of urban areas that lead to the higher abundances of bees reported here and by others [6,22] go beyond the availability of forage. One factor (highlighted in [6]) is that gardens and parks in urban areas provide a robust and diverse supply of forage for pollinators throughout the year (Fig 2A). The availability of safe sites for nests is also a key feature of urban areas [25] so that the overall population levels are higher than in an arable setting (although see [23]). It is not possible from our results to say what the causal mechanism is; and it could be a combination of these factors.
- 341 In arable farmland, we found seed and fruit set levels in both species were lower than in the 342 gardens, suggesting some degree of pollen limitation at our study sites. There was also some 343 evidence that flowering oilseed rape had a facilitatory effect on L. corniculatus fruit set in the first 344 observation period (since there was a significant interaction between crop and observation period), 345 an effect that was not sustained after the flowering of the crop. This is suggestive of the hypothesis 346 that a mass-flowering crop attracts pollinators into the area to the benefit of other plants, and the 347 lower seed set later in the season is suggests that this local boost is not maintained through the 348 season although more highly resolved data on bee densities and visitation patterns on the crops 349 would be required to confirm or disprove these suggestions. Bumblebees fly long distances to find 350 forage [36,37] and, even if they have a successful nest in the margin next to a crop, they may not 351 stay in the vicinity to search for small patches of forage (such as our experimental plants) if there are
- larger, more profitable patches at a further distance [38].

353 Our results are specific to two species of experimental plant, both chosen as plants favoured by 354 bumblebees but with differing phenology and floral attributes. It is interesting to note that the only 355 significant interaction with crop type was a positive one between oilseed rape and *L.corniculatus*. 356 Both have yellow flowers and, although they differ considerably in morphology and olfactory cues, 357 they are both frequently visited by short-tongued bumblebees and thus "share" a pollinator guild. 358 G. hederacea may be more dependent on bumblebees with longer tongues (it was most visited by 359 B.hortorum and B.pascuorum in this experiment) and so shares a pollinator guild with field beans, 360 although the flowers are markedly different in colour and no effect on seed set was seen in 361 combination with this crop. This is similar to the results of Diekotter et al [2] who studied T. 362 pratense, another species pollinated by long-tongued bumblebees (although this flowers much later 363 than the crops).

We found no evidence of competition either between mass-flowering crops and experimental plantsin the field margins for pollinators; or between garden plants and experimental plants for

- 366 pollinators. If the interactions were competitive we would, in theory, have expected the number of
- 367 bees per flower in the margins to be lower in the treatments where there were most bee forage
- 368 flowers available (e.g. in gardens and when the oilseed rape was flowering) and consequently the
- 369 more abundant flowers would have to compete for pollinator visits, but this was not observed.
- Although we have studied different habitats, our results support those of Hegland et al [39] who
- 371 showed, for bumblebee visitation rates of grassland plant species, positive plant intra-specific and
- inter-specific interactions were far more frequent than negative ones. In summary, there is
- evidence that plants growing in small patches, in the vicinity of large quantities of anthropogenically
- 374 introduced flowers , may have increased seed or fruit set but this will depend on the floral
- 375 phenology and attributes. In particular, gardens in Hertfordshire seem to be a beneficial
- environment for pollination by bees, compared to the arable farmland surrounding the town,
- 377 irrespective of crops growing in the fields.

378 Acknowledgements

- 379 We thank Andrew Martin, Jenny Swain, Richard Elsam, Esther Carley, Shaheenara Choudhry, Claudia
- Harflett for help with field work. We also thank Suzanne Clarke for statistical advice and theHertfordshire farmers who provided field sites.

382 **References**

- 1. Defra (2009) Agriculture in the United Kingdom, 2009.
- Diekotter T, Kadoya T, Peter F, Wolters V, Jauker F (2010) Oilseed rape crops distort plant pollinator interactions. Journal of Applied Ecology 47: 209-214.
- 386 3. Haughton AJ, Champion G, Hawes C, Heard M, Brooks DR, et al. (2003) Invertebrate responses to
 387 the management of genetically modified herbicide-tolerant and conventional spring crops.
- 388 II. Within-field epigeal and aerial arthropods. Philosophical Transactions of the Royal Society389 358: 1863-1877.
- 4. Herrmann F, Westphal C, Moritz RFA, Steffan-Dewenter I (2007) Genetic diversity and mass
 resources promote colony size and forager densities of a social bee (Bombus pascuorum) in
 agricultural landscapes. Molecular Ecology 16: 1167-1178.
- 393 5. Westphal C, Steffan-Dewenter I, Tscharntke T (2003) Mass flowering crops enhance pollinator
 394 densities at a landscape scale. Ecology Letters 6: 961-965.
- 395 6. Stelzer RJ, Chittka L, Carlton M, Ings TC (2010) Winter Active Bumblebees (Bombus terrestris)
 396 Achieve High Foraging Rates in Urban Britain. Plos One 5.
- 7. Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, et al. (2004) Pollen limitation of plant
 reproduction: Ecological and evolutionary causes and consequences. Ecology 85: 2408-2421.
- 8. Johnson SD, Peter CI, Nilsson LA, Agren J (2003) Pollination success in a deceptive orchid is
 enhanced by co-occurring rewarding magnet plants. Ecology 84: 2919-2927.
- 401 9. Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, et al. (2005) Pollen limitation of plant
 402 reproduction: Pattern and process. Annual Review of Ecology Evolution and Systematics 36:
 403 467-497.
- 404 10. Chittka L, Schurkens S (2001) Successful invasion of a floral market An exotic Asian plant has
 405 moved in on Europe's river-banks by bribing pollinators. Nature 411: 653-653.

406	11. Moragues E, Traveset A (2005) Effect of Carpobrotus spp. on the pollination success of native
407	plant species of the Balearic Islands. Biological Conservation 122: 611-619.
408	12. Nielsen C, Heimes C, Kollmann J (2008) Little evidence for negative effects of an invasive alien
409	plant on pollinator services. Biological Invasions 10: 1353-1363.
410	13. Stout JC, Morales CL (2009) Ecological impacts of invasive alien species on bees. Apidologie 40:
411	388-409.
412	14. Hawes C, Haughton A, Osborne JL, Roy D, Clark S, et al. (2003) Responses of plants and
413	invertebrate trophic groups to contrasting herbicide regimes in the Farm Scale Evaluations
414	of genetically modified herbicide-tolerant crops. Philosophical Transactions of the Royal
415	Society 358: 1899-1913.
416	15. Knight ME, Osborne JL, Sanderson RA, Hale RJ, Martin AP, et al. (2009) Bumblebee nest density
417	and the scale of available forage in arable landscapes. Insect Conservation and Diversity 2:
418	116-124.
419	16. Comba L, Corbet SA, Barron A, Bird A, Collinge S, et al. (1999) Garden flowers: insect visits and
420	the floral reward of horticulturally-modified variants. Annals of Botany 83: 73-86.
421	17. Comba L, Corbet SA, Hunt L, Warren B (1999) Flowers, nectar and insect visits: Evaluating British
422	plant species for pollinator-friendly gardens. Annals of Botany 83: 369-383.
423	18. Goulson D, Hughes WOH, Derwent LC, Stout JC (2002) Colony growth of the bumblebee, Bombus
424	terrestris, in improved and conventional agricultural and suburban habitats. Oecologia 130:
425	267-273.
426	19. Hahs AK, McDonnell MJ, McCarthy MA, Vesk PA, Corlett RT, et al. (2009) A global synthesis of
427	plant extinction rates in urban areas. Ecology Letters 12: 1165-1173.
428	20. Thompson K, Jones A (1999) Human population density and prediction of local plant extinction in
429	Britain. Conservation Biology 13: 185-189.
430	21. Frankie GW, Rizzardi M, Vinson SB, Griswold TL (2009) Decline in Bee Diversity and Abundance
431	from 1972-2004 on a Flowering Leguminous Tree, Andira inermis in Costa Rica at the
432	Interface of Disturbed Dry Forest and the Urban Environment. Journal of the Kansas
433	Entomological Society 82: 1-20.
434	22. McFrederick QS, LeBuhn G (2006) Are urban parks refuges for bumble bees Bombus spp.
435	(Hymenoptera : Apidae)? Biological Conservation 129: 372-382.
436	23. Ahrne K, Bengtsson J, Elmqvist T (2009) Bumble Bees (Bombus spp) along a Gradient of
437	Increasing Urbanization. Plos One 4.
438	24. Matteson KC, Ascher JS, Langellotto GA (2008) Bee richness and abundance in New York city
439	urban gardens. Annals of the Entomological Society of America 101: 140-150.
440	25. Osborne JL, Martin AP, Shortall CR, Todd AD, Goulson D, et al. (2008) Quantifying and comparing
441	bumblebee nest densities in gardens and countryside habitats. Journal of Applied Ecology
442	45: 784-792.
443	26. Fetridge ED, Ascher JS, Langellotto GA (2008) The Bee Fauna of Residential Gardens in a Suburb
444	of New York City (Hymenoptera: Apoidea). Annals of the Entomological Society of America
445	101: 1067-1077.
446	27. Goulson D, Lepais O, O'Connor S, Osborne JL, Sanderson RA, et al. (in review) Effects of land use
447	at a landscape scale on bumblebee nest density and survival. Journal of Applied Ecology.
448	28. Clapham AR, Tutin TG, Moore DM (1987) Flora of the British Isles. Cambridge: Cambridge
449	University Press. 688 p.

450	29. Darwin C (1891) The effects of cross and self fertilisation in the vegetable kingdom. London: John
451	Murray.
452	30. Knuth P (1906) Handbook of flower pollination: Volume I. Oxford: Clarendon Press.
453	31. Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their
454	relationship to body size. Oecologia 153: 589-596.
455	32. Osborne JL, Clark SJ, Morris RJ, Williams IH, Riley JR, et al. (1999) A landscape scale study of
456	bumble bee foraging range and constancy, using harmonic radar. Journal of Applied Ecology
457	36: 519-533.
458	33. Knuth P (1908) Handbook of flower pollination: Volume II. Oxford: Clarendon Press.
459	34. Knuth P (1909) Handbook of flower pollination: Volume III. Oxford: Clarendon Press.
460	35. Firbank LG, Heard MS, Woiwod IP, Hawes C, Haughton AJ, et al. (2003) An introduction to the
461	Farm-Scale Evaluations of genetically modified herbicide-tolerant crops. Journal of Applied
462	Ecology 40: 2-16.
463	36. Knight ME, Bishop SE, Martin AP, Osborne JL, Hale RJ, et al. (2005) An interspecific comparison of
464	foraging range and nest density of four bumblebee (Bombus) species. Molecular Ecology 14:
465	1811-1820.
466	37. Osborne JL, Martin AP, Carreck NL, Swain AL, Knight ME, et al. (2008) Bumblebee flight distances
467	in relation to the forage landscape. Journal of Animal Ecology 77: 406-415.
468	38. Cresswell JE, Osborne JL, Goulson D (2000) An economic model of the limits to foraging range in
469	central place foragers with numerical solutions for bumblebees. Ecological Entomology 25:
470	249-255.
471	39. Hegland SJ, Grytnes JA, Totland O (2009) The relative importance of positive and negative
472	interactions for pollinator attraction in a plant community. Ecological Research 24: 929-936.
473	
474	
475	

476

477 Figure legends

478 Figure 1. Map of experimental sites.

The extent of each farm hosting the field margin sites is shown in contrasting shading. Field bean
sites are indicated with circle symbols, oilseed rape sites with triangles and wheat sites with squares.
The garden sites are shown with crosses. The area of the map is entirely located within Ordnance
Survey square containing Rothamsted Research (TL 13415 13598). Sites on different farms are a
minimum of 1750 m apart. Sites next to contrasting crops on the same farm fit within a circle of
radius 1000 m. The garden treatment sites are all within the Harpenden town conurbation. ©
Crown Copyright/database right 2010. An Ordnance Survey/EDINA supplied service.

486

487 Figure 2. Bee forage flower density in field margins and garden borders.

488 Average number of flowers (±s.e.m.) of bee forage flower species in field margins and garden

- 489 borders (expressed per 200 m of transect length) for each observation period. A Comparison
- 490 between garden borders and arable field margins; **B** Comparison of the abundance of flowers in the
- 491 margins of three different arable crops.

492

493 Figure 3. Density of social bees visiting flowers in field margins and garden borders.

494 Mean number of social bees (±s.e.m.) observed visiting flowers in arable field margins or garden

- border (expressed per 200 m of transect length) for each observation period. A Comparison
- 496 between garden borders and arable field margins; **B** Comparison of the number of bees visiting
- 497 flowers in arable field margins of three different crop species.

498

499 Figure 4. Seed set in *G.hederacea* (ground ivy) plants growing in different habitats.

500 Average number of seeds set per flower (±s.e.m.) in ground ivy (*G. hederacea*) which only flowered 501 during the first two observation periods. **A** Comparison between plants in gardens and those in

502 arable habitats; **B** Comparison of seed-set for plants grown next to three different arable crops.

503

504 Figure 5. Fruit set in *L.corniculatus* (birdsfoot trefoil) plants growing in different habitats.

505 Average proportion of pods setting fruit (±s.e.m.) in bird's foot trefoil (*L. corniculatus*) in different

- 506 observation periods. A Comparison between plants in gardens and those in arable habitats; B
- 507 Comparison of fruit-set for plants grown next to three different arable crops.

508

509

510 Tables

511 Table 1. Types of insect flower visitors observed on field margins and garden borders.

	Garden border	Arable field margin
Bumblebees	13.20 ± 2.58	7.98 ± 1.57
Honey bees	5.63 ± 1.18	1.13 ± 0.34
Solitary bees	0.95 ± 0.70	1.53 ± 0.41
Other flower visitors	7.6 ± 5.21	18.3 ± 3.01

512

513 The average number of insects observed visiting flowers in transects along garden borders and

arable field margins (expressed as per 200 m transect length). Values given are means of all four

observation periods (± s.e.m.). In all cases n=20 for garden border, and n=60 for arable field

516 margins.

