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H I G H L I G H T S
� In primitively eusocial insects, it is often unclear how caste is determined.

� We investigate the evolutionary stability of caste determination by mating status.
� The model fits field observations if early workers are more valuable than late ones.
� High male mortality and low worker mortality make this fit more likely.
� High worker value and a long period over which workers help also make it more likely.
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a b s t r a c t

Eusocial animal societies are typified by the presence of a helper (worker) caste which predominantly
cares for young offspring in a social group while investing little in their own direct reproduction. A key
question is what determines whether an individual becomes a worker or leaves to initiate her own
reproduction. In some insects, caste is determined nutritionally during development. In others, and in
vertebrate societies, adults are totipotent and the cues that determine caste are less well known. The
mate limitation hypothesis (MLH) states that a female's mating status acts as a cue for caste
determination: females that mate become reproductives, while those that fail to mate become workers.
The MLH is consistent with empirical observations in sweat bees showing that over the course of the
nesting season, there are increases in both the proportion of females that become reproductives and the
frequency of males in the mating pool. We modelled a foundress's offspring sex-ratio strategy to
investigate whether an increasingly male-biased operational sex-ratio over time is evolutionarily stable
under the MLH. Our results indicate that such a pattern could occur if early workers were more valuable
than late workers. This pattern was then more likely if male mortality was high, if worker mortality was
low, if the value of a worker was high and if the period over which workers can help was short. Our
results suggest that the MLH can be evolutionarily stable, but only under restrictive conditions.
Manipulative experiments are now required to investigate whether mating determines caste in nature.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

One of the key questions about social evolution concerns caste
determination: what determines whether an individual chooses to
become a helper (worker) within its natal group or leaves to
initiate its own reproduction as a breeder (queen)? Since Hamilton
(Hamilton, 1964), a large body of work has focussed on the
functional aspects of this question: under what conditions are
genetic relatedness, and the benefit/cost ratio, high enough to
promote helping? There has been less emphasis, however, on the
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mechanistic aspect: what cues or signals do individuals use in
making these decisions? In so-called ‘highly eusocial’ insects such
as ants and honeybees, female caste is determined during imma-
ture development. For example, adult workers may lack functional
spermathecae, so that they cannot mate. Caste is then thought to
usually be determined through the quantity and quality of food
provided for immature larvae, although instances of genetically
based determination have recently been highlighted (Schwander
et al., 2010).

By contrast, in so-called ‘primitively eusocial’ species, such as
many wasps and bees, adults are totipotent and are thought to
choose what strategy to follow based on information about their
own phenotypes and the social and physical environment. Thus,
newly emerged adult females in temperate regions might use cues
associated with time of year and their own condition when
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deciding whether to immediately start helping in their natal
groups or enter hibernation and initiate new nests as reproduc-
tives the following year (e.g. Reeve et al., 1998; Hunt et al., 2010;
Field et al., 2010; West-Eberhard, 2003). Parents and other nest-
mates could also influence decision-making, for example by
inducing ‘subfertility’ in offspring (West-Eberhard, 1975; Craig,
1983; Linksvayer and Wade, 2005). Additionally, recent work on a
polistine wasp suggests that adult females provide direct signals
that developing larvae, or the adults feeding them, use to deter-
mine offspring caste (Suryanarayanan et al., 2011).

In this paper, we focus on the feasibility of another potential
cue for caste determination: mating status. Yanega (1989, 1997)
suggested that whether a female becomes a helper depends on
whether she mates within a short time of reaching adulthood. We
will follow Yanega in referring to this as the ‘mate limitation
hypothesis’ (MLH). The empirical observations that led (Yanega,
1989, 1997) to formulate the MLH were made on sweat bees
(Halictidae). Sweat bees are especially valuable for understanding
the genetic and environmental mechanisms underlying the origins
of eusociality because, unlike nearly all other hymenopteran
lineages: (1) there are closely related eusocial and non-social
(‘solitary’) sweat bee species; (2) there is evidence of repeated
switching between eusociality and non-sociality during sweat bee
evolution and (3) there are socially polymorphic sweat bees where
females live in social groups in some populations, but are solitary
in other populations of the same species; or both social and non-
social nests exist in the same population (Field et al., 2010, 2012;
Gibbs, 2012; Yagi and Hasegawa, 2010).

We assume a life history (Fig. 1), documented in Yanega's data
(Yanega, 1989), that is probably typical of many temperate primitively
eusocial wasps and bees, such as many sweat bees (Halictus, Lasio-
glossum) and paper wasps (Polistes). In spring, each overwintered,
mated female, known as a foundress, constructs a separate nest where
she alone rears a first brood (B1) of offspring of both sexes. When the
B1 females mature, some mate with B1 males then overwinter to
become foundresses the following year (e.g. Reeve et al., 1998; Yanega,
1989). Other B1 females, however, become helpers which forage to
provision a second brood (B2) of male and female offspring. These
offspring are produced by the foundress if she is still alive, or by one of
the B1 females if the foundress is dead (e.g. Field et al., 2010; Yanega,
1989) (Fig. 1). After mating, all B2 females overwinter, but helpers
never subsequently overwinter (e.g. Yanega, 1989). Males die before
winter and are not involved in nesting.

We focus on factors that determine whether B1 females
become helpers or overwinter and become reproductives the
following year. According to the MLH, females that mate during
Fig. 1. The life cycle of colonies in our model. At the beginning of the season,
hibernating females born the previous year, known as foundresses, each start a
new colony and alone raise an initial brood (B1) consisting of males, workers, and
hibernators: females that will enter hibernation to become foundresses the
following year. Workers help the foundress to rear a second brood (B2) consisting
of further males and hibernators. Increasing width of bars representing males
indicates increasing male frequency in the mating pool, as found by Yanega (1989)
in Halictus rubicundus. Increasing width of bars representing new hibernators
indicates an increasing proportion of females becoming hibernators rather than
workers. Modified from Fig. 1 in Chapuisat (2010).
the critical period enter hibernation whereas females that do not
mate become workers (but do not lose the ability to mate
subsequently). In his detailed study of Halictus rubicundus,
Yanega (1989) observed that during the period when B1 offspring
mature to adulthood: (1) the probability that a B1 female will
enter hibernation is greater for late-maturing females than early-
maturers, gradually increasing until late in the season when all
females hibernate; (2) the sex-ratio of offspring in the mating pool
appears to become gradually more male-biased. Thus, an increas-
ing probability of entering hibernation is associated with an
increasingly male-biased operational sex ratio (OSR) and therefore
presumably with an increased chance that female offspring will
mate promptly after reaching adulthood. H. rubicundus is socially
polymorphic and the B1 sex-ratio is more male-biased in solitary
than social populations (Yanega, 1997; Soucy, 2002). Thus, the
MLH can also potentially explain the existence of univoltine
solitary populations, in which all B1 females enter hibernation
and none become workers (Soucy, 2002). Note that these argu-
ments contrast with ideas regarding the sex-ratio during the B2
period, where an increasingly female-biased sex ratio is expected
(Richards et al., 1995) and has been observed (Yanega, 1989). The
main difference between these cases is that in the B2 period
workers are not produced, thus changing the potential value of
females relative to males.

Although the MLH is often referred to in studies of sweat bees (e.g.
Soucy, 2002; Plateaux-Quenu and Packer, 1998; Hirata and Higashi,
2008; Soro et al., 2010; Soucy and Danforth, 2002), Yanega's (1989)
data were only correlative. Furthermore, the evolutionary stability of
the MLH seems questionable, as follows. Under the MLH, the observed
pattern, whereby late-maturing B1 females are more likely to mate,
relies on the OSR becoming increasingly male-biased as the matura-
tion period progresses. This could be driven by the foundresses that
produce the B1 generation, if they produce a sex-ratio that is initially
female-biased but gradually becomes more male-biased. Effectively,
the options of B1 offspring would be constrained by the sex-ratio
strategy of foundresses. But what is then to stop some foundresses
from ‘cheating’ by producing early males to take advantage of early
females that would otherwise fail to mate and so become workers
under the MLH? If mating directly determines caste, matings by such
early males would cause early females to become reproductives the
following year, thus transmitting the early males’ genes. In this paper,
we aim to model temporal changes in the OSR under the MLH. In
particular, we determine whether or not, under the MLH, there are
evolutionarily stable conditions where the mating pool sex-ratio does
become gradually more male-biased over time, consistent with
Yanega's (1989) observations and interpretation. In other words, we
test whether Yanega's field observations are consistent with his MLH
hypothesis.
2. Methods

We use an Evolutionary Stable Strategy (ESS) model in which
we build fitness equations for the sex-ratio strategies of foun-
dresses under Yanega's (1989, 1997) ‘mate limitation hypothesis’
(MLH). Thus, we assume that whether a B1 female becomes a
worker depends on whether she mates soon after reaching
adulthood. Workers help to produce a second generation (B2)
whose females all enter hibernation. The parameters and symbols
used in this section and in the results are summarised in Table 1.

2.1. The model

2.1.1. An individual's strategy
For mathematical convenience, we divide the B1 brood rearing

period into T successive time steps and assume that foundresses



Table 1
Definition of the parameters and symbols.

Value
name

Definition Definition in model with worker mortality (if different)

a Value of a worker relative to a B1 hibernator Value of a worker, relative to a B1 hibernator, per time step that the worker remains alive
b Fitness obtained from B2 hibernators in the absence of

workers
Fitness obtained from B2 hibernators in one time step in the absence of workers

Ft Number of females in the mating pool at time t
m Male mortality rate
Mt Number of males in the mating pool at time t
mω NA Worker mortality rate
n Number of foundresses in the population
p Number of brood produced by a given foundress
PFM Proportion of females in the mating-pool for a given solution

to the model
st, s Population mean brood-production sex ratio at time t, and

vector of all values of st respectivelyn

T Number of time steps in the B1 brood emergence period
Tω NA Number of time steps in the B2 brood-rearing period (the max number of time steps over

which a worker emerging on the first time step can help)
Wi Total fitness of focal foundress
Whi ; WMi

Fitness of focal foundress from B1 hibernators and B1 males
respectively

Wωi Fitness of focal foundress from the B2 brood (obtained
through B1 workers)

Xt Sex ratio at time t, expressed as Mt/Ft
αt Probability that a female will mate at time t
β Slope through the ranked values of PFM against time
ωi Total number of workers produced by the focal foundress

n Subscript i indicates a value for a focal female instead of a population mean.
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can control the sex ratio of their brood at each time step
independently. In the main text, we primarily model two time
steps (T¼2). These two steps should not be confused with the two
different brood-rearing periods (B1 and B2).

A foundress's brood sex-ratio strategy for the B1 phase thus
consists of T sex-ratios (proportion of brood that are female on
each time step). Specifically, the ith foundress's strategy is defined
by the vector si ¼ ðsi1 ; si2 ;…; siT Þ, such that on any given time step
t, the foundress produces a proportion sit of females (0≤sit ≤1). In
other words, sit is the ith foundress's brood sex ratio at time step t.

2.1.2. The population
The population as a whole produces the sex ratio s¼

ðs1; s2;…; sT Þ, where st is the population mean of sit (we assume
that all strategies produce the same number of offspring). The
population is assumed to be sufficiently large that s is not affected
by a focal foundress's value of si.

The sex ratio we are primarily interested in is that in the B1
mating pool. The MLH suggests that B1 females disappear from the
mating pool relatively rapidly, either because they fail to mate and
so become workers, or because they mate and enter hibernation.
Therefore, in our model, females do not leave the mating pool due
to mortality. Males, on the other hand, continue to form part of the
mating pool until they die or until time T, when all B1 females
have reached adulthood, so that no further matings are possible.
We assume that B1 males do not survive long enough to mate with
B2 females.

We assume that females can mate only on the time step at
which they reach adulthood. Therefore, the number of females in
the mating pool at time t is

Ft ¼ stnp ð1Þ
where n is the number of foundresses in the population and p is
the number offspring produced by a foundress each time step.

The number of males produced in a given time step is

Φt ¼ ð1−stÞnp ð2Þ
However, males that have survived from previous time steps will
also be present. Ifm is the mortality of males from one time step to
the next, then the number of males present in the mating pool at
time t is

Mt ¼ ∑
t

j ¼ 1
½Φjð1−mÞt−j� ¼ ∑

t

j ¼ 1
½ð1−sjÞnpð1−mÞt−j� ð3Þ

Note that if m¼ 1 then the number of males in the mating pool
at a given time step is simply the number that reach adulthood in
that time step, since no males survive between steps.

The sex ratio X in the mating pool at time t is Mt=Ft , that is

Xt ¼
∑t

j ¼ 1½ð1−sjÞnpð1−mÞt−j�
stnp

ð4Þ
2.1.3. Mating probability
The probability that a female will mate on a given time step (αt)

is a function of the number of males and females in the mating
pool at that time, that is a function of Xt . We assume that αt should
increase as Xt increases and that this increase should follow a
curve of diminishing returns (an extra male when male numbers
are very small will have a larger effect than when males are
already very common). We also assume that when the sex ratio is
1:1, most females will mate successfully. Finally, we stipulate that
when there are no males in the population, the probability that a
female will mate must be 0, and that when males are rare, αt4Xt

(implying that males are capable of multiple mating). These
properties can be produced by an exponential function such as

αt ¼ 1−e−3Xt ; ð5Þ
or a hyperbolic function such as

αt ¼ 1−
1

5Xt þ 1
; ð6Þ

These are standard curves of diminishing returns with parameters
chosen manually to fulfil the above assumptions.
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2.1.4. Fitness from female production
We define the fitness of a female that goes into hibernation as

1. This includes the chance of mortality during the hibernation
period. The fitness that a foundress gains at time t from producing
hibernating females is equal to the number of females she
produces at time t multiplied by the probability that a given
female will mate and therefore enter hibernation under the MLH.
The ith foundress's fitness from B1 hibernators across all time
steps is therefore

Whi ¼ ∑
T

t ¼ 1
sit pαt ð7Þ

If she fails to mate (with probability 1−α), a female becomes a
worker, so that the number of B1 workers which a foundress
produces is

ωi ¼ ∑
T

t ¼ 1
sit pð1−αtÞ ð8Þ

We have now obtained values for the number of hibernators,
workers and males which a foundress can expect to produce over
the course of the B1 period. Subsequent to this, further hibernators
and males will be produced in the B2 period. We assume that a
foundress's fitness from the B2 brood will depend on the number
of workers which she has produced in the B1 period, and on how
many individuals a worker can expect to rear in the B2 brood. For
now, we summarise all the benefits that workers can provide to
the nest in a single value Wωi , which we define as the fitness that a
foundress obtains through B2 brood, and which is an increasing
function of ωi. Indeed, a larger number of workers normally leads
to larger total B2 productivity (e.g. Yanega, 1989; Strohm and
Bordon-Hauser, 2003).

2.1.5. Fitness from male production
A foundress's fitness from B1 males (WMi

) depends on how
many hibernating females her sons successfully mate with. We
assume that each successful mating on the part of her sons is
worth as much to a foundress as a daughter that enters hiberna-
tion (our standard of 1). If we assume that each B1 female mates
only once, then the number of B1 females that a son can expect to
mate with at time t is the number of females which will mate at
time t divided by the number of males present at time t, that is
Ftαt=Mt . Taking into account the fact that these sons can also
survive to mate in future time steps, the overall fitness that a
foundress gets from the males she produces at time t is

WΦi ðtÞ ¼ ∑
T−t

k ¼ 0
ð1−sit Þpð1−mÞk Ftþkαtþk

Mtþk

� �
ð9Þ

Most male bees and wasps can mate repeatedly (Shilpa et al.,
2012; Paxton, 2005), and males can certainly survive beyond their
date of birth (e.g. J.F unpublished observations of marked male H.
rubicundus), so that early-produced males are indeed likely to be
more successful than late-produced ones, who will find them-
selves surviving beyond the end of the period of female emer-
gence. The overall fitness of a foundress from males is therefore

WMi
¼ ∑

T

t ¼ 1
WΦi ðtÞ ¼ ∑

T

t ¼ 1
∑
T−t

k ¼ 0
ð1−sit Þpð1−mÞk Ftþkαtþk

Mtþk

� �
ð10Þ

2.1.6. Overall fitness
A female's overall fitness is the sum of her fitness from B1

hibernators, B2 brood and B1 males:

Wi ¼Whi þWωi þWMi

¼ ∑
T

t ¼ 1
sit pαt

� �
þWωi þ ∑

T

t ¼ 1
∑
T−t

k ¼ 0
ð1−sit Þpð1−mÞk Ftþkαtþk

Mtþk

� �
; ð11Þ
If we substitute the terms that are functions of si and s (except α
and Wω, which we leave undefined for now) we get

Wi ¼ ∑
T

t ¼ 1
sit pαt

� �
þWωi

þ ∑
T

t ¼ 1
∑
T−t

k ¼ 0
ð1−sit Þp 1−mð Þk stþkαtþk

∑tþk
j ¼ 1 ð1−sjÞ 1−mð Þtþk−j

h i
2
4

3
5 ð12Þ

Because the sex ratio produced by one foundress will not
significantly affect the sex ratio of the population, the fitness that
a foundress obtains from each offspring of a given sex is indepen-
dent of the brood sex ratio she produces. Eqs. (7) and (9) implicitly
assume that the fitness which a foundress obtains from hiberna-
tors (and males) is a linear function of the number of hibernators
(and males) she has produced. That is, each reproductive offspring
of a given sex is worth as much as any other, irrespective of the
total number that the foundress produces. If we assume that the
value of workers, in the form of offspring in the B2 generation that
workers help to rear, is a linear function of the number of workers
(i.e. each worker in a nest is worth as much as the last), then the
fitness obtained by a foundress via B2 brood is

Wωi ¼ aωi þ b

¼ a ∑
T

t ¼ 1
sit pð1−αtÞ

� �
þ b ð13Þ

where a and b are the slope and intercept of the linear relation-
ship. b can be seen as the fitness that a foundress obtains from B2
offspring in the absence of workers, while a is the fitness added by
each worker. a can therefore be seen as the value of a worker
relative to a B1 hibernator.

In this case, because Whi ,Wωi andWMi
are all linear functions of

si, Wi will also be a linear function of si and ∂Wi=∂si will be
independent of si. In order to determine what temporal patterns
the MLH leads to in the OSR, we seek to solve ∂Wi=∂si ¼ 0, that is
the t simultaneous equations:

∂Wi

∂sit
¼ 0 ð14Þ

As si has disappeared from the differentials, all strategies will have
the same fitness when the equilibrium conditions are satisfied.
This is a similar situation to classical sex ratio theory, which shows
that the stable Environmental Sex Ratio (ESR) is always 1:1, but
that all strategies can co-exist so long as the ESR is maintained.

2.2. Solving the model

Consider a simple version of the model in which there are only
two time steps (T ¼ 2). The first time step then represents ‘early’
B1 offspring; the second time step represents ‘late’ offspring. The
differential equations are then

∂Wi
∂si1

¼ p α1 þ að1−α1Þ− s1
1−s1

α1 þ ð1−mÞ s2
ð1−s1Þð1−mÞþð1−s2Þ α2

h i
∂Wi
∂si2

¼ p α2 þ að1−α2Þ− s2
ð1−s1Þð1−mÞþð1−s2Þ α2

h i
8><
>: ð15Þ

The values of s1 (the sex-ratio of early offspring) and s2 (the
sex-ratio of late offspring) will change over evolutionary time as a
response to natural selection on sex ratio strategy. We therefore
seek the values of s1 and s2 in which Eq. (15) are simultaneously
equal to 0.

b and n have disappeared from (15), and it can be seen that p
will do the same when Eq. (15) are set to 0. We are therefore left
with m (male mortality) and a (the incremental value of workers)
as the parameters that could affect the solutions to the model. This
remains the case when T42.



Fig. 2. Illustration of the procedure used to interpret the results of the model. In this case, the model was run with five time steps (T¼5), generating a brood sex-ratio
production strategy (the proportion of larvae reaching adulthood that are females) at each step (a). Using this solution, the proportion of females in the mating pool (PFM) at
each time step could be calculated, bearing in mind that males can remain in the mating pool for more than one time step (in this example, m¼0.2, i.e. 80% of males survive
from one step to the next), whereas females always exit at the end of the time step in which they reached adulthood (b). These PFM values were ranked and the slope (β) of
these points against time was calculated (c). The plots in this figure were generated from one of the four solutions obtained from the model with additional parameter values
a¼10 and with the value of workers independent of the time step when they mature.
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The system of differential equations was solved numerically
using the open source mathematical software package SAGE
(v. 2.6.1, www.sagemath.org). We used iterative methods that
required an initial value of s to be provided (see Online Resources
1 for more details). For a given set of parameter values, we
searched for solutions with a range of initial guesses (Online
Resources 1) in order to identify the existence of multiple solu-
tions (local optima).

2.3. Solving the differential equations when worker value is
dependent on emergence time

The above model implicitly assumes that workers have the
same value, regardless of the time step at which they reach
adulthood. We can relax this assumption by including a term for
worker mortality (mω) and a term for the number of time steps
after which the B2 brood-rearing period ends (Tω; Tω≥T). A female
reaching adulthood and becoming a worker at time t can therefore
help, but also suffers mortality, for up to Tω−t time steps. This
means that early-maturing workers can potentially help for longer
than late-maturing ones and so help to produce more B2 offspring.
A priori, this scenario would seem to have the potential to select
for an initially female-biased offspring sex ratio, as observed by
Yanega (1989).

Here a is defined as the productivity of each worker at each
time step during which it survives, which is again assumed to be
constant irrespective of the number of workers present in the nest.
The overall value of a worker that emerges at time t is therefore

a ∑
Tω−tþ1

k ¼ 1
ð1−mωÞk ð16Þ

Note that this implies that workers pass an initial round of
mortality before beginning to work. The overall fitness that a given
foundress gets from workers is

Wωi ¼ ∑
T

t ¼ 1
sit pð1−αtÞa ∑

Tω−tþ1

k ¼ 1
ð1−mωÞk

 !
þ b

" #
ð17Þ

With T ¼ 2, this gives us

∂Wωi

∂si1
¼ apð1−α1Þ ∑

Tω

k ¼ 1
ð1−mωÞk

 !
ð18Þ

and

∂Wωi

∂si2
¼ apð1−α2Þ ∑

Tω−1

k ¼ 1
ð1−mωÞk

 !
ð19Þ
Whereas the only terms that could affect the solutions to Eq.
(15) were m and a, here we have two extra terms that need to be
considered:mω (the mortality rate of workers) and Tω (the number
of steps available in which to produce B2 offspring). These
equations were again solved in SAGE using the same methods as
described above.

2.4. Number of time steps

The model was initially solved with two time steps (T¼2). To
examine whether the results from the model with two time steps
were consistent when the number of time steps was increased, the
model was also run with 5 time steps (T¼5).
3. Results

For a given set of parameter values, the solution to the model
was a strategy consisting of a stable, population-wide B1 brood-
production sex ratio for each time step. For a simulation run with T
time steps, the result therefore consists of T values. For each
production sex ratio strategy, we can also calculate the resulting
proportion of females in the mating pool (PFM) at each time step.
To summarise these T values of PFM as a single value, and to better
illustrate any temporal trend graphically, we ranked them then
calculated the slope through the ranks (β) against time
(−1oβo1). This process is illustrated in Fig. 2. β can therefore
be seen as the extent to which the female-bias of the mating pool
increases over time. A positive β indicates that the mating pool
tends to become more female-biased with time. A negative β
indicates that the mating pool tends to become less female-biased
over time, as observed by (Yanega, 1989). Because both the x and y
values of this regression range from 1 to T, β must always lie
between −1 and 1. For results from the two time steps model, β can
of course be only 1, 0 or −1. Here we present results using the
hyperbolic equation for α (Eq. (6), where α is a female's probability
of mating, given the sex ratio). Results using Eq. (5) are qualita-
tively similar, though some small differences existed (Online
Resources 2).

3.1. Model with two time steps

The results of the model run with two time steps are shown in
Figs. 3 and 4. It should be noted that some of the parameter
combinations represented in Fig. 4c and d generated multiple
solutions. However, this occurred in only a few cases, and the
alternative solutions did not change the trends discussed below.



Fig. 3. Surface plot showing the relationship between male mortality (m), the
relative value of workers (a) and the slope (β) of the ranked PFM against time (see
Fig. 2) in the two time-step model where all workers have the same value. A
negative slope (β) indicates that the mating pool becomes more male-biased over
time, as observed by Yanega (1989). The results indicate that such an increase in
male-bias over time was never possible. We note that some parameter combina-
tions produced two solutions (though only one is represented here). These always
occurred at points that were on the boundary between the β¼−1 and β¼1 planes
and that had a solution on each of these planes.

Fig. 4. Surface plots showing the relationship between male mortality (m, a and b) or wo
ranked PFM against time in the two time step model. We note that the range of the a axis
the m axis in (a) and (b). (a) Tω¼2, mω¼0.1. (b) Tω¼4, mω¼0.1. (c) Tω¼2, m¼0.6. (d) T
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We therefore represent only one solution graphically for each of
these cases.

We first examine the model where all workers had the same
value regardless of their emergence times. Under these conditions,
a lower PFM in the second time step compared to the first never
occurred (Fig. 3). Either the PFM was higher in the second time
step (i.e., β40, the mating pool becomes more female-biased with
time) or it was the same on both time steps (β¼0). A PFM equal at
both time steps occurred when workers had such high value that
no males were produced on either time step (PFM¼1), leading to a
B1 brood consisting entirely of workers (since none of the females
could mate). Hibernators are then produced only in the B2
generation. This tended to be the case when worker value (a)
and male mortality (m) were high. The only other conditions
under which the PFM was equal at both time steps occurred when
male mortality was equal to 1; this is because all time steps
effectively become completely independent in this case and the
optimal strategy must therefore be the same for all steps. It thus
appears that, when workers all have the same value, the MLH
cannot lead to the temporal increase in the proportion of males in
the mating pool reported by Yanega (1989).

In the model where early workers could be more valuable than
late ones, however, both increases and decreases in PFM with time
were possible. There tended to be a lower PFM in the second time
step relative to the first (βo0, that is a decrease in the mating
pool's female bias with time) when male mortality (m) was high
(Fig. 4a and b), when worker mortality (mω) was low (Fig. 4c and
rker mortality (mω, c and d), the relative value of workers (a) and the slope (β) of the
differs between plots and that the mω axis in (c) and (d) is reversed compared with

ω¼4, m¼0.6.



Fig. 5. Three possible solutions to the model with the following parameter values:
m¼0.3, mω¼0.2, a¼3, T¼5, Tω¼10, showing the variability of solutions that can
emerge. The lines represent the stable proportion of females in the brood reaching
adulthood (averaged over the population) at each time step. Points are shifted
slightly vertically in order to show overlapping lines.
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d), and when the value of a worker (a) was high (Fig. 4a–d).
As male mortality increases, the relative value of an early male
decreases and early females therefore become relatively more
valuable. Similarly, as worker mortality decreases, the relative
value of early females increases (because those that become
workers will suffer lower mortality). As the value of workers
increases, the proportion of females in the mating pool increases
at both time steps, but does so more strongly for the first time step
than the second when β is close to 0 (Online Resources 3).
Increasing the value of workers will therefore tend to favour a
decrease in the proportion of females in the mating pool
with time.

As in the model where early and late workers are equally
valuable, exclusive worker production can occur on both time
steps if workers have high value relative to foundresses or males
(if the time over which workers can help (Tω) is high, male
mortality (m) is high or worker value (a) is high). This leads to
an apparent reversal of the result that β decreases with increasing
worker value (a), because as a increases, β changes from −1 to 0
(from a decreasing female-bias to no change in the female bias
with time) (Fig. 4b). In fact, it may still be the case that selection
favours females at early time steps even more strongly than in
later steps, but the biological limit of 1 imposed on PFM leads to
no change in the PFM with time because PFM is equal to one at all
time steps (exclusively worker production).

When there are more time steps during which workers can
help to produce B2 offspring (larger Tω) then there is less chance of
obtaining a negative β, i.e. a temporal decrease in the proportion of
females in the mating pool of the kind observed by Yanega (1989)
(Fig. 4). This occurs because extending the number of time steps
for which workers can help makes late workers almost as valuable
as early workers. For example, taking the case where worker
mortality is 0.5, if workers can help for two time steps then an
early worker would be 1.5 times as valuable as a late worker,
whereas if workers can help for 10 time steps, an early worker
would have around the same value as a late worker. It is perhaps
surprising that this effect is not stronger. An increase in Tω also
leads to a large increase in the chances of finding exclusive worker
production in both time steps (Fig. 4).

3.2. Model with multiple time steps

When run with multiple time steps, a much greater number of
parameter combinations generated several solutions, and the trends of
β against the various parameters were not monotonic. This makes it
hard to draw general conclusions from the results, although the
apparent trends are similar to those obtained from the two time-
step model (see Online Resources 2 for more details). Solutions with
negative β (a decrease in the female-bias of the mating pool with time)
were possible for many parameter combinations in which worker
value was very high (a≥5). These solutions were mostly strategies of
producing an initial 100% female brood on the first time step or the
first two time steps, which led to an overall negative slope for PFM,
but never a monotonic decrease in PFM over time (e.g., see the
example depicted in Fig. 2).

An interesting feature of many of the multiple solutions is that
they consist of producing exclusively one sex on some time steps,
and exclusively the other sex on other time steps, while the order
in which the sexes are produced can vary between solutions found
with the same combination of parameter values (Fig. 5). It seems
that populations can become “locked” into producing a certain sex
at a certain time step, because producing that sex is advantageous
evenwhen all individuals are producing it, so that a population sex
ratio of 100% of either sex at a given time step is stable, and a
variety of “locked” states can then exist from one time step to the
next. In nature, however, this is unlikely to occur as it requires that
the offspring sex ratio be precisely controlled on each day that
offspring reach adulthood. As brood reach adulthood several
weeks after the eggs are laid, and as foundresses are unlikely to
have perfect control over the developmental period of each
offspring, we consider that random effects on brood sex ratio
timing would prevent these solutions of fluctuating extremes. The
model therefore fails to provide an adequate simulation of reality
when broken down into so many time steps, and we consider it
more informative to focus on the results of the two time step
model, which simulates a much coarser scenario.
4. Discussion

The hypothesis that mating determines caste in primitively eusocial
Hymenoptera has been best developed by Yanega (1989, 1997).
Yanega's hypothesis derived from his detailed demographic data on
the sweat bee H. rubicundus, but could apply just as well to other
temperate primitively eusocial taxa. However, the evidence supporting
the hypothesis was only correlative: late-maturing B1 females were
more likely to enter hibernation and become next year's new queens,
and this was associated with there being a more male-biased sex-ratio
in the mating pool when they matured. Our model assumed that caste
is indeed determined by mating status, as postulated by Yanega
(1989). We could then test whether the temporal pattern in the OSR
that Yanega observed empirically is consistent with the caste deter-
mination mechanism that he proposed.

The main conclusion from our model is that the evolutionarily
stable OSR can either increase or decrease over time, depending on
parameter values. However, with the parameters in our model, a
gradual increase in the proportion of males over time is found only
when early workers are more valuable than late workers. If this is
not the case, then so long as males lifespan is not very short
relative to the period of female emergence, they have greater
reproductive success when produced early, leading to a more
male-biased OSR in the first time step relative to the last (Fig. 3).

Even when early-produced workers were more valuable than
late-produced ones, the temporal trend in the OSR observed by
Yanega (1989) appeared only under some combinations of para-
meter values (Fig. 4). The pattern was more likely, and more
exaggerated, if there was high male mortality (so that early males
were relatively less valuable), low worker mortality (mω) and if
workers were more valuable in general because they had greater
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productivity (high a). Situations where workers are particularly valu-
able will be situations in which they can help to produce many B2
offspring, such as when resources are particularly abundant after B1
workers reach adulthood. Another such situation will be when the B2
rearing season is long (Field et al., 2010; Soucy and Danforth, 2002).
However, under the MLH, a longer period during which workers
contribute to producing B2, while leading to more worker production
overall (unpublished results from our model), actually tends to make it
less likely that the pattern in the OSR reported by Yanega (1989)
occurs. This is because it reduces the benefit of producing early
workers instead of late ones. The amount of time available to rear
each discrete brood is likely to increase at lower latitudes or altitudes
where there is a longer growing season, until the season is long
enough that an extra brood can be fitted in. Under some circum-
stances, notably when workers are very valuable compared to
hibernators in our model, selection led to a situation in which the
first brood of offspring was composed entirely of females which, in the
absence of males, must all becomeworkers under Yanega's hypothesis.
Broods consisting of ≈100% workers do indeed seem to occur in some
primitively eusocial taxa (e.g. Strohm and Bordon-Hauser, 2003;
Packer and Knerer, 1985; Yanega, 1993). Note that conditions reducing
the fitness of all hibernators, for example when founding a new nest is
risky, will not alter the relative fitness of B1 hibernators and workers,
since the latter contribute to reproduction by themselves helping to
produce hibernators.

We note that our model considers the sex-ratio strategy of only the
foundress when the MLH hypothesis is true. It does not consider the
stability of such a strategy from the point of view of workers. Yanega's
(1989) hypothesis implies that B1 females do not choose strategically
whether to become workers or hibernators – it is simply a question of
whether they happen to mate early in life, which itself depends on the
OSR. The question arises as to why individual B1 females would
respond to mating as a cue. In order for the MLH to be evolutionarily
stable, it may also be necessary that the outcome coincides sufficiently
with the reproductive interests of the female whose caste is being
determined. For example, in situations where B1 females would have
much greater inclusive fitness as workers than as hibernators, we
would expect them to evolve to become workers regardless of their
mating status. An alternative explanation for Yanega's (1989) observa-
tions is that earlier-emerging B1 females are more likely to become
workers for strategic reasons, for example because early in the
maturation period there is more time left in the nesting season in
which to be productive as a worker (Field et al., 2010; Soucy and
Danforth, 2002). Selection might then favour late production of males
by foundresses, because males transmit their genes primarily by
mating with females that will enter hibernation and become repro-
ductives (except to the extent that workers occasionally lay female
eggs or become replacement queens (Field et al., 2010; Yanega, 1989)).
In this scenario, the direction of causation is reversed: late-maturing
B1 females are more likely to choose to become reproductives,
independent of their mating status, thus selecting for a later produc-
tion of males and therefore a gradually more male-biased OSR in the
mating pool. Reproductives might also be more likely than workers to
accept mating attempts by males – since females do not need to mate
in order to perform the worker role – explaining why almost all
hibernating reproductives have mated (e.g. Field et al., 2010, 1998)
whereas a variable proportion of workers fail to mate (e.g. Packer and
Knerer, 1985). Yanega (1997) discusses this possible reversal of the
direction of causality.

Our results show that under certain conditions, the MLH can
lead to a gradually more male-biased OSR in the B1 mating pool
over time, and could thus operate in caste determination in the way
hypothesised by Yanega (1989, 1997). To further evaluate the MLH,
experimental manipulations are now required. One possibility might
be to provide or deny newly emerged females access to males in the
lab. Even in the field, it might be possible to systematically remove
adult males as they search for females in the nesting area, and test
whether a larger proportion of B1 females then become workers. Few
data are currently available to test whether there is a causal relation-
ship between mating and subsequent reproductive strategy (Plateaux-
Quenu and Packer, 1998, 1960). Using lab nests of the sweat bee
Lasioglossum albipes, Plateaux-Quenu and Packer (1998) found that 9/
13 B1 females that became workers and had known mating times had
mated on the day that they first left their nests after reaching
adulthood. These rapidly mating workers would seem to contradict
Yanega's (1989) mate limitation hypothesis, although the latency to
mating for females that subsequently entered hibernation was not
available for comparison. Some studies of primitively eusocial insects
suggest that gene expression during development differs between
larvae destined to become workers or hibernators (Hunt et al., 2010),
and that when they reach adulthood, workers have smaller fat bodies
than females that will enter hibernation (Hunt et al., 2010; Plateaux-
Quenu and Packer, 1998; Richards and Packer, 1994). If females then
use their condition as a caste-determining cue, caste might effectively
be determined or biased during immature development rather than in
adulthood. However, some of these data could themselves be biased
because females have been categorised as workers or hibernators
according to body size (e.g. Richards and Packer, 1994), or because
workers and hibernators were sampled at different times of year.
Experimental manipulation suggests that mating may determine caste
in the only known sweat bee with perennial colonies, Lasioglossum
marginatum (Plateaux-Quenu, 1960). Mating in L. marginatum occurs
within the nest, but until their final year of life nests are kept closed
late in the season when males are present so that males cannot gain
access. By experimentally opening a nest early, Plateaux-Quenu (1960)
caused females that would otherwise have been workers to be mated
and become new queens. However, the unique nesting biology of L.
marginatum suggests that its method of caste determination may not
apply to other primitively eusocial taxa.

In summary, our model suggests that Yanega's (1989) mate
limitation hypothesis could produce an evolutionarily stable opera-
tional sex-ratio that becomes more male-biased as the first brood
mating period progresses, thus mimicking the pattern recorded by
Yanega (1989), but only under a few restrictive conditions. An
alternative explanation for this pattern, however, is that later-
emerging first brood females are more likely to become reproductives
for strategic reasons, thus selecting for later male production. The few
empirical data available suggest that caste-determination mechanisms
other than mate limitation may operate in some primitively eusocial
taxa, while mating may indeed determine caste in L. marginatum.
Further manipulative studies, especially in H. rubicundus itself, are now
needed to test Yanega's (1989) hypothesis more thoroughly.
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