SPSS Statistics 17.0 is a comprehensive system for analyzing data. The Complex Samples optional add-on module provides the additional analytic techniques described in this manual. The Complex Samples add-on module must be used with the SPSS Statistics 17.0 Base system and is completely integrated into that system.

Installation

To install the Complex Samples add-on module, run the License Authorization Wizard using the authorization code that you received from SPSS Inc. For more information, see the installation instructions supplied with the Complex Samples add-on module.

Compatibility

SPSS Statistics is designed to run on many computer systems. See the installation instructions that came with your system for specific information on minimum and recommended requirements.

Serial Numbers

Your serial number is your identification number with SPSS Inc. You will need this serial number when you contact SPSS Inc. for information regarding support, payment, or an upgraded system. The serial number was provided with your Base system.

Customer Service

If you have any questions concerning your shipment or account, contact your local office, listed on the Web site at http://www.spss.com/worldwide. Please have your serial number ready for identification.
Training Seminars

SPSS Inc. provides both public and onsite training seminars. All seminars feature hands-on workshops. Seminars will be offered in major cities on a regular basis. For more information on these seminars, contact your local office, listed on the Web site at http://www.spss.com/worldwide.

Technical Support

Technical Support services are available to maintenance customers. Customers may contact Technical Support for assistance in using SPSS Statistics or for installation help for one of the supported hardware environments. To reach Technical Support, see the Web site at http://www.spss.com, or contact your local office, listed on the Web site at http://www.spss.com/worldwide. Be prepared to identify yourself, your organization, and the serial number of your system.

Additional Publications

The SPSS Statistical Procedures Companion, by Marija Norušis, has been published by Prentice Hall. A new version of this book, updated for SPSS Statistics 17.0, is planned. The SPSS Advanced Statistical Procedures Companion, also based on SPSS Statistics 17.0, is forthcoming. The SPSS Guide to Data Analysis for SPSS Statistics 17.0 is also in development. Announcements of publications available exclusively through Prentice Hall will be available on the Web site at http://www.spss.com/estore (select your home country, and then click Books).
Contents

Part I: User's Guide

1 Introduction to Complex Samples Procedures 1

Properties of Complex Samples .. 1
Usage of Complex Samples Procedures 2
 Plan Files ... 3
Further Readings .. 3

2 Sampling from a Complex Design 4

Creating a New Sample Plan .. 5
Sampling Wizard: Design Variables .. 6
 Tree Controls for Navigating the Sampling Wizard 7
Sampling Wizard: Sampling Method .. 8
Sampling Wizard: Sample Size ... 10
 Define Unequal Sizes .. 11
Sampling Wizard: Output Variables ... 12
Sampling Wizard: Plan Summary ... 14
Sampling Wizard: Draw Sample Selection Options 15
Sampling Wizard: Draw Sample Output Files 16
Sampling Wizard: Finish ... 17
Modifying an Existing Sample Plan ... 18
Sampling Wizard: Plan Summary ... 19
Running an Existing Sample Plan .. 20
CSPLAN and CSSELECT Commands Additional Features 20
3 Preparing a Complex Sample for Analysis

- Creating a New Analysis Plan ... 22
- Analysis Preparation Wizard: Design Variables. 23
 - Tree Controls for Navigating the Analysis Wizard 24
- Analysis Preparation Wizard: Estimation Method 25
- Analysis Preparation Wizard: Size 26
 - Define Unequal Sizes ... 27
- Analysis Preparation Wizard: Plan Summary 28
- Analysis Preparation Wizard: Finish 29
- Modifying an Existing Analysis Plan 30
- Analysis Preparation Wizard: Plan Summary 31

4 Complex Samples Plan

- Complex Samples Plan .. 32

5 Complex Samples Frequencies

- Complex Samples Frequencies Statistics 36
- Complex Samples Missing Values 37
- Complex Samples Options ... 38

6 Complex Samples Descriptives

- Complex Samples Descriptives Statistics 41
- Complex Samples Descriptives Missing Values 42
- Complex Samples Options ... 43
7 Complex Samples Crosstabs

Complex Samples Crosstabs Statistics .. 46
Complex Samples Missing Values ... 48
Complex Samples Options ... 49

8 Complex Samples Ratios

Complex Samples Ratios Statistics ... 52
Complex Samples Ratios Missing Values .. 53
Complex Samples Options ... 54

9 Complex Samples General Linear Model

Complex Samples General Linear Model Statistics 59
Complex Samples Hypothesis Tests ... 60
Complex Samples General Linear Model Estimated Means 62
Complex Samples General Linear Model Save 63
Complex Samples General Linear Model Options 65
CSGLM Command Additional Features .. 65

10 Complex Samples Logistic Regression

Complex Samples Logistic Regression Reference Category 69
Complex Samples Logistic Regression Model ... 70
Complex Samples Logistic Regression Statistics 72
Complex Samples Hypothesis Tests ... 74
Part II: Examples

13 Complex Samples Sampling Wizard

Obtaining a Sample from a Full Sampling Frame 121
 Using the Wizard .. 121
 Plan Summary ... 131
 Sampling Summary 132
 Sample Results .. 133

Obtaining a Sample from a Partial Sampling Frame 133
 Using the Wizard to Sample from the First Partial Frame 134
 Sample Results .. 147
 Using the Wizard to Sample from the Second Partial Frame 147
 Sample Results .. 152

Sampling with Probability Proportional to Size (PPS) 153
 Using the Wizard .. 153
 Plan Summary ... 165
 Sampling Summary 165
 Sample Results .. 167

Related Procedures .. 170
14 Complex Samples Analysis Preparation Wizard 171

Using the Complex Samples Analysis Preparation Wizard to Ready NHIS Public Data ... 171
 Using the Wizard ... 171
 Summary ... 174
Preparing for Analysis When Sampling Weights Are Not in the Data File ... 174
 Computing Inclusion Probabilities and Sampling Weights 175
 Using the Wizard ... 178
 Summary ... 185
Related Procedures .. 185

15 Complex Samples Frequencies 186

Using Complex Samples Frequencies to Analyze Nutritional Supplement Usage ... 186
 Running the Analysis ... 186
 Frequency Table .. 189
 Frequency by Subpopulation .. 190
 Summary ... 191
Related Procedures .. 191

16 Complex Samples Descriptives 192

Using Complex Samples Descriptives to Analyze Activity Levels 192
 Running the Analysis ... 192
 Univariate Statistics .. 195
 Univariate Statistics by Subpopulation 196
 Summary ... 197
Related Procedures .. 197
17 Complex Samples Crosstabs

Using Complex Samples Crosstabs to Measure the Relative Risk of an Event

- Running the Analysis .. 198
- Crosstabulation ... 202
- Risk Estimate .. 202
- Risk Estimate by Subpopulation 204
- Summary ... 204
- Related Procedures .. 204

18 Complex Samples Ratios

Using Complex Samples Ratios to Aid Property Value Assessment

- Running the Analysis .. 206
- Ratios ... 209
- Pivoted Ratios Table .. 210
- Summary ... 211
- Related Procedures .. 211

19 Complex Samples General Linear Model

Using Complex Samples General Linear Model to Fit a Two-Factor ANOVA

- Running the Analysis .. 213
- Model Summary .. 218
- Tests of Model Effects ... 219
- Parameter Estimates ... 220
- Estimated Marginal Means .. 221
- Summary ... 224
- Related Procedures .. 224
22 Complex Samples Cox Regression

Using a Time-Dependent Predictor in Complex Samples Cox Regression . . 257
Preparation of the Data ... 257
Running the Analysis .. 263
Sample Design Information 269
Tests of Model Effects ... 269
Test of Proportional Hazards 270
Adding a Time-Dependent Predictor 270

Multiple Cases per Subject in Complex Samples Cox Regression 274
Preparation of the Data for Analysis 275
Creating a Simple Random Sampling Analysis Plan 291
Running the Analysis .. 295
Sample Design Information 304
Tests of Model Effects ... 304
Parameter Estimates .. 305
Pattern Values ... 306
Log-Minus-Log Plot ... 307
Summary .. 308

Appendix

A Sample Files .. 309

Bibliography .. 323

Index ... 325
Part I:
User's Guide
Introduction to Complex Samples Procedures

An inherent assumption of analytical procedures in traditional software packages is that the observations in a data file represent a simple random sample from the population of interest. This assumption is untenable for an increasing number of companies and researchers who find it both cost-effective and convenient to obtain samples in a more structured way.

The Complex Samples option allows you to select a sample according to a complex design and incorporate the design specifications into the data analysis, thus ensuring that your results are valid.

Properties of Complex Samples

A complex sample can differ from a simple random sample in many ways. In a simple random sample, individual sampling units are selected at random with equal probability and without replacement (WOR) directly from the entire population. By contrast, a given complex sample can have some or all of the following features:

Stratification. Stratified sampling involves selecting samples independently within non-overlapping subgroups of the population, or strata. For example, strata may be socioeconomic groups, job categories, age groups, or ethnic groups. With stratification, you can ensure adequate sample sizes for subgroups of interest, improve the precision of overall estimates, and use different sampling methods from stratum to stratum.

Clustering. Cluster sampling involves the selection of groups of sampling units, or clusters. For example, clusters may be schools, hospitals, or geographical areas, and sampling units may be students, patients, or citizens. Clustering is common in multistage designs and area (geographic) samples.
Multiple stages. In multistage sampling, you select a first-stage sample based on clusters. Then you create a second-stage sample by drawing subsamples from the selected clusters. If the second-stage sample is based on subclusters, you can then add a third stage to the sample. For example, in the first stage of a survey, a sample of cities could be drawn. Then, from the selected cities, households could be sampled. Finally, from the selected households, individuals could be polled. The Sampling and Analysis Preparation wizards allow you to specify three stages in a design.

Nonrandom sampling. When selection at random is difficult to obtain, units can be sampled systematically (at a fixed interval) or sequentially.

Unequal selection probabilities. When sampling clusters that contain unequal numbers of units, you can use probability-proportional-to-size (PPS) sampling to make a cluster’s selection probability equal to the proportion of units it contains. PPS sampling can also use more general weighting schemes to select units.

Unrestricted sampling. Unrestricted sampling selects units with replacement (WR). Thus, an individual unit can be selected for the sample more than once.

Sampling weights. Sampling weights are automatically computed while drawing a complex sample and ideally correspond to the “frequency” that each sampling unit represents in the target population. Therefore, the sum of the weights over the sample should estimate the population size. Complex Samples analysis procedures require sampling weights in order to properly analyze a complex sample. Note that these weights should be used entirely within the Complex Samples option and should not be used with other analytical procedures via the Weight Cases procedure, which treats weights as case replications.

Usage of Complex Samples Procedures

Your usage of Complex Samples procedures depends on your particular needs. The primary types of users are those who:

- Plan and carry out surveys according to complex designs, possibly analyzing the sample later. The primary tool for surveyors is the Sampling Wizard.
- Analyze sample data files previously obtained according to complex designs. Before using the Complex Samples analysis procedures, you may need to use the Analysis Preparation Wizard.

Regardless of which type of user you are, you need to supply design information to Complex Samples procedures. This information is stored in a plan file for easy reuse.
Plan Files

A plan file contains complex sample specifications. There are two types of plan files:

Sampling plan. The specifications given in the Sampling Wizard define a sample design that is used to draw a complex sample. The sampling plan file contains those specifications. The sampling plan file also contains a default analysis plan that uses estimation methods suitable for the specified sample design.

Analysis plan. This plan file contains information needed by Complex Samples analysis procedures to properly compute variance estimates for a complex sample. The plan includes the sample structure, estimation methods for each stage, and references to required variables, such as sample weights. The Analysis Preparation Wizard allows you to create and edit analysis plans.

There are several advantages to saving your specifications in a plan file, including:

- A surveyor can specify the first stage of a multistage sampling plan and draw first-stage units now, collect information on sampling units for the second stage, and then modify the sampling plan to include the second stage.
- An analyst who doesn’t have access to the sampling plan file can specify an analysis plan and refer to that plan from each Complex Samples analysis procedure.
- A designer of large-scale public use samples can publish the sampling plan file, which simplifies the instructions for analysts and avoids the need for each analyst to specify his or her own analysis plans.

Further Readings

For more information on sampling techniques, see the following texts:

Chapter 2

Sampling from a Complex Design

Figure 2-1
Sampling Wizard, Welcome step

The Sampling Wizard guides you through the steps for creating, modifying, or executing a sampling plan file. Before using the Wizard, you should have a well-defined target population, a list of sampling units, and an appropriate sample design in mind.
Creating a New Sample Plan

► From the menus choose:
 Analyze
 Complex Samples
 Select a Sample...

► Select Design a sample and choose a plan filename to save the sample plan.

► Click Next to continue through the Wizard.

► Optionally, in the Design Variables step, you can define strata, clusters, and input sample weights. After you define these, click Next.

► Optionally, in the Sampling Method step, you can choose a method for selecting items.
 If you select PPS Brewer or PPS Murthy, you can click Finish to draw the sample. Otherwise, click Next and then:

► In the Sample Size step, specify the number or proportion of units to sample.

► You can now click Finish to draw the sample.

 Optionally, in further steps you can:
 ■ Choose output variables to save.
 ■ Add a second or third stage to the design.
 ■ Set various selection options, including which stages to draw samples from, the random number seed, and whether to treat user-missing values as valid values of design variables.
 ■ Choose where to save output data.
 ■ Paste your selections as command syntax.
Sampling Wizard: Design Variables

Figure 2-2
Sampling Wizard, Design Variables step

This step allows you to select stratification and clustering variables and to define input sample weights. You can also specify a label for the stage.

Stratify By. The cross-classification of stratification variables defines distinct subpopulations, or strata. Separate samples are obtained for each stratum. To improve the precision of your estimates, units within strata should be as homogeneous as possible for the characteristics of interest.

Clusters. Cluster variables define groups of observational units, or clusters. Clusters are useful when directly sampling observational units from the population is expensive or impossible; instead, you can sample clusters from the population and then sample observational units from the selected clusters. However, the use of clusters can introduce correlations among sampling units, resulting in a loss of precision. To minimize this effect, units within clusters should be as heterogeneous as possible for the
characteristics of interest. You must define at least one cluster variable in order to plan a multistage design. Clusters are also necessary in the use of several different sampling methods. For more information, see Sampling Wizard: Sampling Method on p. 8.

Input Sample Weight. If the current sample design is part of a larger sample design, you may have sample weights from a previous stage of the larger design. You can specify a numeric variable containing these weights in the first stage of the current design. Sample weights are computed automatically for subsequent stages of the current design.

Stage Label. You can specify an optional string label for each stage. This is used in the output to help identify stagewise information.

Note: The source variable list has the same content across steps of the Wizard. In other words, variables removed from the source list in a particular step are removed from the list in all steps. Variables returned to the source list appear in the list in all steps.

Tree Controls for Navigating the Sampling Wizard

On the left side of each step in the Sampling Wizard is an outline of all the steps. You can navigate the Wizard by clicking on the name of an enabled step in the outline. Steps are enabled as long as all previous steps are valid—that is, if each previous step has been given the minimum required specifications for that step. See the Help for individual steps for more information on why a given step may be invalid.
Sampling Wizard: Sampling Method

This step allows you to specify how to select cases from the active dataset.

Method. Controls in this group are used to choose a selection method. Some sampling types allow you to choose whether to sample with replacement (WR) or without replacement (WOR). See the type descriptions for more information. Note that some probability-proportional-to-size (PPS) types are available only when clusters have been defined and that all PPS types are available only in the first stage of a design. Moreover, WR methods are available only in the last stage of a design.

- **Simple Random Sampling.** Units are selected with equal probability. They can be selected with or without replacement.

- **Simple Systematic.** Units are selected at a fixed interval throughout the sampling frame (or strata, if they have been specified) and extracted without replacement. A randomly selected unit within the first interval is chosen as the starting point.
Sampling from a Complex Design

- **Simple Sequential.** Units are selected sequentially with equal probability and without replacement.

- **PPS.** This is a first-stage method that selects units at random with probability proportional to size. Any units can be selected with replacement; only clusters can be sampled without replacement.

- **PPS Systematic.** This is a first-stage method that systematically selects units with probability proportional to size. They are selected without replacement.

- **PPS Sequential.** This is a first-stage method that sequentially selects units with probability proportional to cluster size and without replacement.

- **PPS Brewer.** This is a first-stage method that selects two clusters from each stratum with probability proportional to cluster size and without replacement. A cluster variable must be specified to use this method.

- **PPS Murthy.** This is a first-stage method that selects two clusters from each stratum with probability proportional to cluster size and without replacement. A cluster variable must be specified to use this method.

- **PPS Sampford.** This is a first-stage method that selects more than two clusters from each stratum with probability proportional to cluster size and without replacement. It is an extension of Brewer’s method. A cluster variable must be specified to use this method.

- **Use WR estimation for analysis.** By default, an estimation method is specified in the plan file that is consistent with the selected sampling method. This allows you to use with-replacement estimation even if the sampling method implies WOR estimation. This option is available only in stage 1.

Measure of Size (MOS). If a PPS method is selected, you must specify a measure of size that defines the size of each unit. These sizes can be explicitly defined in a variable or they can be computed from the data. Optionally, you can set lower and upper bounds on the MOS, overriding any values found in the MOS variable or computed from the data. These options are available only in stage 1.
Sampling Wizard: Sample Size

Figure 2-4
Sampling Wizard, Sample Size step

This step allows you to specify the number or proportion of units to sample within the current stage. The sample size can be fixed or it can vary across strata. For the purpose of specifying sample size, clusters chosen in previous stages can be used to define strata.

Units. You can specify an exact sample size or a proportion of units to sample.

- Value. A single value is applied to all strata. If Counts is selected as the unit metric, you should enter a positive integer. If Proportions is selected, you should enter a non-negative value. Unless sampling with replacement, proportion values should also be no greater than 1.
- **Unequal values for strata.** Allows you to enter size values on a per-stratum basis via the Define Unequal Sizes dialog box.

- **Read values from variable.** Allows you to select a numeric variable that contains size values for strata.

If Proportions is selected, you have the option to set lower and upper bounds on the number of units sampled.

Define Unequal Sizes

![Figure 2-5](image)

Define Unequal Sizes dialog box

The Define Unequal Sizes dialog box allows you to enter sizes on a per-stratum basis.

Size Specifications grid. The grid displays the cross-classifications of up to five strata or cluster variables—one stratum/cluster combination per row. Eligible grid variables include all stratification variables from the current and previous stages and all cluster variables from previous stages. Variables can be reordered within the grid or moved to the Exclude list. Enter sizes in the rightmost column. Click Labels or Values to toggle the display of value labels and data values for stratification and cluster variables in the grid cells. Cells that contain unlabeled values always show values. Click Refresh Strata to repopulate the grid with each combination of labeled data values for variables in the grid.
Exclude. To specify sizes for a subset of stratum/cluster combinations, move one or more variables to the Exclude list. These variables are not used to define sample sizes.

Sampling Wizard: Output Variables

Figure 2-6
Sampling Wizard, Output Variables step

This step allows you to choose variables to save when the sample is drawn.

Population size. The estimated number of units in the population for a given stage. The rootname for the saved variable is `PopulationSize_`.

Sample proportion. The sampling rate at a given stage. The rootname for the saved variable is `SamplingRate_`.

Sample size. The number of units drawn at a given stage. The rootname for the saved variable is `SampleSize_`.
Sample weight. The inverse of the inclusion probabilities. The rootname for the saved variable is `SampleWeight_`.

Some stagewise variables are generated automatically. These include:

Inclusion probabilities. The proportion of units drawn at a given stage. The rootname for the saved variable is `InclusionProbability_`.

Cumulative weight. The cumulative sample weight over stages previous to and including the current one. The rootname for the saved variable is `SampleWeightCumulative_`.

Index. Identifies units selected multiple times within a given stage. The rootname for the saved variable is `Index_`.

Note: Saved variable rootnames include an integer suffix that reflects the stage number—for example, `PopulationSize_1_` for the saved population size for stage 1.
Sampling Wizard: Plan Summary

Figure 2-7
Sampling Wizard, Plan Summary step

This is the last step within each stage, providing a summary of the sample design specifications through the current stage. From here, you can either proceed to the next stage (creating it, if necessary) or set options for drawing the sample.
Sampling Wizard: Draw Sample Selection Options

Figure 2-8
Sampling Wizard, Draw Sample Selection Options step

This step allows you to choose whether to draw a sample. You can also control other sampling options, such as the random seed and missing-value handling.

Draw sample. In addition to choosing whether to draw a sample, you can also choose to execute part of the sampling design. Stages must be drawn in order—that is, stage 2 cannot be drawn unless stage 1 is also drawn. When editing or executing a plan, you cannot resample locked stages.

Seed. This allows you to choose a seed value for random number generation.

Include user-missing values. This determines whether user-missing values are valid. If so, user-missing values are treated as a separate category.

Data already sorted. If your sample frame is presorted by the values of the stratification variables, this option allows you to speed the selection process.
Sampling Wizard: Draw Sample Output Files

This step allows you to choose where to direct sampled cases, weight variables, joint probabilities, and case selection rules.

Sample data. These options let you determine where sample output is written. It can be added to the active dataset, written to a new dataset, or saved to an external SPSS Statistics data file. Datasets are available during the current session but are not available in subsequent sessions unless you explicitly save them as data files. Dataset names must adhere to variable naming rules. If an external file or new dataset is specified, the sampling output variables and variables in the active dataset for the selected cases are written.
Joint probabilities. These options let you determine where joint probabilities are written. They are saved to an external SPSS Statistics data file. Joint probabilities are produced if the PPS WOR, PPS Brewer, PPS Sampford, or PPS Murthy method is selected and WR estimation is not specified.

Case selection rules. If you are constructing your sample one stage at a time, you may want to save the case selection rules to a text file. They are useful for constructing the subframe for subsequent stages.

Sampling Wizard: Finish

Figure 2-10
Sampling Wizard, Finish step

This is the final step. You can save the plan file and draw the sample now or paste your selections into a syntax window.
When making changes to stages in the existing plan file, you can save the edited plan to a new file or overwrite the existing file. When adding stages without making changes to existing stages, the Wizard automatically overwrites the existing plan file. If you want to save the plan to a new file, select Paste the syntax generated by the Wizard into a syntax window and change the filename in the syntax commands.

Modifying an Existing Sample Plan

- From the menus choose:

 Analyze
 Complex Samples
 Select a Sample...

- Select Edit a sample design and choose a plan file to edit.

- Click Next to continue through the Wizard.

- Review the sampling plan in the Plan Summary step, and then click Next.

 Subsequent steps are largely the same as for a new design. See the Help for individual steps for more information.

- Navigate to the Finish step, and specify a new name for the edited plan file or choose to overwrite the existing plan file.

 Optionally, you can:

 - Specify stages that have already been sampled.
 - Remove stages from the plan.
Sampling Wizard: Plan Summary

*Figure 2-11
Sampling Wizard, Plan Summary step*

This step allows you to review the sampling plan and indicate stages that have already been sampled. If editing a plan, you can also remove stages from the plan.

- **Previously sampled stages.** If an extended sampling frame is not available, you will have to execute a multistage sampling design one stage at a time. Select which stages have already been sampled from the drop-down list. Any stages that have been executed are locked; they are not available in the Draw Sample Selection Options step, and they cannot be altered when editing a plan.

- **Remove stages.** You can remove stages 2 and 3 from a multistage design.
Running an Existing Sample Plan

- From the menus choose:
 Analyze
 Complex Samples
 Select a Sample...

- Select Draw a sample and choose a plan file to run.

- Click Next to continue through the Wizard.

- Review the sampling plan in the Plan Summary step, and then click Next.

- The individual steps containing stage information are skipped when executing a sample plan. You can now go on to the Finish step at any time.

 Optionally, you can specify stages that have already been sampled.

CSPLAN and CSSELECT Commands Additional Features

The command syntax language also allows you to:

- Specify custom names for output variables.

- Control the output in the Viewer. For example, you can suppress the stagewise summary of the plan that is displayed if a sample is designed or modified, suppress the summary of the distribution of sampled cases by strata that is shown if the sample design is executed, and request a case processing summary.

- Choose a subset of variables in the active dataset to write to an external sample file or to a different dataset.

See the Command Syntax Reference for complete syntax information.
Preparing a Complex Sample for Analysis

The Analysis Preparation Wizard guides you through the steps for creating or modifying an analysis plan for use with the various Complex Samples analysis procedures. Before using the Wizard, you should have a sample drawn according to a complex design.
Creating a new plan is most useful when you do not have access to the sampling plan file used to draw the sample (recall that the sampling plan contains a default analysis plan). If you do have access to the sampling plan file used to draw the sample, you can use the default analysis plan contained in the sampling plan file or override the default analysis specifications and save your changes to a new file.

Creating a New Analysis Plan

- From the menus choose:
 - Analyze
 - Complex Samples
 - Prepare for Analysis...

- Select Create a plan file, and choose a plan filename to which you will save the analysis plan.

- Click Next to continue through the Wizard.

- Specify the variable containing sample weights in the Design Variables step, optionally defining strata and clusters.

- You can now click Finish to save the plan.

Optionally, in further steps you can:

- Select the method for estimating standard errors in the Estimation Method step.
- Specify the number of units sampled or the inclusion probability per unit in the Size step.
- Add a second or third stage to the design.
- Paste your selections as command syntax.
Analysis Preparation Wizard: Design Variables

Figure 3-2
Analysis Preparation Wizard, Design Variables step

This step allows you to identify the stratification and clustering variables and define sample weights. You can also provide a label for the stage.

- **Strata.** The cross-classification of stratification variables defines distinct subpopulations, or strata. Your total sample represents the combination of independent samples from each stratum.

- **Clusters.** Cluster variables define groups of observational units, or clusters. Samples drawn in multiple stages select clusters in the earlier stages and then subsample units from the selected clusters. When analyzing a data file obtained by sampling clusters with replacement, you should include the duplication index as a cluster variable.

- **Sample Weight.** You must provide sample weights in the first stage. Sample weights are computed automatically for subsequent stages of the current design.
Stage Label. You can specify an optional string label for each stage. This is used in the output to help identify stagewise information.

Note: The source variable list has the same contents across steps of the Wizard. In other words, variables removed from the source list in a particular step are removed from the list in all steps. Variables returned to the source list show up in all steps.

Tree Controls for Navigating the Analysis Wizard

At the left side of each step of the Analysis Wizard is an outline of all the steps. You can navigate the Wizard by clicking on the name of an enabled step in the outline. Steps are enabled as long as all previous steps are valid—that is, as long as each previous step has been given the minimum required specifications for that step. For more information on why a given step may be invalid, see the Help for individual steps.
Analysis Preparation Wizard: Estimation Method

Figure 3-3
Analysis Preparation Wizard, Estimation Method step

This step allows you to specify an estimation method for the stage.

WR (sampling with replacement). WR estimation does not include a correction for sampling from a finite population (FPC) when estimating the variance under the complex sampling design. You can choose to include or exclude the FPC when estimating the variance under simple random sampling (SRS).

Choosing not to include the FPC for SRS variance estimation is recommended when the analysis weights have been scaled so that they do not add up to the population size. The SRS variance estimate is used in computing statistics like the design effect. WR estimation can be specified only in the final stage of a design; the Wizard will not allow you to add another stage if you select WR estimation.
Chapter 3

Equal WOR (equal probability sampling without replacement). Equal WOR estimation includes the finite population correction and assumes that units are sampled with equal probability. Equal WOR can be specified in any stage of a design.

Unequal WOR (unequal probability sampling without replacement). In addition to using the finite population correction, Unequal WOR accounts for sampling units (usually clusters) selected with unequal probability. This estimation method is available only in the first stage.

Analysis Preparation Wizard: Size

Figure 3-4

Analysis Preparation Wizard, Size step

![Analysis Preparation Wizard](image)

This step is used to specify inclusion probabilities or population sizes for the current stage. Sizes can be fixed or can vary across strata. For the purpose of specifying sizes, clusters specified in previous stages can be used to define strata. Note that this step is necessary only when Equal WOR is chosen as the Estimation Method.
Units. You can specify exact population sizes or the probabilities with which units were sampled.

- **Value.** A single value is applied to all strata. If Population Sizes is selected as the unit metric, you should enter a non-negative integer. If Inclusion Probabilities is selected, you should enter a value between 0 and 1, inclusive.

- **Unequal values for strata.** Allows you to enter size values on a per-stratum basis via the Define Unequal Sizes dialog box.

- **Read values from variable.** Allows you to select a numeric variable that contains size values for strata.

Define Unequal Sizes

Figure 3-5

Define Unequal Sizes dialog box

The Define Unequal Sizes dialog box allows you to enter sizes on a per-stratum basis.

Size Specifications grid. The grid displays the cross-classifications of up to five strata or cluster variables—one stratum/cluster combination per row. Eligible grid variables include all stratification variables from the current and previous stages and all cluster variables from previous stages. Variables can be reordered within the grid or moved to the Exclude list. Enter sizes in the rightmost column. Click Labels or Values to toggle the display of value labels and data values for stratification and cluster variables in
the grid cells. Cells that contain unlabeled values always show values. Click Refresh Strata to repopulate the grid with each combination of labeled data values for variables in the grid.

Exclude. To specify sizes for a subset of stratum/cluster combinations, move one or more variables to the Exclude list. These variables are not used to define sample sizes.

Analysis Preparation Wizard: Plan Summary

![Analysis Preparation Wizard](image)

Figure 3-6
Analysis Preparation Wizard, Plan Summary step

This is the last step within each stage, providing a summary of the analysis design specifications through the current stage. From here, you can either proceed to the next stage (creating it if necessary) or save the analysis specifications.

If you cannot add another stage, it is likely because:

- No cluster variable was specified in the Design Variables step.
- This is the third stage of the analysis, and the Wizard supports a maximum of three stages.

Analysis Preparation Wizard: Finish

Figure 3-7

Analysis Preparation Wizard, Finish step

This is the final step. You can save the plan file now or paste your selections to a syntax window.

When making changes to stages in the existing plan file, you can save the edited plan to a new file or overwrite the existing file. When adding stages without making changes to existing stages, the Wizard automatically overwrites the existing plan file. If you want to save the plan to a new file, choose to Paste the syntax generated by the Wizard into a syntax window and change the filename in the syntax commands.
Chapter 3

Modifying an Existing Analysis Plan

► From the menus choose:
 Analyze
 Complex Samples
 Prepare for Analysis...

► Select Edit a plan file, and choose a plan filename to which you will save the analysis plan.

► Click Next to continue through the Wizard.

► Review the analysis plan in the Plan Summary step, and then click Next.
 Subsequent steps are largely the same as for a new design. For more information, see the Help for individual steps.

► Navigate to the Finish step, and specify a new name for the edited plan file, or choose to overwrite the existing plan file.
 Optionally, you can remove stages from the plan.
Analysis Preparation Wizard: Plan Summary

Figure 3-8
Analysis Preparation Wizard, Plan Summary step

This step allows you to review the analysis plan and remove stages from the plan.

Remove Stages. You can remove stages 2 and 3 from a multistage design. Since a plan must have at least one stage, you can edit but not remove stage 1 from the design.
Complex Samples analysis procedures require analysis specifications from an analysis or sample plan file in order to provide valid results.

Figure 4-1
Complex Samples Plan dialog box

- **Plan.** Specify the path of an analysis or sample plan file.
Joint Probabilities. In order to use Unequal WOR estimation for clusters drawn using a PPS WOR method, you need to specify a separate file or an open dataset containing the joint probabilities. This file or dataset is created by the Sampling Wizard during sampling.
Chapter 5

Complex Samples Frequencies

The Complex Samples Frequencies procedure produces frequency tables for selected variables and displays univariate statistics. Optionally, you can request statistics by subgroups, defined by one or more categorical variables.

Example. Using the Complex Samples Frequencies procedure, you can obtain univariate tabular statistics for vitamin usage among U.S. citizens, based on the results of the National Health Interview Survey (NHIS) and with an appropriate analysis plan for this public-use data.

Statistics. The procedure produces estimates of cell population sizes and table percentages, plus standard errors, confidence intervals, coefficients of variation, design effects, square roots of design effects, cumulative values, and unweighted counts for each estimate. Additionally, chi-square and likelihood-ratio statistics are computed for the test of equal cell proportions.

Data. Variables for which frequency tables are produced should be categorical. Subpopulation variables can be string or numeric but should be categorical.

Assumptions. The cases in the data file represent a sample from a complex design that should be analyzed according to the specifications in the file selected in the Complex Samples Plan dialog box.

Obtaining Complex Samples Frequencies

- From the menus choose:
 Analyze
 Complex Samples
 Frequencies...

- Select a plan file. Optionally, select a custom joint probabilities file.

- Click Continue.
Select at least one frequency variable.

Optionally, you can specify variables to define subpopulations. Statistics are computed separately for each subpopulation.
Complex Samples Frequencies Statistics

Figure 5-2
Frequencies Statistics dialog box

Cells. This group allows you to request estimates of the cell population sizes and table percentages.

Statistics. This group produces statistics associated with the population size or table percentage.

- **Standard error.** The standard error of the estimate.
- **Confidence interval.** A confidence interval for the estimate, using the specified level.
- **Coefficient of variation.** The ratio of the standard error of the estimate to the estimate.
- **Unweighted count.** The number of units used to compute the estimate.
- **Design effect.** The ratio of the variance of the estimate to the variance obtained by assuming that the sample is a simple random sample. This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.
- **Square root of design effect.** This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.
- **Cumulative values.** The cumulative estimate through each value of the variable.
Test of equal cell proportions. This produces chi-square and likelihood-ratio tests of the hypothesis that the categories of a variable have equal frequencies. Separate tests are performed for each variable.

Complex Samples Missing Values

Figure 5-3

Missing Values dialog box

![Complex Samples: Missing Values](image)

Tables. This group determines which cases are used in the analysis.

- **Use all available data.** Missing values are determined on a table-by-table basis. Thus, the cases used to compute statistics may vary across frequency or crosstabulation tables.

- **Use consistent case base.** Missing values are determined across all variables. Thus, the cases used to compute statistics are consistent across tables.

Categorical Design Variables. This group determines whether user-missing values are valid or invalid.
Chapter 5

Complex Samples Options

Figure 5-4
Options dialog box

Subpopulation Display. You can choose to have subpopulations displayed in the same table or in separate tables.
Complex Samples Descriptives

The Complex Samples Descriptives procedure displays univariate summary statistics for several variables. Optionally, you can request statistics by subgroups, defined by one or more categorical variables.

Example. Using the Complex Samples Descriptives procedure, you can obtain univariate descriptive statistics for the activity levels of U.S. citizens, based on the results of the National Health Interview Survey (NHIS) and with an appropriate analysis plan for this public-use data.

Statistics. The procedure produces means and sums, plus t-tests, standard errors, confidence intervals, coefficients of variation, unweighted counts, population sizes, design effects, and square roots of design effects for each estimate.

Data. Measures should be scale variables. Subpopulation variables can be string or numeric but should be categorical.

Assumptions. The cases in the data file represent a sample from a complex design that should be analyzed according to the specifications in the file selected in the Complex Samples Plan dialog box.

Obtaining Complex Samples Descriptives

► From the menus choose:
 Analyze
 Complex Samples
 Descriptives...

► Select a plan file. Optionally, select a custom joint probabilities file.

► Click Continue.
Select at least one measure variable. Optionally, you can specify variables to define subpopulations. Statistics are computed separately for each subpopulation.
Complex Samples Descriptives Statistics

Figure 6-2
Descriptives Statistics dialog box

![Descriptives Statistics dialog box](image)

Summaries. This group allows you to request estimates of the means and sums of the measure variables. Additionally, you can request t tests of the estimates against a specified value.

Statistics. This group produces statistics associated with the mean or sum.

- **Standard error.** The standard error of the estimate.
- **Confidence interval.** A confidence interval for the estimate, using the specified level.
- **Coefficient of variation.** The ratio of the standard error of the estimate to the estimate.
- **Unweighted count.** The number of units used to compute the estimate.
- **Population size.** The estimated number of units in the population.
- **Design effect.** The ratio of the variance of the estimate to the variance obtained by assuming that the sample is a simple random sample. This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.
- **Square root of design effect.** This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.
Complex Samples Descriptives Missing Values

Figure 6-3
Descriptives Missing Values dialog box

![Descriptives Missing Values dialog box](image)

Statistics for Measure Variables. This group determines which cases are used in the analysis.

- **Use all available data.** Missing values are determined on a variable-by-variable basis, thus the cases used to compute statistics may vary across measure variables.

- **Ensure consistent case base.** Missing values are determined across all variables, thus the cases used to compute statistics are consistent.

Categorical Design Variables. This group determines whether user-missing values are valid or invalid.
Complex Samples Options

Figure 6-4
Options dialog box

Subpopulation Display. You can choose to have subpopulations displayed in the same table or in separate tables.
The Complex Samples Crosstabs procedure produces crosstabulation tables for pairs of selected variables and displays two-way statistics. Optionally, you can request statistics by subgroups, defined by one or more categorical variables.

Example. Using the Complex Samples Crosstabs procedure, you can obtain cross-classification statistics for smoking frequency by vitamin usage of U.S. citizens, based on the results of the National Health Interview Survey (NHIS) and with an appropriate analysis plan for this public-use data.

Statistics. The procedure produces estimates of cell population sizes and row, column, and table percentages, plus standard errors, confidence intervals, coefficients of variation, expected values, design effects, square roots of design effects, residuals, adjusted residuals, and unweighted counts for each estimate. The odds ratio, relative risk, and risk difference are computed for 2-by-2 tables. Additionally, Pearson and likelihood-ratio statistics are computed for the test of independence of the row and column variables.

Data. Row and column variables should be categorical. Subpopulation variables can be string or numeric but should be categorical.

Assumptions. The cases in the data file represent a sample from a complex design that should be analyzed according to the specifications in the file selected in the Complex Samples Plan dialog box.

Obtaining Complex Samples Crosstabs

- From the menus choose:
 Analyze
 Complex Samples
 Crosstabs...

- Select a plan file. Optionally, select a custom joint probabilities file.
Click Continue.

Figure 7-1
Crosstabs dialog box

Select at least one row variable and one column variable.

Optionally, you can specify variables to define subpopulations. Statistics are computed separately for each subpopulation.
Complex Samples Crosstabs Statistics

Figure 7-2
Crosstabs Statistics dialog box

Cells. This group allows you to request estimates of the cell population size and row, column, and table percentages.

Statistics. This group produces statistics associated with the population size and row, column, and table percentages.

- **Standard error.** The standard error of the estimate.
- **Confidence interval.** A confidence interval for the estimate, using the specified level.
- **Coefficient of variation.** The ratio of the standard error of the estimate to the estimate.
- **Expected values.** The expected value of the estimate, under the hypothesis of independence of the row and column variable.
- **Unweighted count.** The number of units used to compute the estimate.
Design effect. The ratio of the variance of the estimate to the variance obtained by assuming that the sample is a simple random sample. This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.

Square root of design effect. This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.

Residuals. The expected value is the number of cases that you would expect in the cell if there were no relationship between the two variables. A positive residual indicates that there are more cases in the cell than there would be if the row and column variables were independent.

Adjusted residuals. The residual for a cell (observed minus expected value) divided by an estimate of its standard error. The resulting standardized residual is expressed in standard deviation units above or below the mean.

Summaries for 2-by-2 Tables. This group produces statistics for tables in which the row and column variable each have two categories. Each is a measure of the strength of the association between the presence of a factor and the occurrence of an event.

Odds ratio. The odds ratio can be used as an estimate of relative risk when the occurrence of the factor is rare.

Relative risk. The ratio of the risk of an event in the presence of the factor to the risk of the event in the absence of the factor.

Risk difference. The difference between the risk of an event in the presence of the factor and the risk of the event in the absence of the factor.

Test of independence of rows and columns. This produces chi-square and likelihood-ratio tests of the hypothesis that a row and column variable are independent. Separate tests are performed for each pair of variables.
Complex Samples Missing Values

Figure 7-3
Missing Values dialog box

Tables. This group determines which cases are used in the analysis.
- **Use all available data.** Missing values are determined on a table-by-table basis. Thus, the cases used to compute statistics may vary across frequency or crosstabulation tables.
- **Use consistent case base.** Missing values are determined across all variables. Thus, the cases used to compute statistics are consistent across tables.

Categorical Design Variables. This group determines whether user-missing values are valid or invalid.
Complex Samples Options

Figure 7-4
Options dialog box

Subpopulation Display. You can choose to have subpopulations displayed in the same table or in separate tables.
The Complex Samples Ratios procedure displays univariate summary statistics for ratios of variables. Optionally, you can request statistics by subgroups, defined by one or more categorical variables.

Example. Using the Complex Samples Ratios procedure, you can obtain descriptive statistics for the ratio of current property value to last assessed value, based on the results of a statewide survey carried out according to a complex design and with an appropriate analysis plan for the data.

Statistics. The procedure produces ratio estimates, *t* tests, standard errors, confidence intervals, coefficients of variation, unweighted counts, population sizes, design effects, and square roots of design effects.

Data. Numerators and denominators should be positive-valued scale variables. Subpopulation variables can be string or numeric but should be categorical.

Assumptions. The cases in the data file represent a sample from a complex design that should be analyzed according to the specifications in the file selected in the Complex Samples Plan dialog box.

Obtaining Complex Samples Ratios

- From the menus choose:

 Analyze
 Complex Samples
 Ratios...

- Select a plan file. Optionally, select a custom joint probabilities file.

- Click Continue.
Select at least one numerator variable and denominator variable.

 Optionally, you can specify variables to define subgroups for which statistics are produced.
Complex Samples Ratios Statistics

Statistics. This group produces statistics associated with the ratio estimate.

- **Standard error.** The standard error of the estimate.
- **Confidence interval.** A confidence interval for the estimate, using the specified level.
- **Coefficient of variation.** The ratio of the standard error of the estimate to the estimate.
- **Unweighted count.** The number of units used to compute the estimate.
- **Population size.** The estimated number of units in the population.
- **Design effect.** The ratio of the variance of the estimate to the variance obtained by assuming that the sample is a simple random sample. This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.
- **Square root of design effect.** This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.

T test. You can request *t* tests of the estimates against a specified value.
Complex Samples Ratios Missing Values

Figure 8-3
Ratios Missing Values dialog box

![Complex Samples Ratios: Missing Values dialog box](image)

Ratios. This group determines which cases are used in the analysis.

- **Use all available data.** Missing values are determined on a ratio-by-ratio basis. Thus, the cases used to compute statistics may vary across numerator-denominator pairs.

- **Ensure consistent case base.** Missing values are determined across all variables. Thus, the cases used to compute statistics are consistent.

Categorical Design Variables. This group determines whether user-missing values are valid or invalid.
Chapter 8

Complex Samples Options

Figure 8-4
Options dialog box

Subpopulation Display. You can choose to have subpopulations displayed in the same table or in separate tables.
The Complex Samples General Linear Model (CSGLM) procedure performs linear regression analysis, as well as analysis of variance and covariance, for samples drawn by complex sampling methods. Optionally, you can request analyses for a subpopulation.

Example. A grocery store chain surveyed a set of customers concerning their purchasing habits, according to a complex design. Given the survey results and how much each customer spent in the previous month, the store wants to see if the frequency with which customers shop is related to the amount they spend in a month, controlling for the gender of the customer and incorporating the sampling design.

Statistics. The procedure produces estimates, standard errors, confidence intervals, t tests, design effects, and square roots of design effects for model parameters, as well as the correlations and covariances between parameter estimates. Measures of model fit and descriptive statistics for the dependent and independent variables are also available. Additionally, you can request estimated marginal means for levels of model factors and factor interactions.

Data. The dependent variable is quantitative. Factors are categorical. Covariates are quantitative variables that are related to the dependent variable. Subpopulation variables can be string or numeric but should be categorical.

Assumptions. The cases in the data file represent a sample from a complex design that should be analyzed according to the specifications in the file selected in the Complex Samples Plan dialog box.
Obtaining a Complex Samples General Linear Model

From the menus choose:

Analyze
 Complex Samples
 General Linear Model...

► Select a plan file. Optionally, select a custom joint probabilities file.

► Click Continue.

Figure 9-1
General Linear Model dialog box

► Select a dependent variable.
Optionally, you can:

- Select variables for factors and covariates, as appropriate for your data.
- Specify a variable to define a subpopulation. The analysis is performed only for the selected category of the subpopulation variable.

Specify Model Effects. By default, the procedure builds a main-effects model using the factors and covariates specified in the main dialog box. Alternatively, you can build a custom model that includes interaction effects and nested terms.
Non-Nested Terms

For the selected factors and covariates:

Interaction. Creates the highest-level interaction term for all selected variables.

Main effects. Creates a main-effects term for each variable selected.

All 2-way. Creates all possible two-way interactions of the selected variables.

All 3-way. Creates all possible three-way interactions of the selected variables.

All 4-way. Creates all possible four-way interactions of the selected variables.

All 5-way. Creates all possible five-way interactions of the selected variables.

Nested Terms

You can build nested terms for your model in this procedure. Nested terms are useful for modeling the effect of a factor or covariate whose values do not interact with the levels of another factor. For example, a grocery store chain may follow the spending habits of its customers at several store locations. Since each customer frequents only one of these locations, the *Customer* effect can be said to be **nested within** the *Store location* effect.

Additionally, you can include interaction effects, such as polynomial terms involving the same covariate, or add multiple levels of nesting to the nested term.

Limitations. Nested terms have the following restrictions:

- All factors within an interaction must be unique. Thus, if A is a factor, then specifying $A*A$ is invalid.
- All factors within a nested effect must be unique. Thus, if A is a factor, then specifying $A(A)$ is invalid.
- No effect can be nested within a covariate. Thus, if A is a factor and X is a covariate, then specifying $A(X)$ is invalid.

Intercept. The intercept is usually included in the model. If you can assume the data pass through the origin, you can exclude the intercept. Even if you include the intercept in the model, you can choose to suppress statistics related to it.
Complex Samples General Linear Model Statistics

Figure 9-3
General Linear Model Statistics dialog box

Model Parameters. This group allows you to control the display of statistics related to the model parameters.

- **Estimate.** Displays estimates of the coefficients.
- **Standard error.** Displays the standard error for each coefficient estimate.
- **Confidence interval.** Displays a confidence interval for each coefficient estimate. The confidence level for the interval is set in the Options dialog box.
- **T test.** Displays a t test of each coefficient estimate. The null hypothesis for each test is that the value of the coefficient is 0.
- **Covariances of parameter estimates.** Displays an estimate of the covariance matrix for the model coefficients.
- **Correlations of parameter estimates.** Displays an estimate of the correlation matrix for the model coefficients.
- **Design effect.** The ratio of the variance of the estimate to the variance obtained by assuming that the sample is a simple random sample. This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.

- **Square root of design effect.** This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.

Model fit. Displays R^2 and root mean squared error statistics.

Population means of dependent variable and covariates. Displays summary information about the dependent variable, covariates, and factors.

Sample design information. Displays summary information about the sample, including the unweighted count and the population size.

Complex Samples Hypothesis Tests

Figure 9-4

Hypothesis Tests dialog box

- **Test Statistic.** This group allows you to select the type of statistic used for testing hypotheses. You can choose between F, adjusted F, chi-square, and adjusted chi-square.
Sampling Degrees of Freedom. This group gives you control over the sampling design degrees of freedom used to compute \(p \) values for all test statistics. If based on the sampling design, the value is the difference between the number of primary sampling units and the number of strata in the first stage of sampling. Alternatively, you can set a custom degrees of freedom by specifying a positive integer.

Adjustment for Multiple Comparisons. When performing hypothesis tests with multiple contrasts, the overall significance level can be adjusted from the significance levels for the included contrasts. This group allows you to choose the adjustment method.

- **Least significant difference.** This method does not control the overall probability of rejecting the hypotheses that some linear contrasts are different from the null hypothesis values.

- **Sequential Sidak.** This is a sequentially step-down rejective Sidak procedure that is much less conservative in terms of rejecting individual hypotheses but maintains the same overall significance level.

- **Sequential Bonferroni.** This is a sequentially step-down rejective Bonferroni procedure that is much less conservative in terms of rejecting individual hypotheses but maintains the same overall significance level.

- **Sidak.** This method provides tighter bounds than the Bonferroni approach.

- **Bonferroni.** This method adjusts the observed significance level for the fact that multiple contrasts are being tested.
The Estimated Means dialog box allows you to display the model-estimated marginal means for levels of factors and factor interactions specified in the Model subdialog box. You can also request that the overall population mean be displayed.

Term. Estimated means are computed for the selected factors and factor interactions.

Contrast. The contrast determines how hypothesis tests are set up to compare the estimated means.

- **Simple.** Compares the mean of each level to the mean of a specified level. This type of contrast is useful when there is a control group.

- **Deviation.** Compares the mean of each level (except a reference category) to the mean of all of the levels (grand mean). The levels of the factor can be in any order.

- **Difference.** Compares the mean of each level (except the first) to the mean of previous levels. They are sometimes called reverse Helmert contrasts.

- **Helmert.** Compares the mean of each level of the factor (except the last) to the mean of subsequent levels.
- **Repeated.** Compares the mean of each level (except the last) to the mean of the subsequent level.

- **Polynomial.** Compares the linear effect, quadratic effect, cubic effect, and so on. The first degree of freedom contains the linear effect across all categories; the second degree of freedom, the quadratic effect; and so on. These contrasts are often used to estimate polynomial trends.

Reference Category. The simple and deviation contrasts require a reference category or factor level against which the others are compared.

Complex Samples General Linear Model Save

Figure 9-6
General Linear Model Save dialog box

![Complex Samples General Linear Model Save](image)

Save Variables. This group allows you to save the model predicted values and residuals as new variables in the working file.
Export model as SPSS Statistics data. Writes an SPSS Statistics dataset containing the parameter correlation or covariance matrix with parameter estimates, standard errors, significance values, and degrees of freedom. The order of variables in the matrix file is as follows.

- **rowtype**_. Takes values (and value labels), COV (Covariances), CORR (Correlations), EST (Parameter estimates), SE (Standard errors), SIG (Significance levels), and DF (Sampling design degrees of freedom). There is a separate case with row type COV (or CORR) for each model parameter, plus a separate case for each of the other row types.

- **varname**_. Takes values P1, P2, ..., corresponding to an ordered list of all model parameters, for row types COV or CORR, with value labels corresponding to the parameter strings shown in the parameter estimates table. The cells are blank for other row types.

- **P1, P2, ...** These variables correspond to an ordered list of all model parameters, with variable labels corresponding to the parameter strings shown in the parameter estimates table, and take values according to the row type. For redundant parameters, all covariances are set to zero; correlations are set to the system-missing value; all parameter estimates are set at zero; and all standard errors, significance levels, and residual degrees of freedom are set to the system-missing value.

Note: This file is not immediately usable for further analyses in other procedures that read a matrix file unless those procedures accept all the row types exported here.

Export Model as XML. Saves the parameter estimates and the parameter covariance matrix, if selected, in XML (PMML) format. SmartScore and SPSS Statistics Server (a separate product) can use this model file to apply the model information to other data files for scoring purposes.
Complex Samples General Linear Model Options

User-Missing Values. All design variables, as well as the dependent variable and any covariates, must have valid data. Cases with invalid data for any of these variables are deleted from the analysis. These controls allow you to decide whether user-missing values are treated as valid among the strata, cluster, subpopulation, and factor variables.

Confidence Interval. This is the confidence interval level for coefficient estimates and estimated marginal means. Specify a value greater than or equal to 50 and less than 100.

CSGLM Command Additional Features

The command syntax language also allows you to:

- Specify custom tests of effects versus a linear combination of effects or a value (using the **CUSTOM** subcommand).
- Fix covariates at values other than their means when computing estimated marginal means (using the **EMMEANS** subcommand).
- Specify a metric for polynomial contrasts (using the **EMMEANS** subcommand).
- Specify a tolerance value for checking singularity (using the **CRITERIA** subcommand).
- Create user-specified names for saved variables (using the **SAVE** subcommand).
- Produce a general estimable function table (using the **PRINT** subcommand).
See the *Command Syntax Reference* for complete syntax information.
The Complex Samples Logistic Regression procedure performs logistic regression analysis on a binary or multinomial dependent variable for samples drawn by complex sampling methods. Optionally, you can request analyses for a subpopulation.

Example. A loan officer has collected past records of customers given loans at several different branches, according to a complex design. While incorporating the sample design, the officer wants to see if the probability with which a customer defaults is related to age, employment history, and amount of credit debt.

Statistics. The procedure produces estimates, exponentiated estimates, standard errors, confidence intervals, \(t \) tests, design effects, and square roots of design effects for model parameters, as well as the correlations and covariances between parameter estimates. Pseudo \(R^2 \) statistics, classification tables, and descriptive statistics for the dependent and independent variables are also available.

Data. The dependent variable is categorical. Factors are categorical. Covariates are quantitative variables that are related to the dependent variable. Subpopulation variables can be string or numeric but should be categorical.

Assumptions. The cases in the data file represent a sample from a complex design that should be analyzed according to the specifications in the file selected in the Complex Samples Plan dialog box.

Obtaining Complex Samples Logistic Regression

From the menus choose:

Analyze
Complex Samples
Logistic Regression...
Select a plan file. Optionally, select a custom joint probabilities file.

Click Continue.

Figure 10-1
Logistic Regression dialog box

Select a dependent variable.

Optionally, you can:

- Select variables for factors and covariates, as appropriate for your data.
- Specify a variable to define a subpopulation. The analysis is performed only for the selected category of the subpopulation variable.
By default, the Complex Samples Logistic Regression procedure makes the highest-valued category the reference category. This dialog box allows you to specify the highest value, the lowest value, or a custom category as the reference category.
Complex Samples Logistic Regression Model

Figure 10-3

Logistic Regression Model dialog box

![Logistic Regression Model dialog box](image)

Specify Model Effects. By default, the procedure builds a main-effects model using the factors and covariates specified in the main dialog box. Alternatively, you can build a custom model that includes interaction effects and nested terms.

Non-Nested Terms

For the selected factors and covariates:

- **Interaction.** Creates the highest-level interaction term for all selected variables.
- **Main effects.** Creates a main-effects term for each variable selected.
All 2-way. Creates all possible two-way interactions of the selected variables.

All 3-way. Creates all possible three-way interactions of the selected variables.

All 4-way. Creates all possible four-way interactions of the selected variables.

All 5-way. Creates all possible five-way interactions of the selected variables.

Nested Terms

You can build nested terms for your model in this procedure. Nested terms are useful for modeling the effect of a factor or covariate whose values do not interact with the levels of another factor. For example, a grocery store chain may follow the spending habits of its customers at several store locations. Since each customer frequents only one of these locations, the *Customer* effect can be said to be **nested within** the *Store location* effect.

Additionally, you can include interaction effects, such as polynomial terms involving the same covariate, or add multiple levels of nesting to the nested term.

Limitations. Nested terms have the following restrictions:

- All factors within an interaction must be unique. Thus, if \(A \) is a factor, then specifying \(A*A \) is invalid.
- All factors within a nested effect must be unique. Thus, if \(A \) is a factor, then specifying \(A(A) \) is invalid.
- No effect can be nested within a covariate. Thus, if \(A \) is a factor and \(X \) is a covariate, then specifying \(A(X) \) is invalid.

Intercept. The intercept is usually included in the model. If you can assume the data pass through the origin, you can exclude the intercept. Even if you include the intercept in the model, you can choose to suppress statistics related to it.
Complex Samples Logistic Regression Statistics

Model Fit. Controls the display of statistics that measure the overall model performance.
- **Pseudo R-square.** The R^2 statistic from linear regression does not have an exact counterpart among logistic regression models. There are, instead, multiple measures that attempt to mimic the properties of the R^2 statistic.
- **Classification table.** Displays the tabulated cross-classifications of the observed category by the model-predicted category on the dependent variable.

Parameters. This group allows you to control the display of statistics related to the model parameters.
- **Estimate.** Displays estimates of the coefficients.
- **Exponentiated estimate.** Displays the base of the natural logarithm raised to the power of the estimates of the coefficients. While the estimate has nice properties for statistical testing, the exponentiated estimate, or exp(B), is easier to interpret.
- **Standard error.** Displays the standard error for each coefficient estimate.
Confidence interval. Displays a confidence interval for each coefficient estimate. The confidence level for the interval is set in the Options dialog box.

T test. Displays a t test of each coefficient estimate. The null hypothesis for each test is that the value of the coefficient is 0.

Covariances of parameter estimates. Displays an estimate of the covariance matrix for the model coefficients.

Correlations of parameter estimates. Displays an estimate of the correlation matrix for the model coefficients.

Design effect. The ratio of the variance of the estimate to the variance obtained by assuming that the sample is a simple random sample. This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.

Square root of design effect. This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.

Summary statistics for model variables. Displays summary information about the dependent variable, covariates, and factors.

Sample design information. Displays summary information about the sample, including the unweighted count and the population size.
Complex Samples Hypothesis Tests

Test Statistic. This group allows you to select the type of statistic used for testing hypotheses. You can choose between F, adjusted F, chi-square, and adjusted chi-square.

Sampling Degrees of Freedom. This group gives you control over the sampling design degrees of freedom used to compute p values for all test statistics. If based on the sampling design, the value is the difference between the number of primary sampling units and the number of strata in the first stage of sampling. Alternatively, you can set a custom degrees of freedom by specifying a positive integer.

Adjustment for Multiple Comparisons. When performing hypothesis tests with multiple contrasts, the overall significance level can be adjusted from the significance levels for the included contrasts. This group allows you to choose the adjustment method.

- Least significant difference. This method does not control the overall probability of rejecting the hypotheses that some linear contrasts are different from the null hypothesis values.
- **Sequential Sidak.** This is a sequentially step-down rejective Sidak procedure that is much less conservative in terms of rejecting individual hypotheses but maintains the same overall significance level.

- **Sequential Bonferroni.** This is a sequentially step-down rejective Bonferroni procedure that is much less conservative in terms of rejecting individual hypotheses but maintains the same overall significance level.

- **Sidak.** This method provides tighter bounds than the Bonferroni approach.

- **Bonferroni.** This method adjusts the observed significance level for the fact that multiple contrasts are being tested.

Complex Samples Logistic Regression Odds Ratios

Figure 10-6

Logistic Regression Odds Ratios dialog box

The Odds Ratios dialog box allows you to display the model-estimated odds ratios for specified factors and covariates. A separate set of odds ratios is computed for each category of the dependent variable except the reference category.
Factors. For each selected factor, displays the ratio of the odds at each category of the factor to the odds at the specified reference category.

Covariates. For each selected covariate, displays the ratio of the odds at the covariate’s mean value plus the specified units of change to the odds at the mean.

When computing odds ratios for a factor or covariate, the procedure fixes all other factors at their highest levels and all other covariates at their means. If a factor or covariate interacts with other predictors in the model, then the odds ratios depend not only on the change in the specified variable but also on the values of the variables with which it interacts. If a specified covariate interacts with itself in the model (for example, age*age), then the odds ratios depend on both the change in the covariate and the value of the covariate.

Complex Samples Logistic Regression Save

Figure 10-7

Logistic Regression Save dialog box
Save Variables. This group allows you to save the model-predicted category and predicted probabilities as new variables in the active dataset.

Export model as SPSS Statistics data. Writes an SPSS Statistics dataset containing the parameter correlation or covariance matrix with parameter estimates, standard errors, significance values, and degrees of freedom. The order of variables in the matrix file is as follows.

- **rowtype**. Takes values (and value labels), COV (Covariances), CORR (Correlations), EST (Parameter estimates), SE (Standard errors), SIG (Significance levels), and DF (Sampling design degrees of freedom). There is a separate case with row type COV (or CORR) for each model parameter, plus a separate case for each of the other row types.

- **varname**. Takes values P1, P2, ..., corresponding to an ordered list of all model parameters, for row types COV or CORR, with value labels corresponding to the parameter strings shown in the parameter estimates table. The cells are blank for other row types.

- **P1, P2, ...** These variables correspond to an ordered list of all model parameters, with variable labels corresponding to the parameter strings shown in the parameter estimates table, and take values according to the row type. For redundant parameters, all covariances are set to zero; correlations are set to the system-missing value; all parameter estimates are set at zero; and all standard errors, significance levels, and residual degrees of freedom are set to the system-missing value.

Note: This file is not immediately usable for further analyses in other procedures that read a matrix file unless those procedures accept all the row types exported here.

Export Model as XML. Saves the parameter estimates and the parameter covariance matrix, if selected, in XML (PMML) format. SmartScore and SPSS Statistics Server (a separate product) can use this model file to apply the model information to other data files for scoring purposes.
Complex Samples Logistic Regression Options

Figure 10-8
Logistic Regression Options dialog box

Estimation. This group gives you control of various criteria used in the model estimation.

- **Maximum Iterations.** The maximum number of iterations the algorithm will execute. Specify a non-negative integer.

- **Maximum Step-Halving.** At each iteration, the step size is reduced by a factor of 0.5 until the log-likelihood increases or maximum step-halving is reached. Specify a positive integer.

- **Limit iterations based on change in parameter estimates.** When selected, the algorithm stops after an iteration in which the absolute or relative change in the parameter estimates is less than the value specified, which must be non-negative.

- **Limit iterations based on change in log-likelihood.** When selected, the algorithm stops after an iteration in which the absolute or relative change in the log-likelihood function is less than the value specified, which must be non-negative.
- **Check for complete separation of data points.** When selected, the algorithm performs tests to ensure that the parameter estimates have unique values. Separation occurs when the procedure can produce a model that correctly classifies every case.

- **Display iteration history.** Displays parameter estimates and statistics at every n iterations beginning with the 0^{th} iteration (the initial estimates). If you choose to print the iteration history, the last iteration is always printed regardless of the value of n.

User-Missing Values. All design variables, as well as the dependent variable and any covariates, must have valid data. Cases with invalid data for any of these variables are deleted from the analysis. These controls allow you to decide whether user-missing values are treated as valid among the strata, cluster, subpopulation, and factor variables.

Confidence Interval. This is the confidence interval level for coefficient estimates, exponentiated coefficient estimates, and odds ratios. Specify a value greater than or equal to 50 and less than 100.

CSLOGISTIC Command Additional Features

The command syntax language also allows you to:

- Specify custom tests of effects versus a linear combination of effects or a value (using the `CUSTOM` subcommand).

- Fix values of other model variables when computing odds ratios for factors and covariates (using the `ODDSRATIOS` subcommand).

- Specify a tolerance value for checking singularity (using the `CRITERIA` subcommand).

- Create user-specified names for saved variables (using the `SAVE` subcommand).

- Produce a general estimable function table (using the `PRINT` subcommand).

See the *Command Syntax Reference* for complete syntax information.
Chapter 11

Complex Samples Ordinal Regression

The Complex Samples Ordinal Regression procedure performs regression analysis on a binary or ordinal dependent variable for samples drawn by complex sampling methods. Optionally, you can request analyses for a subpopulation.

Example. Representatives considering a bill before the legislature are interested in whether there is public support for the bill and how support for the bill is related to voter demographics. Pollsters design and conduct interviews according to a complex sampling design. Using Complex Samples Ordinal Regression, you can fit a model for the level of support for the bill based upon voter demographics.

Data. The dependent variable is ordinal. Factors are categorical. Covariates are quantitative variables that are related to the dependent variable. Subpopulation variables can be string or numeric but should be categorical.

Assumptions. The cases in the data file represent a sample from a complex design that should be analyzed according to the specifications in the file selected in the Complex Samples Plan dialog box.

Obtaining Complex Samples Ordinal Regression

From the menus choose:

Analyze
 Complex Samples
 Ordinal Regression...

- Select a plan file. Optionally, select a custom joint probabilities file.
- Click Continue.
Select a dependent variable.

Optionally, you can:

- Select variables for factors and covariates, as appropriate for your data.
- Specify a variable to define a subpopulation. The analysis is performed only for the selected category of the subpopulation variable, although variances are still properly estimated based on the entire dataset.
- Select a link function.
Link function. The link function is a transformation of the cumulative probabilities that allows estimation of the model. Five link functions are available, summarized in the following table.

<table>
<thead>
<tr>
<th>Function</th>
<th>Form</th>
<th>Typical application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logit</td>
<td>(\log\left(\frac{x}{1-x}\right))</td>
<td>Evenly distributed categories</td>
</tr>
<tr>
<td>Complementary log-log</td>
<td>(\log(-\log(1-x)))</td>
<td>Higher categories more probable</td>
</tr>
<tr>
<td>Negative log-log</td>
<td>(-\log(-\log(1-x)))</td>
<td>Lower categories more probable</td>
</tr>
<tr>
<td>Probit</td>
<td>(\frac{1}{\Phi})</td>
<td>Latent variable is normally distributed</td>
</tr>
<tr>
<td>Cauchit (inverse Cauchy)</td>
<td>(\tan(\pi \left(\frac{x}{0.5}\right)))</td>
<td>Latent variable has many extreme values</td>
</tr>
</tbody>
</table>

Complex Samples Ordinal Regression Response Probabilities

Figure 11-2
Ordinal Regression Response Probabilities dialog box

The Response Probabilities dialog box allows you to specify whether the cumulative probability of a response (that is, the probability of belonging up to and including a particular category of the dependent variable) increases with increasing or decreasing values of the dependent variable.
Complex Samples Ordinal Regression Model

Specify Model Effects. By default, the procedure builds a main-effects model using the factors and covariates specified in the main dialog box. Alternatively, you can build a custom model that includes interaction effects and nested terms.

Non-Nested Terms

For the selected factors and covariates:

Interaction. Creates the highest-level interaction term for all selected variables.

Main effects. Creates a main-effects term for each variable selected.

All 2-way. Creates all possible two-way interactions of the selected variables.

All 3-way. Creates all possible three-way interactions of the selected variables.
All 4-way. Creates all possible four-way interactions of the selected variables.

All 5-way. Creates all possible five-way interactions of the selected variables.

Nested Terms

You can build nested terms for your model in this procedure. Nested terms are useful for modeling the effect of a factor or covariate whose values do not interact with the levels of another factor. For example, a grocery store chain may follow the spending habits of its customers at several store locations. Since each customer frequents only one of these locations, the Customer effect can be said to be nested within the Store location effect.

Additionally, you can include interaction effects, such as polynomial terms involving the same covariate, or add multiple levels of nesting to the nested term.

Limitations. Nested terms have the following restrictions:

- All factors within an interaction must be unique. Thus, if A is a factor, then specifying A*A is invalid.
- All factors within a nested effect must be unique. Thus, if A is a factor, then specifying A(A) is invalid.
- No effect can be nested within a covariate. Thus, if A is a factor and X is a covariate, then specifying A(X) is invalid.
Complex Samples Ordinal Regression Statistics

Figure 11-4
Ordinal Regression Statistics dialog box

![Ordinal Regression Statistics dialog box](image)

- **Model Fit.** Controls the display of statistics that measure the overall model performance.
 - **Pseudo R-square.** The R^2 statistic from linear regression does not have an exact counterpart among ordinal regression models. There are, instead, multiple measures that attempt to mimic the properties of the R^2 statistic.
 - **Classification table.** Displays the tabulated cross-classifications of the observed category by the model-predicted category on the dependent variable.

- **Parameters.** This group allows you to control the display of statistics related to the model parameters.
 - **Estimate.** Displays estimates of the coefficients.
- **Exponentiated estimate.** Displays the base of the natural logarithm raised to the power of the estimates of the coefficients. While the estimate has nice properties for statistical testing, the exponentiated estimate, or exp(B), is easier to interpret.

- **Standard error.** Displays the standard error for each coefficient estimate.

- **Confidence interval.** Displays a confidence interval for each coefficient estimate. The confidence level for the interval is set in the Options dialog box.

- **T test.** Displays a t test of each coefficient estimate. The null hypothesis for each test is that the value of the coefficient is 0.

- **Covariances of parameter estimates.** Displays an estimate of the covariance matrix for the model coefficients.

- **Correlations of parameter estimates.** Displays an estimate of the correlation matrix for the model coefficients.

- **Design effect.** The ratio of the variance of the estimate to the variance obtained by assuming that the sample is a simple random sample. This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.

- **Square root of design effect.** This is a measure, expressed in units comparable to those of the standard error, of the effect of specifying a complex design, where values further from 1 indicate greater effects.

Parallel Lines. This group allows you to request statistics associated with a model with nonparallel lines where a separate regression line is fitted for each response category (except the last).

- **Wald test.** Produces a test of the null hypothesis that regression parameters are equal for all cumulative responses. The model with nonparallel lines is estimated and the Wald test of equal parameters is applied.

- **Parameter estimates.** Displays estimates of the coefficients and standard errors for the model with nonparallel lines.

- **Covariances of parameter estimates.** Displays an estimate of the covariance matrix for the coefficients of the model with nonparallel lines.

Summary statistics for model variables. Displays summary information about the dependent variable, covariates, and factors.

Sample design information. Displays summary information about the sample, including the unweighted count and the population size.
Complex Samples Hypothesis Tests

Figure 11-5
Hypothesis Tests dialog box

Test Statistic. This group allows you to select the type of statistic used for testing hypotheses. You can choose between F, adjusted F, chi-square, and adjusted chi-square.

Sampling Degrees of Freedom. This group gives you control over the sampling design degrees of freedom used to compute p values for all test statistics. If based on the sampling design, the value is the difference between the number of primary sampling units and the number of strata in the first stage of sampling. Alternatively, you can set a custom degrees of freedom by specifying a positive integer.

Adjustment for Multiple Comparisons. When performing hypothesis tests with multiple contrasts, the overall significance level can be adjusted from the significance levels for the included contrasts. This group allows you to choose the adjustment method.

- Least significant difference. This method does not control the overall probability of rejecting the hypotheses that some linear contrasts are different from the null hypothesis values.
Chapter 11

- **Sequential Sidak.** This is a sequentially step-down rejective Sidak procedure that is much less conservative in terms of rejecting individual hypotheses but maintains the same overall significance level.

- **Sequential Bonferroni.** This is a sequentially step-down rejective Bonferroni procedure that is much less conservative in terms of rejecting individual hypotheses but maintains the same overall significance level.

- **Sidak.** This method provides tighter bounds than the Bonferroni approach.

- **Bonferroni.** This method adjusts the observed significance level for the fact that multiple contrasts are being tested.

Complex Samples Ordinal Regression Odds Ratios

Figure 11-6

Ordinal Regression Odds Ratios dialog box

The Odds Ratios dialog box allows you to display the model-estimated cumulative odds ratios for specified factors and covariates. This feature is only available for models using the Logit link function. A single cumulative odds ratio is computed for
all categories of the dependent variable except the last; the proportional odds model postulates that they are all equal.

Factors. For each selected factor, displays the ratio of the cumulative odds at each category of the factor to the odds at the specified reference category.

** Covariates.** For each selected covariate, displays the ratio of the cumulative odds at the covariate’s mean value plus the specified units of change to the odds at the mean.

When computing odds ratios for a factor or covariate, the procedure fixes all other factors at their highest levels and all other covariates at their means. If a factor or covariate interacts with other predictors in the model, then the odds ratios depend not only on the change in the specified variable but also on the values of the variables with which it interacts. If a specified covariate interacts with itself in the model (for example, age*age), then the odds ratios depend on both the change in the covariate and the value of the covariate.
Save Variables. This group allows you to save the model-predicted category, probability of predicted category, probability of observed category, cumulative probabilities, and predicted probabilities as new variables in the active dataset.

Export model as SPSS Statistics data. Writes an SPSS Statistics dataset containing the parameter correlation or covariance matrix with parameter estimates, standard errors, significance values, and degrees of freedom. The order of variables in the matrix file is as follows.
- **rowtype**. Takes values (and value labels), COV (Covariances), CORR (Correlations), EST (Parameter estimates), SE (Standard errors), SIG (Significance levels), and DF (Sampling design degrees of freedom). There is a separate case with row type COV (or CORR) for each model parameter, plus a separate case for each of the other row types.

- **varname**. Takes values P1, P2, ..., corresponding to an ordered list of all model parameters, for row types COV or CORR, with value labels corresponding to the parameter strings shown in the parameter estimates table. The cells are blank for other row types.

- **P1, P2, ...** These variables correspond to an ordered list of all model parameters, with variable labels corresponding to the parameter strings shown in the parameter estimates table, and take values according to the row type. For redundant parameters, all covariances are set to zero; correlations are set to the system-missing value; all parameter estimates are set at zero; and all standard errors, significance levels, and residual degrees of freedom are set to the system-missing value.

Note: This file is not immediately usable for further analyses in other procedures that read a matrix file unless those procedures accept all the row types exported here.

Export model as XML. Saves the parameter estimates and the parameter covariance matrix, if selected, in XML (PMML) format. SmartScore and SPSS Statistics Server (a separate product) can use this model file to apply the model information to other data files for scoring purposes.
Complex Samples Ordinal Regression Options

Figure 11-8
Ordinal Regression Options dialog box

![Complex Samples Ordinal Regression: Options](image)

Estimation Method. You can select a parameter estimation method; choose between Newton-Raphson, Fisher scoring, or a hybrid method in which Fisher scoring iterations are performed before switching to the Newton-Raphson method. If convergence is achieved during the Fisher scoring phase of the hybrid method before the maximum number of Fisher iterations is reached, the algorithm continues with the Newton-Raphson method.

Estimation. This group gives you control of various criteria used in the model estimation.

- **Maximum Iterations.** The maximum number of iterations the algorithm will execute. Specify a non-negative integer.
Maximum Step-Halving. At each iteration, the step size is reduced by a factor of 0.5 until the log-likelihood increases or maximum step-halving is reached. Specify a positive integer.

Limit iterations based on change in parameter estimates. When selected, the algorithm stops after an iteration in which the absolute or relative change in the parameter estimates is less than the value specified, which must be non-negative.

Limit iterations based on change in log-likelihood. When selected, the algorithm stops after an iteration in which the absolute or relative change in the log-likelihood function is less than the value specified, which must be non-negative.

Check for complete separation of data points. When selected, the algorithm performs tests to ensure that the parameter estimates have unique values. Separation occurs when the procedure can produce a model that correctly classifies every case.

Display iteration history. Displays parameter estimates and statistics at every \(n \) iterations beginning with the 0th iteration (the initial estimates). If you choose to print the iteration history, the last iteration is always printed regardless of the value of \(n \).

User-Missing Values. Scale design variables, as well as the dependent variable and any covariates, should have valid data. Cases with invalid data for any of these variables are deleted from the analysis. These controls allow you to decide whether user-missing values are treated as valid among the strata, cluster, subpopulation, and factor variables.

Confidence Interval. This is the confidence interval level for coefficient estimates, exponentiated coefficient estimates, and odds ratios. Specify a value greater than or equal to 50 and less than 100.

CSORDINAL Command Additional Features

The command syntax language also allows you to:

- Specify custom tests of effects versus a linear combination of effects or a value (using the CUSTOM subcommand).
- Fix values of other model variables at values other than their means when computing cumulative odds ratios for factors and covariates (using the ODDS RATIOS subcommand).
- Use unlabeled values as custom reference categories for factors when odds ratios are requested (using the ODDS RATIOS subcommand).
• Specify a tolerance value for checking singularity (using the \texttt{CRITERIA} subcommand).

• Produce a general estimable function table (using the \texttt{PRINT} subcommand).

• Save more than 25 probability variables (using the \texttt{SAVE} subcommand).

See the \textit{Command Syntax Reference} for complete syntax information.
The Complex Samples Cox Regression procedure performs survival analysis for samples drawn by complex sampling methods. Optionally, you can request analyses for a subpopulation.

Examples. A government law enforcement agency is concerned about recidivism rates in their area of jurisdiction. One of the measures of recidivism is the time until second arrest for offenders. The agency would like to model time to rearrest using Cox Regression but are worried the proportional hazards assumption is invalid across age categories.

Medical researchers are investigating survival times for patients exiting a rehabilitation program post-ischemic stroke. There is the potential for multiple cases per subject, since patient histories change as the occurrence of significant nondeath events are noted and the times of these events recorded. The sample is also left-truncated in the sense that the observed survival times are “inflated” by the length of rehabilitation, because while the onset of risk starts at the time of the ischemic stroke, only patients who survive past the rehabilitation program are in the sample.

Survival Time. The procedure applies Cox regression to analysis of survival times—that is, the length of time before the occurrence of an event. There are two ways to specify the survival time, depending upon the start time of the interval:

- **Time=0.** Commonly, you will have complete information on the start of the interval for each subject and will simply have a variable containing end times (or create a single variable with end times from Date & Time variables; see below).

- **Varies by subject.** This is appropriate when you have left-truncation, also called delayed entry; for example, if you are analyzing survival times for patients exiting a rehabilitation program post-stroke, you might consider that their onset of risk starts at the time of the stroke. However, if your sample only includes patients who have survived the rehabilitation program, then your sample is left-truncated in the sense that the observed survival times are “inflated” by the length of rehabilitation.
You can account for this by specifying the time at which they exited rehabilitation as the time of entry into the study.

Date & Time Variables. Date & Time variables cannot be used to directly define the start and end of the interval; if you have Date & Time variables, you should use them to create variables containing survival times. If there is no left-truncation, simply create a variable containing end times based upon the difference between the date of entry into the study and the observation date. If there is left-truncation, create a variable containing start times, based upon the difference between the date of the start of the study and the date of entry, and a variable containing end times, based upon the difference between the date of the start of the study and the date of observation.

Event Status. You need a variable that records whether the subject experienced the event of interest within the interval. Subjects for whom the event has not occurred are right-censored.

Subject Identifier. You can easily incorporate piecewise-constant, time-dependent predictors by splitting the observations for a single subject across multiple cases. For example, if you are analyzing survival times for patients post-stroke, variables representing their medical history should be useful as predictors. Over time, they may experience major medical events that alter their medical history. The following table shows how to structure such a dataset: **Patient ID** is the subject identifier, **End time** defines the observed intervals, **Status** records major medical events, and **Prior history of heart attack** and **Prior history of hemorrhaging** are piecewise-constant, time-dependent predictors.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>End time</th>
<th>Status</th>
<th>Prior history of heart attack</th>
<th>Prior history of hemorrhaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>Heart Attack</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>Hemorrhaging</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>Died</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>Died</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Heart Attack</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>Died</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Assumptions. The cases in the data file represent a sample from a complex design that should be analyzed according to the specifications in the file selected in the Complex Samples Plan dialog box.
Typically, Cox regression models assume proportional hazards—that is, the ratio of hazards from one case to another should not vary over time. If this assumption does not hold, you may need to add time-dependent predictors to the model.

Kaplan-Meier Analysis. If you do not select any predictors (or do not enter any selected predictors into the model) and choose the product limit method for computing the baseline survival curve on the Options tab, the procedure performs a Kaplan-Meier type of survival analysis.

To Obtain Complex Samples Cox Regression

- From the menus choose:
 Analyze
 Complex Samples
 Cox Regression...

- Select a plan file. Optionally, select a custom joint probabilities file.

- Click Continue.
Figure 12-1
Cox Regression dialog box, Time and Event tab

- Specify the survival time by selecting the entry and exit times from the study.
- Select an event status variable.
- Click Define Event and define at least one event value.

Optionally, you can select a subject identifier.
Define Event

Figure 12-2
Define Event dialog box

Specify the values that indicate a terminal event has occurred.

- **Individual value(s).** Specify one or more values by entering them into the grid or selecting them from a list of values with defined value labels.

- **Range of values.** Specify a range of values by entering the minimum and maximum values or selecting values from a list with defined value labels.
Predictors

Figure 12-3
Cox Regression dialog box, Predictors tab

The Predictors tab allows you to specify the factors and covariates used to build model effects.

Factors. Factors are categorical predictors; they can be numeric or string.

Covariates. Covariates are scale predictors; they must be numeric.

Time-Dependent Predictors. There are certain situations in which the proportional hazards assumption does not hold. That is, hazard ratios change across time; the values of one (or more) of your predictors are different at different time points. In such cases, you need to specify time-dependent predictors. For more information, see Define
Define Time-Dependent Predictor

Figure 12-4
Cox Regression Define Time-Dependent Predictor dialog box

Time-Dependent Predictor on p. 101. Time-dependent predictors can be selected as factors or covariates.
The Define Time-Dependent Predictor dialog box allows you to create a predictor that is dependent upon the built-in time variable, $T__$. You can use this variable to define time-dependent covariates in two general ways:

- If you want to estimate an extended Cox regression model that allows nonproportional hazards, you can do so by defining your time-dependent predictor as a function of the time variable $T__\$ and the covariate in question. A common example would be the simple product of the time variable and the predictor, but more complex functions can be specified as well.

- Some variables may have different values at different time periods but aren’t systematically related to time. In such cases, you need to define a segmented time-dependent predictor, which can be done using logical expressions. Logical expressions take the value 1 if true and 0 if false. Using a series of logical expressions, you can create your time-dependent predictor from a set of measurements. For example, if you have blood pressure measured once a week for the four weeks of your study (identified as $BP1$ to $BP4$), you can define your time-dependent predictor as $(T__<1) \times BP1 + (T__\geq 1 \& T__<2) \times BP2 + (T__\geq 2 \& T__<3) \times BP3 + (T__\geq 3 \& T__<4) \times BP4$. Notice that exactly one of the terms in parentheses will be equal to 1 for any given case and the rest will all equal 0. In other words, this function means that if time is less than one week, use $BP1$; if it is more than one week but less than two weeks, use $BP2$; and so on.

Note: If your segmented, time-dependent predictor is constant within segments, as in the blood pressure example given above, it may be easier for you to specify the piecewise-constant, time-dependent predictor by splitting subjects across multiple cases. See the discussion on Subject Identifiers in Complex Samples Cox Regression on p. 95 for more information.

In the Define Time-Dependent Predictor dialog box, you can use the function-building controls to build the expression for the time-dependent covariate, or you can enter it directly in the Numeric Expression text area. Note that string constants must be enclosed in quotation marks or apostrophes, and numeric constants must be typed in American format, with the dot as the decimal delimiter. The resulting variable is given the name you specify and should be included as a factor or covariate on the Predictors tab.
Subgroups

Figure 12-5
Cox Regression dialog box, Subgroups tab

Baseline Strata. A separate baseline hazard and survival function is computed for each value of this variable, while a single set of model coefficients is estimated across strata.

Subpopulation Variable. Specify a variable to define a subpopulation. The analysis is performed only for the selected category of the subpopulation variable.
Figure 12-6
Cox Regression dialog box, Model tab

Specify Model Effects. By default, the procedure builds a main-effects model using the factors and covariates specified in the main dialog box. Alternatively, you can build a custom model that includes interaction effects and nested terms.

Non-Nested Terms

For the selected factors and covariates:

Interaction. Creates the highest-level interaction term for all selected variables.

Main effects. Creates a main-effects term for each variable selected.
All 2-way. Creates all possible two-way interactions of the selected variables.

All 3-way. Creates all possible three-way interactions of the selected variables.

All 4-way. Creates all possible four-way interactions of the selected variables.

All 5-way. Creates all possible five-way interactions of the selected variables.

Nested Terms

You can build nested terms for your model in this procedure. Nested terms are useful for modeling the effect of a factor or covariate whose values do not interact with the levels of another factor. For example, a grocery store chain may follow the spending habits of its customers at several store locations. Since each customer frequents only one of these locations, the *Customer* effect can be said to be **nested within** the *Store location* effect.

Additionally, you can include interaction effects, such as polynomial terms involving the same covariate, or add multiple levels of nesting to the nested term.

Limitations. Nested terms have the following restrictions:

- All factors within an interaction must be unique. Thus, if A is a factor, then specifying $A*A$ is invalid.

- All factors within a nested effect must be unique. Thus, if A is a factor, then specifying $A(A)$ is invalid.

- No effect can be nested within a covariate. Thus, if A is a factor and X is a covariate, then specifying $A(X)$ is invalid.
Sample design information. Displays summary information about the sample, including the unweighted count and the population size.

Event and censoring summary. Displays summary information about the number and percentage of censored cases.

Risk set at event times. Displays number of events and number at risk for each event time in each baseline stratum.

Parameters. This group allows you to control the display of statistics related to the model parameters.

- **Estimate.** Displays estimates of the coefficients.
Exponentiated estimate. Displays the base of the natural logarithm raised to the power of the estimates of the coefficients. While the estimate has nice properties for statistical testing, the exponentiated estimate, or exp(B), is easier to interpret.

Standard error. Displays the standard error for each coefficient estimate.

Confidence interval. Displays a confidence interval for each coefficient estimate. The confidence level for the interval is set in the Options dialog box.

t-test. Displays a t test of each coefficient estimate. The null hypothesis for each test is that the value of the coefficient is 0.

Covariances of parameter estimates. Displays an estimate of the covariance matrix for the model coefficients.

Correlations of parameter estimates. Displays an estimate of the correlation matrix for the model coefficients.

Design effect. The ratio of the variance of the estimate to the variance obtained by assuming that the sample is a simple random sample. This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.

Square root of design effect. This is a measure of the effect of specifying a complex design, where values further from 1 indicate greater effects.

Model Assumptions. This group allows you to produce a test of the proportional hazards assumption. The test compares the fitted model to an alternative model that includes time-dependent predictors \(x^*_{\text{TF}} \) for each predictor \(x \), where \(_{\text{TF}} \) is the specified time function.

Time Function. Specifies the form of \(_{\text{TF}} \) for the alternative model. For the identity function, \(_{\text{TF}}=T \). For the log function, \(_{\text{TF}}=\log(T) \). For Kaplan-Meier, \(_{\text{TF}}=1-S_{\text{KM}}(T) \), where \(S_{\text{KM}}(.) \) is the Kaplan-Meier estimate of the survival function. For rank, \(_{\text{TF}} \) is the rank-order of \(T \) among the observed end times.

Parameter estimates for alternative model. Displays the estimate, standard error, and confidence interval for each parameter in the alternative model.

Covariance matrix for alternative model. Displays the matrix of estimated covariances between parameters in the alternative model.

Baseline survival and cumulative hazard functions. Displays the baseline survival function and baseline cumulative hazards function along with their standard errors.

Note: If time-dependent predictors defined on the Predictors tab are included in the model, this option is not available.
The Plots tab allows you to request plots of the hazard function, survival function, log-minus-log of the survival function, and one minus the survival function. You can also choose to plot confidence intervals along the specified functions; the confidence level is set on the Options tab.

Predictor patterns. You can specify a pattern of predictor values to be used for the requested plots and the exported survival file on the Export tab. Note that these options are not available if time-dependent predictors defined on the Predictors tab are included in the model.
- **Plot Factors at.** By default, each factor is evaluated at its highest level. Enter or select a different level if desired. Alternatively, you can choose to plot separate lines for each level of a single factor by selecting the check box for that factor.

- **Plot Covariates at.** Each covariate is evaluated at its mean. Enter or select a different value if desired.

Hypothesis Tests

Figure 12-9
Cox Regression dialog box, Hypothesis Tests tab

Test Statistic. This group allows you to select the type of statistic used for testing hypotheses. You can choose between F, adjusted F, chi-square, and adjusted chi-square.
Sampling Degrees of Freedom. This group gives you control over the sampling design degrees of freedom used to compute \(p \) values for all test statistics. If based on the sampling design, the value is the difference between the number of primary sampling units and the number of strata in the first stage of sampling. Alternatively, you can set a custom degrees of freedom by specifying a positive integer.

Adjustment for Multiple Comparisons. When performing hypothesis tests with multiple contrasts, the overall significance level can be adjusted from the significance levels for the included contrasts. This group allows you to choose the adjustment method.

- **Least significant difference.** This method does not control the overall probability of rejecting the hypotheses that some linear contrasts are different from the null hypothesis values.

- **Sequential Sidak.** This is a sequentially step-down rejective Sidak procedure that is much less conservative in terms of rejecting individual hypotheses but maintains the same overall significance level.

- **Sequential Bonferroni.** This is a sequentially step-down rejective Bonferroni procedure that is much less conservative in terms of rejecting individual hypotheses but maintains the same overall significance level.

- **Sidak.** This method provides tighter bounds than the Bonferroni approach.

- **Bonferroni.** This method adjusts the observed significance level for the fact that multiple contrasts are being tested.
Save

Save Variables. This group allows you to save model-related variables to the active dataset for further use in diagnostics and reporting of results. Note that none of these are available when time-dependent predictors are included in the model.

- **Survival function.** Saves the probability of survival (the value of the survival function) at the observed time and predictor values for each case.

- **Lower bound of confidence interval for survival function.** Saves the lower bound of the confidence interval for the survival function at the observed time and predictor values for each case.
Chapter 12

- **Upper bound of confidence interval for survival function.** Saves the upper bound of the confidence interval for the survival function at the observed time and predictor values for each case.

- **Cumulative hazard function.** Saves the cumulative hazard, or $-\ln(\text{survival})$, at the observed time and predictor values for each case.

- **Lower bound of confidence interval for cumulative hazard function.** Saves the lower bound of the confidence interval for the cumulative hazard function at the observed time and predictor values for each case.

- **Upper bound of confidence interval for cumulative hazard function.** Saves the upper bound of the confidence interval for the cumulative hazard function at the observed time and predictor values for each case.

- **Predicted value of linear predictor.** Saves the linear combination of reference value corrected predictors times regression coefficients. The linear predictor is the ratio of the hazard function to the baseline hazard. Under the proportional hazards model, this value is constant across time.

- **Schoenfeld residual.** For each uncensored case and each nonredundant parameter in the model, the Schoenfeld residual is the difference between the observed value of the predictor associated with the model parameter and the expected value of the predictor for cases in the risk set at the observed event time. Schoenfeld residuals can be used to help assess the proportional hazards assumption; for example, for a predictor x, plots of the Schoenfeld residuals for the time-dependent predictor $x*\ln(T)$ versus time should show a horizontal line at 0 if proportional hazards holds. A separate variable is saved for each nonredundant parameter in the model. Schoenfeld residuals are only computed for uncensored cases.

- **Martingale residual.** For each case, the martingale residual is the difference between the observed censoring (0 if censored, 1 if not) and the expectation of an event during the observation time.

- **Deviance residual.** Deviance residuals are martingale residuals “adjusted” to appear more symmetrical about 0. Plots of deviance residuals against predictors should reveal no patterns.

- **Cox-Snell residual.** For each case, the Cox-Snell residual is the expectation of an event during the observation time, or the observed censoring minus the martingale residual.
- **Score residual.** For each case and each nonredundant parameter in the model, the score residual is the contribution of the case to the first derivative of the pseudo-likelihood. A separate variable is saved for each nonredundant parameter in the model.

- **DFBeta residual.** For each case and each nonredundant parameter in the model, the DFBeta residual approximates the change in the value of the parameter estimate when the case is removed from the model. Cases with relatively large DFBeta residuals may be exerting undue influence on the analysis. A separate variable is saved for each nonredundant parameter in the model.

- **Aggregated residuals.** When multiple cases represent a single subject, the aggregated residual for a subject is simply the sum of the corresponding case residuals over all cases belonging to the same subject. For Schoenfeld’s residual, the aggregated version is the same as that of the non-aggregated version because Schoenfeld’s residual is only defined for uncensored cases. These residuals are only available when a subject identifier is specified on the Time and Event tab.

Names of Saved Variables. Automatic name generation ensures that you keep all your work. Custom names allow you to discard/replace results from previous runs without first deleting the saved variables in the Data Editor.
Export model as SPSS Statistics data. Writes an SPSS Statistics dataset containing the parameter correlation or covariance matrix with parameter estimates, standard errors, significance values, and degrees of freedom. The order of variables in the matrix file is as follows.

- **rowtype_.** Takes values (and value labels), COV (Covariances), CORR (Correlations), EST (Parameter estimates), SE (Standard errors), SIG (Significance levels), and DF (Sampling design degrees of freedom). There is a separate case with row type COV (or CORR) for each model parameter, plus a separate case for each of the other row types.
Complex Samples Cox Regression

- **varname**. Takes values P1, P2, ..., corresponding to an ordered list of all model parameters, for row types COV or CORR, with value labels corresponding to the parameter strings shown in the parameter estimates table. The cells are blank for other row types.

- **P1, P2, ...** These variables correspond to an ordered list of all model parameters, with variable labels corresponding to the parameter strings shown in the parameter estimates table, and take values according to the row type. For redundant parameters, all covariances are set to zero; correlations are set to the system-missing value; all parameter estimates are set at zero; and all standard errors, significance levels, and residual degrees of freedom are set to the system-missing value.

Note: This file is not immediately usable for further analyses in other procedures that read a matrix file unless those procedures accept all the row types exported here.

Export survival function as SPSS Statistics data. Writes an SPSS Statistics dataset containing the survival function; standard error of the survival function; upper and lower bounds of the confidence interval of the survival function; and the cumulative hazards function for each failure or event time, evaluated at the baseline and at the predictor patterns specified on the Plot tab. The order of variables in the matrix file is as follows.

- **Baseline strata variable.** Separate survival tables are produced for each value of the strata variable.

- **Survival time variable.** The event time; a separate case is created for each unique event time.

- **Sur_0, LCL_Sur_0, UCL_Sur_0.** Baseline survival function and the upper and lower bounds of its confidence interval.

- **Sur_R, LCL_Sur_R, UCL_Sur_R.** Survival function evaluated at the “reference” pattern (see the pattern values table in the output) and the upper and lower bounds of its confidence interval.

- **Sur_#.#, LCL_Sur_#.#, UCL_Sur_#.#,** … Survival function evaluated at each of the predictor patterns specified on the Plots tab and the upper and lower bounds of their confidence intervals. See the pattern values table in the output to match patterns with the number #.#.

- **Haz_0, LCL_Haz_0, UCL_Haz_0.** Baseline cumulative hazard function and the upper and lower bounds of its confidence interval.
Chapter 12

- **Haz_R, LCL_Haz_R, UCL_Haz_R.** Cumulative hazard function evaluated at the “reference” pattern (see the pattern values table in the output) and the upper and lower bounds of its confidence interval.

- **Haz_.##, LCL_Haz_.##, UCL_Haz_.##, …** Cumulative hazard function evaluated at each of the predictor patterns specified on the Plots tab and the upper and lower bounds of their confidence intervals. See the pattern values table in the output to match patterns with the number .##.

Export model as XML. Saves all information needed to predict the survival function, including parameter estimates and the baseline survival function, in XML (PMML) format. SmartScore and SPSS Statistics Server (a separate product) can use this model file to apply the model information to other data files for scoring purposes.
Options

Figure 12-12
Cox Regression dialog box, Options tab

![Cox Regression dialog box, Options tab](image)

Estimation. These controls specify criteria for estimation of regression coefficients.

- **Maximum Iterations.** The maximum number of iterations the algorithm will execute. Specify a non-negative integer.

- **Maximum Step-Halving.** At each iteration, the step size is reduced by a factor of 0.5 until the log-likelihood increases or maximum step-halving is reached. Specify a positive integer.

- **Limit iterations based on change in parameter estimates.** When selected, the algorithm stops after an iteration in which the absolute or relative change in the parameter estimates is less than the value specified, which must be positive.
- **Limit iterations based on change in log-likelihood.** When selected, the algorithm stops after an iteration in which the absolute or relative change in the log-likelihood function is less than the value specified, which must be positive.

- **Display iteration history.** Displays the iteration history for the parameter estimates and pseudo log-likelihood and prints the last evaluation of the change in parameter estimates and pseudo log-likelihood. The iteration history table prints every \(n \) iterations beginning with the 0th iteration (the initial estimates), where \(n \) is the value of the increment. If the iteration history is requested, then the last iteration is always displayed regardless of \(n \).

- **Tie breaking method for parameter estimation.** When there are tied observed failure times, one of these methods is used to break the ties. The Efron method is more computationally expensive.

Survival Functions. These controls specify criteria for computations involving the survival function.

- **Method for estimating baseline survival functions.** The Breslow (or Nelson-Aalan or empirical) method estimates the baseline cumulative hazard by a nondecreasing step function with steps at the observed failure times, then computes the baseline survival by the relation \(\text{survival} = \exp(-\text{cumulative hazard}) \). The Efron method is more computationally expensive and reduces to the Breslow method when there are no ties. The product limit method estimates the baseline survival by a non-increasing right continuous function; when there are no predictors in the model, this method reduces to Kaplan-Meier estimation.

- **Confidence intervals of survival functions.** The confidence interval can be calculated in three ways: in original units, via a log transformation, or a log-minus-log transformation. Only the log-minus-log transformation guarantees that the bounds of the confidence interval will lie between 0 and 1, but the log transformation generally seems to perform “best.”

User Missing Values. All variables must have valid values for a case to be included in the analysis. These controls allow you to decide whether user-missing values are treated as valid among categorical models (including factors, event, strata, and subpopulation variables) and sampling design variables.

Confidence interval(%). This is the confidence interval level used for coefficient estimates, exponentiated coefficient estimates, survival function estimates, and cumulative hazard function estimates. Specify a value greater than or equal to 0, and less than 100.
CSCOXREG Command Additional Features

The command language also allows you to:

- Perform custom hypothesis tests (using the `CUSTOM` subcommand and `/PRINT LMATRIX`).
- Tolerance specification (using `/CRITERIA SINGULAR`).
- General estimable function table (using `/PRINT GEF`).
- Multiple predictor patterns (using multiple `PATTERN` subcommands).
- Maximum number of saved variables when a rootname is specified (using the `SAVE` subcommand). The dialog honors the CSCOXREG default of 25 variables.

See the *Command Syntax Reference* for complete syntax information.
Part II: Examples
The Sampling Wizard guides you through the steps for creating, modifying, or executing a sampling plan file. Before using the wizard, you should have a well-defined target population, a list of sampling units, and an appropriate sample design in mind.

Obtaining a Sample from a Full Sampling Frame

A state agency is charged with ensuring fair property taxes from county to county. Taxes are based on the appraised value of the property, so the agency wants to survey a sample of properties by county to be sure that each county’s records are equally up to date. However, resources for obtaining current appraisals are limited, so it’s important that what is available is used wisely. The agency decides to employ complex sampling methodology to select a sample of properties.

A listing of properties is collected in `property_assess_cs.sav`. For more information, see Sample Files in Appendix A on p. 309. Use the Complex Samples Sampling Wizard to select a sample.

Using the Wizard

To run the Complex Samples Sampling Wizard, from the menus choose:

Analyse
Complex Samples
Select a Sample...
Select Design a sample, browse to where you want to save the file, and type property_assess.csplan as the name of the plan file.

Click Next.
Select *County* as a stratification variable.

Select *Township* as a cluster variable.

Click Next, and then click Next in the Sampling Method step.

This design structure means that independent samples are drawn for each county. In this stage, townships are drawn as the primary sampling unit using the default method, simple random sampling.
Chapter 13

Figure 13-3
Sampling Wizard, Sample Size step (stage 1)

- Select Counts from the Units drop-down list.
- Type 4 as the value for the number of units to select in this stage.
- Click Next, and then click Next in the Output Variables step.
Select Yes, add stage 2 now.

Click Next.
Select *Neighborhood* as a stratification variable.

- Click Next, and then click Next in the Sampling Method step.

This design structure means that independent samples are drawn for each neighborhood of the townships drawn in stage 1. In this stage, properties are drawn as the primary sampling unit using simple random sampling.
Select Proportions from the Units drop-down list.

Type 0.2 as the value of the proportion of units to sample from each stratum.

Click Next, and then click Next in the Output Variables step.
Figure 13-7
Sampling Wizard, Plan Summary step (stage 2)

- Look over the sampling design, and then click Next.
Select Custom value for the type of random seed to use, and type 241972 as the value. Using a custom value allows you to replicate the results of this example exactly.

Click Next, and then click Next in the Draw Sample Output Files step.
Figure 13-9
Sampling Wizard, Finish step

Click Finish.

These selections produce the sampling plan file *property_assess.csplan* and draw a sample according to that plan.
Plan Summary

Figure 13-10

Plan summary

<table>
<thead>
<tr>
<th>Design Variables</th>
<th>Stage 1</th>
<th>Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratification</td>
<td>County</td>
<td>Neighborhood</td>
</tr>
<tr>
<td>Cluster</td>
<td>Township</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Information</th>
<th>Stage 1</th>
<th>Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Method</td>
<td>Simple random sampling without replacement</td>
<td>Simple random sampling without replacement</td>
</tr>
<tr>
<td>Number of Units Sampled</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Variables Created or Modified</td>
<td>Inclusion Probability_1</td>
<td>Inclusion Probability_2</td>
</tr>
<tr>
<td>Stagewise Cumulative Sample Weight</td>
<td>Sample Weight Cumulative_1</td>
<td>Sample Weight Cumulative_2</td>
</tr>
<tr>
<td>Proportion of Units Sampled</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Analysis Information</td>
<td>Equal probability sampling without replacement</td>
<td>Equal probability sampling without replacement</td>
</tr>
<tr>
<td>Inclusion Probability</td>
<td>Obtained from variable Inclusion Probability_1</td>
<td>Obtained from variable Inclusion Probability_2</td>
</tr>
</tbody>
</table>

Plan File: c:\property_accesses.csvplan
Weight Variable: SampleWeight_Final_

The summary table reviews your sampling plan and is useful for making sure that the plan represents your intentions.
Chapter 13

Sampling Summary

Figure 13-11

Stage summary

This summary table reviews the first stage of sampling and is useful for checking that the sampling went according to plan. Four townships were sampled from each county, as requested.

<table>
<thead>
<tr>
<th>County</th>
<th>Number of Units Sampled</th>
<th>Proportion of Units Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Requested</td>
<td>Actual</td>
</tr>
<tr>
<td>Eastern</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Central</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Western</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Northern</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Southern</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

This summary table reviews the first stage of sampling and is useful for checking that the sampling went according to plan. Four townships were sampled from each county, as requested.

Figure 13-12

Stage summary

This summary table (the top part of which is shown here) reviews the second stage of sampling. It is also useful for checking that the sampling went according to plan. Approximately 20% of the properties were sampled from each neighborhood from each township sampled in the first stage, as requested.

<table>
<thead>
<tr>
<th>County</th>
<th>Township</th>
<th>Neighborhood</th>
<th>Number of Units Sampled</th>
<th>Proportion of Units Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requested</td>
<td>Actual</td>
</tr>
<tr>
<td>Eastern</td>
<td>2</td>
<td>36</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>14</td>
<td>14</td>
<td>20.0%</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>13</td>
<td>13</td>
<td>20.0%</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>12</td>
<td>12</td>
<td>20.0%</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>11</td>
<td>11</td>
<td>20.0%</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>11</td>
<td>11</td>
<td>20.0%</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>13</td>
<td>13</td>
<td>20.0%</td>
</tr>
<tr>
<td>9</td>
<td>57</td>
<td>13</td>
<td>13</td>
<td>20.0%</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>5</td>
<td>5</td>
<td>20.0%</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>11</td>
<td>11</td>
<td>20.0%</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>13</td>
<td>13</td>
<td>20.0%</td>
</tr>
<tr>
<td>Central</td>
<td>22</td>
<td>148</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>148</td>
<td>8</td>
<td>8</td>
<td>20.0%</td>
</tr>
</tbody>
</table>
Sample Results

You can see the sampling results in the Data Editor. Five new variables were saved to the working file, representing the inclusion probabilities and cumulative sampling weights for each stage, plus the final sampling weights.

- Cases with values for these variables were selected to the sample.
- Cases with system-missing values for the variables were not selected.

The agency will now use its resources to collect current valuations for the properties selected in the sample. Once those valuations are available, you can process the sample with Complex Samples analysis procedures, using the sampling plan `property_assess.csplan` to provide the sampling specifications.

Obtaining a Sample from a Partial Sampling Frame

A company is interested in compiling and selling a database of high-quality survey information. The survey sample should be representative but efficiently carried out, so complex sampling methods are used. The full sampling design calls for the following structure:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Strata</th>
<th>Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Region</td>
<td>Province</td>
</tr>
</tbody>
</table>
In the third stage, households are the primary sampling unit, and selected households will be surveyed. However, since information is easily available only to the city level, the company plans to execute the first two stages of the design now and then collect information on the numbers of subdivisions and households from the sampled cities. The available information to the city level is collected in demo_cs_1.sav. For more information, see Sample Files in Appendix A on p. 309. Note that this file contains a variable Subdivision that contains all 1’s. This is a placeholder for the “true” variable, whose values will be collected after the first two stages of the design are executed, that allows you to specify the full three-stage sampling design now. Use the Complex Samples Sampling Wizard to specify the full complex sampling design, and then draw the first two stages.

Using the Wizard to Sample from the First Partial Frame

- To run the Complex Samples Sampling Wizard, from the menus choose:
 - Analyze
 - Complex Samples
 - Select a Sample...
Select Design a sample, browse to where you want to save the file, and type demo.csplan as the name of the plan file.

Click Next.
Figure 13-15
Sampling Wizard, Design Variables step (stage 1)

- Select Region as a stratification variable.
- Select Province as a cluster variable.
- Click Next, and then click Next in the Sampling Method step.

This design structure means that independent samples are drawn for each region. In this stage, provinces are drawn as the primary sampling unit using the default method, simple random sampling.
Select Counts from the Units drop-down list.

Type 3 as the value for the number of units to select in this stage.

Click Next, and then click Next in the Output Variables step.
Select Yes, add stage 2 now.

Click Next.
Select *District* as a stratification variable.

Select *City* as a cluster variable.

Click Next, and then click Next in the Sampling Method step.

This design structure means that independent samples are drawn for each district. In this stage, cities are drawn as the primary sampling unit using the default method, simple random sampling.
Figure 13-19
Sampling Wizard, Sample Size step (stage 2)

- Select Proportions from the Units drop-down list.
- Type 0.1 as the value of the proportion of units to sample from each strata.
- Click Next, and then click Next in the Output Variables step.
Select Yes, add stage 3 now.

Click Next.
Figure 13-21
Sampling Wizard, Design Variables step (stage 3)

Select Subdivision as a stratification variable.

Click Next, and then click Next in the Sampling Method step.

This design structure means that independent samples are drawn for each subdivision. In this stage, household units are drawn as the primary sampling unit using the default method, simple random sampling.
Select Proportions from the Units drop-down list.

Type 0.2 as the value for the proportion of units to select in this stage.

Click Next, and then click Next in the Output Variables step.
Look over the sampling design, and then click Next.
Select 1, 2 as the stages to sample now.

Select Custom value for the type of random seed to use, and type 241972 as the value.

Using a custom value allows you to replicate the results of this example exactly.

Click Next, and then click Next in the Draw Sample Output Files step.
Figure 13-25
Sampling Wizard, Finish step

Click Finish.

These selections produce the sampling plan file demo.csplan and draw a sample according to the first two stages of that plan.
Sample Results

Figure 13-26
Data Editor with sample results

You can see the sampling results in the Data Editor. Five new variables were saved to the working file, representing the inclusion probabilities and cumulative sampling weights for each stage, plus the “final” sampling weights for the first two stages.

- Cities with values for these variables were selected to the sample.
- Cities with system-missing values for the variables were not selected.

For each city selected, the company acquired subdivision and household unit information and placed it in demo_cs_2.sav. Use this file and the Sampling Wizard to sample the third stage of this design.

Using the Wizard to Sample from the Second Partial Frame

To run the Complex Samples Sampling Wizard, from the menus choose:
Analyze
Complex Samples
Select a Sample...
Select Draw a sample, browse to where you saved the plan file, and select the demo.csplan plan file that you created.

Click Next.
Select 1, 2 as stages already sampled.

Click Next.
Select Custom value for the type of random seed to use and type 4231946 as the value.

Click Next, and then click Next in the Draw Sample Output Files step.
Figure 13-30
Sampling Wizard, Finish step

Select Paste the syntax generated by the Wizard into a syntax window.

Click Finish.

The following syntax is generated:

* Sampling Wizard.
CSSELECT
 /PLAN FILE='demo.csplan'
 /CRITERIA STAGES = 3 SEED = 4231946
 /CLASSMISSING EXCLUDE
 /DATA RENAMEVARS
 /PRINT SELECTION.

Printing the sampling summary in this case produces a cumbersome table that causes problems in the Output Viewer. To turn off display of the sampling summary, replace SELECTION with CPS in the PRINT subcommand. Then run the syntax within the syntax window.
These selections draw a sample according to the third stage of the *demo.csplan* sampling plan.

Sample Results

Figure 13-31
Data Editor with sample results

You can see the sampling results in the Data Editor. Three new variables were saved to the working file, representing the inclusion probabilities and cumulative sampling weights for the third stage, plus the final sampling weights. These new weights take into account the weights computed during the sampling of the first two stages.

- Units with values for these variables were selected to the sample.
- Units with system-missing values for these variables were not selected.

The company will now use its resources to obtain survey information for the housing units selected in the sample. Once the surveys are collected, you can process the sample with Complex Samples analysis procedures, using the sampling plan *demo.csplan* to provide the sampling specifications.
Sampling with Probability Proportional to Size (PPS)

Representatives considering a bill before the legislature are interested in whether there is public support for the bill and how support for the bill is related to voter demographics. Pollsters design and conduct interviews according to a complex sampling design.

A list of registered voters is collected in poll_cs.sav. For more information, see Sample Files in Appendix A on p. 309. Use the Complex Samples Sampling Wizard to select a sample for further analysis.

Using the Wizard

▶ To run the Complex Samples Sampling Wizard, from the menus choose:
 Analyze
 Complex Samples
 Select a Sample...
Select Design a sample, browse to where you want to save the file, and type poll.csplan as the name of the plan file.

Click Next.
Select *County* as a stratification variable.

Select *Township* as a cluster variable.

Click Next.

This design structure means that independent samples are drawn for each county. In this stage, townships are drawn as the primary sampling unit.
Select PPS as the sampling method.

Select Count data records as the measure of size.

Click Next.

Within each county, townships are drawn without replacement with probability proportional to the number of records for each township. Using a PPS method generates joint sampling probabilities for the townships; you will specify where to save these values in the Output Files step.
Select Proportions from the Units drop-down list.

Type 0.3 as the value for the proportion of townships to select per county in this stage.

Legislators from the Western county point out that there are fewer townships in their county than in others. In order to ensure adequate representation, they would like to establish a minimum of 3 townships sampled from each county.

Type 3 as the minimum number of townships to select and 5 as the maximum.

Click Next, and then click Next in the Output Variables step.
Figure 13-36
Sampling Wizard, Plan Summary step (stage 1)

Select Yes, add stage 2 now.

Click Next.
Select *Neighborhood* as a stratification variable.

Click Next, and then click Next in the Sampling Method step.

This design structure means that independent samples are drawn for each neighborhood of the townships drawn in stage 1. In this stage, voters are drawn as the primary sampling unit using simple random sampling without replacement.
Select Proportions from the Units drop-down list.

Type 0.2 as the value of the proportion of units to sample from each strata.

Click Next, and then click Next in the Output Variables step.
Look over the sampling design, and then click Next.
Select Custom value for the type of random seed to use, and type 592004 as the value. Using a custom value allows you to replicate the results of this example exactly.

Click Next.
Choose to save the sample to a new dataset, and type poll_cs_sample as the name of the dataset.

Browse to where you want to save the joint probabilities and type poll_jointprob.sav as the name of the joint probabilities file.

Click Next.
Click Finish.

These selections produce the sampling plan file `poll.csplan` and draw a sample according to that plan, save the sample results to the new dataset `poll_cs_sample`, and save the joint probabilities file to the external data file `poll_jointprob.sav`.
Plan Summary

Figure 13-43
Plan summary

<table>
<thead>
<tr>
<th>Design Variables</th>
<th>Stage 1</th>
<th>Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratification</td>
<td>County</td>
<td>Neighborhood</td>
</tr>
<tr>
<td>Cluster</td>
<td>Township</td>
<td></td>
</tr>
<tr>
<td>Selection Method</td>
<td>PPS sampling without replacement</td>
<td>Simple random sampling without replacement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure of Size</th>
<th>Proportion of Units Sampled</th>
<th>Stage 1</th>
<th>Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion</td>
<td>Obtained from data</td>
<td>.3</td>
<td>.2</td>
</tr>
<tr>
<td>Minimum Number of Units Sampled</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Number of Units Sampled</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables Created or Modified</th>
<th>Stagewise Inclusion (Selection) Probability</th>
<th>Stagewise Cumulative Sample Weight</th>
<th>Inclusion Probability_1_</th>
<th>Sample/Weight Cumulative_1_</th>
<th>Inclusion Probability_2_</th>
<th>Sample/Weight Cumulative_2_</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stagewise</td>
<td>Unequal probability sampling without replacement (using joint inclusion probabilities)</td>
<td>Obtained from variable</td>
<td>Inclusion Probability_1_</td>
<td>Obtained from variable</td>
<td>Inclusion Probability_2_</td>
<td>Obtained from variable</td>
</tr>
</tbody>
</table>

Analysis Information

<table>
<thead>
<tr>
<th>Estimator Assumption</th>
<th>Stage 1</th>
<th>Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plan File: c:\poll_cplan
Weight Variable: SampleWeight_Final_

The summary table reviews your sampling plan and is useful for making sure that the plan represents your intentions.

Sampling Summary

Figure 13-44
Stage summary

<table>
<thead>
<tr>
<th>County</th>
<th>Number of Units Sampled</th>
<th>Proportion of Units Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Requested</td>
<td>Actual</td>
</tr>
<tr>
<td>Eastern</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Central</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Western</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Northern</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Southern</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Plan File: c:\poll_cplan
This summary table reviews the first stage of sampling and is useful for checking that the sampling went according to plan. Recall that you requested a 30% sample of townships by county; the actual proportions sampled are close to 30%, except in the Western and Southern counties. This is because these counties each have only six townships, and you also specified that a minimum of three townships should be selected per county.

Figure 13-45
Stage summary

<table>
<thead>
<tr>
<th>County</th>
<th>Township</th>
<th>Neighborhood</th>
<th>Number of Units Sampled</th>
<th>Proportion of Units Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requested</td>
<td>Actual</td>
</tr>
<tr>
<td>Eastern</td>
<td>1</td>
<td>1</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>143</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1</td>
<td>148</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>117</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>108</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>142</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>90</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>134</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>137</td>
<td>137</td>
</tr>
<tr>
<td>Central</td>
<td>2</td>
<td>1</td>
<td>118</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>153</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>101</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>144</td>
<td>144</td>
</tr>
</tbody>
</table>

This summary table (the top part of which is shown here) reviews the second stage of sampling. It is also useful for checking that the sampling went according to plan. Approximately 20% of the voters were sampled from each neighborhood from each township sampled in the first stage, as requested.
Sample Results

Figure 13-46
Data Editor with sample results

You can see the sampling results in the newly created dataset. Five new variables were saved to the working file, representing the inclusion probabilities and cumulative sampling weights for each stage, plus the final sampling weights. Voters who were not selected to the sample are excluded from this dataset.

The final sampling weights are identical for voters within the same neighborhood because they are selected according to a simple random sampling method within neighborhoods. However, they are different across neighborhoods within the same township because the sampled proportions are not exactly 20% in all neighborhoods.
Unlike voters in the second stage, the first-stage sampling weights are not identical for townships within the same county because they are selected with probability proportional to size.
The file `poll_jointprob.sav` contains first-stage joint probabilities for selected townships within counties. **County** is a first-stage stratification variable, and **Township** is a cluster variable. Combinations of these variables identify all first-stage PSUs uniquely. **Unit_No_** labels PSUs within each stratum and is used to match up with **Joint_Prob_1**, **Joint_Prob_2**, **Joint_Prob_3**, **Joint_Prob_4**, and **Joint_Prob_5**.

The first two strata each have 4 PSUs; therefore, the joint inclusion probability matrices are 4×4 for these strata, and the **Joint_Prob_5** column is left empty for these rows. Similarly, strata 3 and 5 have 3×3 joint inclusion probability matrices, and stratum 4 has a 5×5 joint inclusion probability matrix.

The need for a joint probabilities file is seen by perusing the values of the joint inclusion probability matrices. When the sampling method is not a PPS WOR method, the selection of a PSU is independent of the selection of another PSU, and their joint inclusion probability is simply the product of their inclusion probabilities. In contrast, the joint inclusion probability for Townships 9 and 10 of County 1 is approximately 0.11 (see the first case of **Joint_Prob_3** or the third case of **Joint_Prob_1**), or less than the product of their individual inclusion probabilities (the product of the first case of **Joint_Prob_1** and the third case of **Joint_Prob_3** is 0.31×0.44=0.1364).
The pollsters will now conduct interviews for the selected sample. Once the results are available, you can process the sample with Complex Samples analysis procedures, using the sampling plan `poll.csplan` to provide the sampling specifications and `poll_jointprob.sav` to provide the needed joint inclusion probabilities.

Related Procedures

The Complex Samples Sampling Wizard procedure is a useful tool for creating a sampling plan file and drawing a sample.

- To ready a sample for analysis when you do not have access to the sampling plan file, use the Analysis Preparation Wizard.
Chapter 14

Complex Samples Analysis Preparation Wizard

The Analysis Preparation Wizard guides you through the steps for creating or modifying an analysis plan for use with the various Complex Samples analysis procedures. It is most useful when you do not have access to the sampling plan file used to draw the sample.

Using the Complex Samples Analysis Preparation Wizard to Ready NHIS Public Data

The National Health Interview Survey (NHIS) is a large, population-based survey of the U.S. civilian population. Interviews are carried out face-to-face in a nationally representative sample of households. Demographic information and observations about health behavior and status are obtained for members of each household.

A subset of the 2000 survey is collected in nhis2000_subset.sav. For more information, see Sample Files in Appendix A on p. 309. Use the Complex Samples Analysis Preparation Wizard to create an analysis plan for this data file so that it can be processed by Complex Samples analysis procedures.

Using the Wizard

To prepare a sample using the Complex Samples Analysis Preparation Wizard, from the menus choose:

Analyze
Complex Samples
Prepare for Analysis...
Browse to where you want to save the plan file and type `nhis2000_subset.csaplan` as the name for the analysis plan file.

Click Next.
The data are obtained using a complex multistage sample. However, for end users, the original NHIS design variables were transformed to a simplified set of design and weight variables whose results approximate those of the original design structures.

- Select Stratum for variance estimation as a strata variable.
- Select PSU for variance estimation as a cluster variable.
- Select Weight - Final Annual as the sample weight variable.
- Click Finish.
Chapter 14

Summary

Figure 14-3

Summary

<table>
<thead>
<tr>
<th>Design Variables</th>
<th>Stratification</th>
<th>Stage 1</th>
<th>Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis Information</td>
<td>Estimator Assumption</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plan File: c:\nhis2000_subset.csaplan
Weight Variable: Weight - Final Annual
SRS Estimator: Sampling without replacement

The summary table reviews your analysis plan. The plan consists of one stage with a design of one stratification variable and one cluster variable. With-replacement (WR) estimation is used, and the plan is saved to c:\nhis2000_subset.csaplan. You can now use this plan file to process nhis2000_subset.sav with Complex Samples analysis procedures.

Preparing for Analysis When Sampling Weights Are Not in the Data File

A loan officer has a collection of customer records, taken according to a complex design; however, the sampling weights are not included in the file. This information is contained in bankloan_cs_noweights.sav. For more information, see Sample Files in Appendix A on p. 309. Starting with what she knows about the sampling design, the officer wants to use the Complex Samples Analysis Preparation Wizard to create an analysis plan for this data file so that it can be processed by Complex Samples analysis procedures.

The loan officer knows that the records were selected in two stages, with 15 out of 100 bank branches selected with equal probability and without replacement in the first stage. One hundred customers were then selected from each of those banks with equal probability and without replacement in the second stage, and information on the number of customers at each bank is included in the data file. The first step to creating an analysis plan is to compute the stagewise inclusion probabilities and final sampling weights.
Computing Inclusion Probabilities and Sampling Weights

To compute the inclusion probabilities for the first stage, from the menus choose:

Transform
Compute Variable...

Fifteen out of one hundred bank branches were selected without replacement in the first stage; thus, the probability that a given bank was selected is $15/100 = 0.15$.

- Type `inclprob_s1` as the target variable.
- Type 0.15 as the numeric expression.
- Click OK.
One hundred customers were selected from each branch in the second stage; thus, the stage 2 inclusion probability for a given customer at a given bank is 100/the number of customers at that bank.

- Recall the Compute Variable dialog box.
- Type inclprob_s2 as the target variable.
- Type 100/ncust as the numeric expression.
- Click OK.
Now that you have the inclusion probabilities for each stage, it’s easy to compute the final sampling weights.

- Recall the Compute Variable dialog box.
- Type `finalweight` as the target variable.
- Type `1/(inclprob_s1 * inclprob_s2)` as the numeric expression.
- Click OK.

You are now ready to create the analysis plan.
Using the Wizard

To prepare a sample using the Complex Samples Analysis Preparation Wizard, from the menus choose:

Analyze
Complex Samples
Prepare for Analysis...

Figure 14-7
Analysis Preparation Wizard, Welcome step

- Browse to where you want to save the plan file and type bankloan.csaplan as the name for the analysis plan file.
- Click Next.
Select *Branch* as a cluster variable.

Select *finalweight* as the sample weight variable.

Click Next.
Select Equal WOR as the first-stage estimation method.

Click Next.
Select Read values from variable and select *inclprob_s1* as the variable containing the first-stage inclusion probabilities.

Click Next.
Figure 14-11
Analysis Preparation Wizard, Plan Summary step (stage 1)

- Select Yes, add stage 2 now.
- Click Next, and then click Next in the Design Variables step.
Select Equal WOR as the second-stage estimation method.

Click Next.
Figure 14-13
Analysis Preparation Wizard, Size step (stage 2)

Select Read values from variable and select inprob_s2 as the variable containing the second-stage inclusion probabilities.

Click Finish.
Summary

Figure 14-14
Summary table

<table>
<thead>
<tr>
<th>Design Variables</th>
<th>Cluster 1</th>
<th>Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Information</td>
<td>Branch</td>
<td>Equal probability sampling without replacement</td>
</tr>
<tr>
<td>Inclusion Probability</td>
<td>Obtained from variable incprob_s1</td>
<td>Obtained from variable incprob_s2</td>
</tr>
</tbody>
</table>

Plan File: c:\bankloan.csaplan
Weight Variable: finalweight
SRS Estimator: Sampling without replacement

The summary table reviews your analysis plan. The plan consists of two stages with a design of one cluster variable. Equal probability without replacement (WOR) estimation is used, and the plan is saved to c:\bankloan.csaplan. You can now use this plan file to process bankloan_noweights.sav (with the inclusion probabilities and sampling weights you’ve computed) with Complex Samples analysis procedures.

Related Procedures

The Complex Samples Analysis Preparation Wizard procedure is a useful tool for readying a sample for analysis when you do not have access to the sampling plan file.

- To create a sampling plan file and draw a sample, use the Sampling Wizard.
The Complex Samples Frequencies procedure produces frequency tables for selected variables and displays univariate statistics. Optionally, you can request statistics by subgroups, defined by one or more categorical variables.

Using Complex Samples Frequencies to Analyze Nutritional Supplement Usage

A researcher wants to study the use of nutritional supplements among U.S. citizens, using the results of the National Health Interview Survey (NHIS) and a previously created analysis plan. For more information, see Using the Complex Samples Analysis Preparation Wizard to Ready NHIS Public Data in Chapter 14 on p. 171.

A subset of the 2000 survey is collected in \textit{nhis2000_subset.sav}. The analysis plan is stored in \textit{nhis2000_subset.csaplan}. For more information, see Sample Files in Appendix A on p. 309. Use Complex Samples Frequencies to produce statistics for nutritional supplement usage.

Running the Analysis

- To run a Complex Samples Frequencies analysis, from the menus choose:

 \begin{itemize}
 \item Analyze
 \item Complex Samples
 \item Frequencies...
 \end{itemize}
Browse to and select *nhis2000_subset.csaplan*. For more information, see Sample Files in Appendix A on p. 309.

Click Continue.
Figure 15-2

Frequencies dialog box

- Select *Vitamin/mineral supplements-past 12 m* as a frequency variable.
- Select *Age category* as a subpopulation variable.
- Click Statistics.
Select Table percent in the Cells group.

Select Confidence interval in the Statistics group.

Click Continue.

Click OK in the Frequencies dialog box.

Frequency Table

Figure 15-4
Frequency table for variable/situation
Chapter 15

Each selected statistic is computed for each selected cell measure. The first column contains estimates of the number and percentage of the population that do or do not take vitamin/mineral supplements. The confidence intervals are non-overlapping; thus, you can conclude that, overall, more Americans take vitamin/mineral supplements than not.

Frequency by Subpopulation

Figure 15-5

Frequency table by subpopulation

<table>
<thead>
<tr>
<th>Age category</th>
<th>Population Size</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24</td>
<td></td>
<td>100,000</td>
<td>200,000</td>
<td>300,000</td>
<td>100,000</td>
<td>200,000</td>
<td>300,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15,000</td>
<td>15,000</td>
<td>30,000</td>
<td>15,000</td>
<td>15,000</td>
<td>30,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,500</td>
<td>7,500</td>
<td>15,000</td>
<td>7,500</td>
<td>7,500</td>
<td>15,000</td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>33.3%</td>
<td>0%</td>
<td>100.0%</td>
<td>37.4%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>25-44</td>
<td></td>
<td>30,000</td>
<td>60,000</td>
<td>90,000</td>
<td>30,000</td>
<td>60,000</td>
<td>90,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15,000</td>
<td>15,000</td>
<td>30,000</td>
<td>15,000</td>
<td>15,000</td>
<td>30,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,500</td>
<td>7,500</td>
<td>15,000</td>
<td>7,500</td>
<td>7,500</td>
<td>15,000</td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>49.3%</td>
<td>0%</td>
<td>100.0%</td>
<td>48.7%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>45-64</td>
<td></td>
<td>50,000</td>
<td>50,000</td>
<td>100,000</td>
<td>50,000</td>
<td>50,000</td>
<td>100,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25,000</td>
<td>25,000</td>
<td>50,000</td>
<td>25,000</td>
<td>25,000</td>
<td>50,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12,500</td>
<td>12,500</td>
<td>25,000</td>
<td>12,500</td>
<td>12,500</td>
<td>25,000</td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>59.7%</td>
<td>0%</td>
<td>100.0%</td>
<td>57.7%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>65+</td>
<td></td>
<td>100,000</td>
<td>100,000</td>
<td>200,000</td>
<td>100,000</td>
<td>100,000</td>
<td>200,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50,000</td>
<td>50,000</td>
<td>100,000</td>
<td>50,000</td>
<td>50,000</td>
<td>100,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25,000</td>
<td>25,000</td>
<td>50,000</td>
<td>25,000</td>
<td>25,000</td>
<td>50,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12,500</td>
<td>12,500</td>
<td>25,000</td>
<td>12,500</td>
<td>12,500</td>
<td>25,000</td>
</tr>
<tr>
<td>% of Total</td>
<td></td>
<td>62.2%</td>
<td>0%</td>
<td>100.0%</td>
<td>60.7%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

When computing statistics by subpopulation, each selected statistic is computed for each selected cell measure by value of *Age category*. The first column contains estimates of the number and percentage of Age category that do or do not take vitamin/mineral supplements. The confidence intervals for the table percentages are all non-overlapping; thus, you can conclude that the use of vitamin/mineral supplements increases with age.
Summary

Using the Complex Samples Frequencies procedure, you have obtained statistics for the use of nutritional supplements among U.S. citizens.

- Overall, more Americans take vitamin/mineral supplements than not.
- When broken down by age category, greater proportions of Americans take vitamin/mineral supplements with increasing age.

Related Procedures

The Complex Samples Frequencies procedure is a useful tool for obtaining univariate descriptive statistics of categorical variables for observations obtained via a complex sampling design.

- The Complex Samples Sampling Wizard is used to specify complex sampling design specifications and obtain a sample. The sampling plan file created by the Sampling Wizard contains a default analysis plan and can be specified in the Plan dialog box when you are analyzing the sample obtained according to that plan.

- The Complex Samples Analysis Preparation Wizard is used to set analysis specifications for an existing complex sample. The analysis plan file created by the Sampling Wizard can be specified in the Plan dialog box when you are analyzing the sample corresponding to that plan.

- The Complex Samples Crosstabs procedure provides descriptive statistics for the crosstabulation of categorical variables.

- The Complex Samples Descriptives procedure provides univariate descriptive statistics for scale variables.
Complex Samples Descriptives

The Complex Samples Descriptives procedure displays univariate summary statistics for several variables. Optionally, you can request statistics by subgroups, defined by one or more categorical variables.

Using Complex Samples Descriptives to Analyze Activity Levels

A researcher wants to study the activity levels of U.S. citizens, using the results of the National Health Interview Survey (NHIS) and a previously created analysis plan. For more information, see Using the Complex Samples Analysis Preparation Wizard to Ready NHIS Public Data in Chapter 14 on p. 171.

A subset of the 2000 survey is collected in nhis2000_subset.sav. The analysis plan is stored in nhis2000_subset.csaplan. For more information, see Sample Files in Appendix A on p. 309. Use Complex Samples Descriptives to produce univariate descriptive statistics for activity levels.

Running the Analysis

To run a Complex Samples Descriptives analysis, from the menus choose:
Analyze
Complex Samples
Descriptives...
Browse to and select *nhis2000_subset.csaplan*. For more information, see Sample Files in Appendix A on p. 309.

Click Continue.
Figure 16-2
Descriptives dialog box

Select \textit{Freq vigorous activity (times per wk)} through \textit{Freq strength activity (times per wk)} as measure variables.

Select \textit{Age category} as a subpopulation variable.

Click Statistics.
Select Confidence interval in the Statistics group.

Click Continue.

Click OK in the Complex Samples Descriptives dialog box.

Univariate Statistics

Figure 16-4

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freq vigorous activity (times per wk)</td>
<td>3.73</td>
<td>.033</td>
</tr>
<tr>
<td>Freq moderate activity (times per wk)</td>
<td>4.90</td>
<td>.041</td>
</tr>
<tr>
<td>Freq strength activity (times per wk)</td>
<td>3.52</td>
<td>.042</td>
</tr>
</tbody>
</table>
Each selected statistic is computed for each measure variable. The first column contains estimates of the average number of times per week that a person engages in a particular type of activity. The confidence intervals for the means are non-overlapping. Thus, you can conclude that, overall, Americans engage in a strength activity less often than vigorous activity, and they engage in vigorous activity less often than moderate activity.

Univariate Statistics by Subpopulation

Figure 16-5
Univariate statistics by subpopulation

<table>
<thead>
<tr>
<th>Age category</th>
<th>Estimate (times per wk)</th>
<th>Standard Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24 Mean</td>
<td>3.92</td>
<td>.067</td>
<td>3.75 - 4.09</td>
</tr>
<tr>
<td></td>
<td>Frequent vigorous activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequent moderate activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequent strength activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-44 Mean</td>
<td>3.55</td>
<td>.048</td>
<td>3.46 - 3.65</td>
</tr>
<tr>
<td></td>
<td>Frequent vigorous activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequent moderate activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequent strength activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-64 Mean</td>
<td>3.70</td>
<td>.063</td>
<td>3.66 - 3.91</td>
</tr>
<tr>
<td></td>
<td>Frequent vigorous activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequent moderate activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequent strength activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65+ Mean</td>
<td>4.16</td>
<td>.111</td>
<td>3.96 - 4.39</td>
</tr>
<tr>
<td></td>
<td>Frequent vigorous activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequent moderate activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequent strength activity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each selected statistic is computed for each measure variable by values of *Age category*. The first column contains estimates of the average number of times per week that people of each category engage in a particular type of activity. The confidence intervals for the means allow you to make some interesting conclusions.

- In terms of vigorous and moderate activities, 25–44-year-olds are less active than those 18–24 and 45–64, and 45–64-year-olds are less active than those 65 or older.
In terms of strength activity, 25–44-year-olds are less active than those 45–64, and 18–24 and 45–64-year-olds are less active than those 65 or older.

Summary

Using the Complex Samples Descriptives procedure, you have obtained statistics for the activity levels of U.S. citizens.

- Overall, Americans spend varying amounts of time at different types of activities.
- When broken down by age, it roughly appears that post-collegiate Americans are initially less active than they were while in school but become more conscientious about exercising as they age.

Related Procedures

The Complex Samples Descriptives procedure is a useful tool for obtaining univariate descriptive statistics of scale measures for observations obtained via a complex sampling design.

- The **Complex Samples Sampling Wizard** is used to specify complex sampling design specifications and obtain a sample. The sampling plan file created by the Sampling Wizard contains a default analysis plan and can be specified in the Plan dialog box when you are analyzing the sample obtained according to that plan.

- The **Complex Samples Analysis Preparation Wizard** is used to set analysis specifications for an existing complex sample. The analysis plan file created by the Sampling Wizard can be specified in the Plan dialog box when you are analyzing the sample corresponding to that plan.

- The **Complex Samples Ratios** procedure provides descriptive statistics for ratios of scale measures.

- The **Complex Samples Frequencies** procedure provides univariate descriptive statistics of categorical variables.
Complex Samples Crosstabs

The Complex Samples Crosstabs procedure produces crosstabulation tables for pairs of selected variables and displays two-way statistics. Optionally, you can request statistics by subgroups, defined by one or more categorical variables.

Using Complex Samples Crosstabs to Measure the Relative Risk of an Event

A company that sells magazine subscriptions traditionally sends monthly mailings to a purchased database of names. The response rate is typically low, so you need to find a way to better target prospective customers. One suggestion is to focus mailings on people with newspaper subscriptions, on the assumption that people who read newspapers are more likely to subscribe to magazines.

Use the Complex Samples Crosstabs procedure to test this theory by constructing a two-by-two table of Newspaper subscription by Response and computing the relative risk that a person with a newspaper subscription will respond to the mailing. This information is collected in demo_cs.sav and should be analyzed using the sampling plan file demo.csplan. For more information, see Sample Files in Appendix A on p. 309.

Running the Analysis

To run a Complex Samples Crosstabs analysis, from the menus choose:
- Analyze
 - Complex Samples
 - Crosstabs...
Figure 17-1
Complex Samples Plan dialog box

![Complex Samples Plan dialog box]

- Browse to and select *demo.csplan*. For more information, see Sample Files in Appendix A on p. 309.
- Click Continue.
Select *Newspaper subscription* as a row variable.

Select *Response* as a column variable.

There is also some interest in seeing the results broken down by income categories, so select *Income category in thousands* as a subpopulation variable.

Click Statistics.
Figure 17-3
Crosstabs Statistics dialog box

- Deselect Population size and select Row percent in the Cells group.
- Select Odds ratio and Relative risk in the Summaries for 2-by-2 Tables group.
- Click Continue.
- Click OK in the Complex Samples Crosstabs dialog box.

These selections produce a crosstabulation table and risk estimate for *Newspaper subscription* by *Response*. Separate tables with results split by *Income category in thousands* are also created.
Chapter 17

Crosstabulation

Figure 17-4
Crosstabulation for newspaper subscription by response

<table>
<thead>
<tr>
<th>Newspaper subscription</th>
<th>Response</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Total</td>
</tr>
<tr>
<td>Yes</td>
<td>% within Newspaper subscription</td>
<td>Estimate</td>
<td>Standard Error</td>
<td>Estimate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.2%</td>
<td>62.8%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0%</td>
<td>1.0%</td>
<td>0%</td>
</tr>
<tr>
<td>No</td>
<td>% within Newspaper subscription</td>
<td>Estimate</td>
<td>Standard Error</td>
<td>Estimate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.3%</td>
<td>69.7%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.7%</td>
<td>.7%</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>% within Newspaper subscription</td>
<td>Estimate</td>
<td>Standard Error</td>
<td>Estimate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.8%</td>
<td>67.2%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.7%</td>
<td>.7%</td>
<td>0%</td>
</tr>
</tbody>
</table>

The crosstabulation shows that, overall, few people responded to the mailing. However, a greater proportion of newspaper subscribers responded.

Risk Estimate

Figure 17-5
Risk estimate for newspaper subscription by response

<table>
<thead>
<tr>
<th>Newspaper subscription</th>
<th>Odds Ratio</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>For cohort Response = Yes</td>
<td>Relative Risk</td>
<td>1.812</td>
</tr>
<tr>
<td>For cohort Response = No</td>
<td>Relative Risk</td>
<td>1.673</td>
</tr>
<tr>
<td></td>
<td>Estimate</td>
<td>.523</td>
</tr>
</tbody>
</table>

Statistics are computed only for 2-by-2 tables with all cells observed.

The relative risk is a ratio of event probabilities. The relative risk of a response to the mailing is the ratio of the probability that a newspaper subscriber responds to the probability that a nonsubscriber responds. Thus, the estimate of the relative risk is simply 17.2%/10.3% = 1.673. Likewise, the relative risk of nonresponse is the ratio of the probability that a subscriber does not respond to the probability that a nonsubscriber does not respond. Your estimate of this relative risk is 0.923. Given these results, you can estimate that a newspaper subscriber is 1.673 times as likely to respond to the mailing as a nonsubscriber, or 0.923 times as likely as a nonsubscriber not to respond.

The odds ratio is a ratio of event odds. The odds of an event is the ratio of the probability that the event occurs to the probability that the event does not occur. Thus, the estimate of the odds that a newspaper subscriber responds to the mailing is 17.2%/82.8% = 0.208. Likewise, the estimate of the odds that a nonsubscriber responds is 10.3%/89.7% = 0.115. The estimate of the odds ratio is therefore 0.208/0.115 = 1.812 (note there is some rounding error in the intervening steps).
The odds ratio is also the ratio of the relative risk of responding to the relative risk of not responding, or $1.673/0.923 = 1.812$.

Odds Ratio versus Relative Risk

Since it is a ratio of ratios, the odds ratio is very difficult to interpret. The relative risk is easier to interpret, so the odds ratio alone is not very helpful. However, there are certain commonly occurring situations in which the estimate of the relative risk is not very good, and the odds ratio can be used to approximate the relative risk of the event of interest. The odds ratio should be used as an approximation of the relative risk of the event of interest when both of the following conditions are met:

- The probability of the event of interest is small (< 0.1). This condition guarantees that the odds ratio will make a good approximation to the relative risk. In this example, the event of interest is a response to the mailing.
- The design of the study is case control. This condition signals that the usual estimate of the relative risk will likely not be good. A case-control study is retrospective, most often used when the event of interest is unlikely or when the design of a prospective experiment is impractical or unethical.

Neither condition is met in this example, since the overall proportion of respondents was 12.8% and the design of the study was not case control, so it’s safer to report 1.673 as the relative risk, rather than the value of the odds ratio.
Risk Estimate by Subpopulation

Figure 17-6
Risk estimate for newspaper subscription by response, controlling for income category

<table>
<thead>
<tr>
<th>Income category</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under $25</td>
<td></td>
</tr>
<tr>
<td>Newspaper subscription</td>
<td>Relative Risk</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$25 - $40</td>
<td></td>
</tr>
<tr>
<td>Newspaper subscription</td>
<td>Relative Risk</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$50 - $74</td>
<td></td>
</tr>
<tr>
<td>Newspaper subscription</td>
<td>Relative Risk</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$75+</td>
<td></td>
</tr>
<tr>
<td>Newspaper subscription</td>
<td>Relative Risk</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistics are computed only for 2-by-2 tables with all cells observed.

Relative risk estimates are computed separately for each income category. Note that the relative risk of a positive response for newspaper subscribers appears to gradually decrease with increasing income, which indicates that you may be able to further target the mailings.

Summary

Using Complex Samples Crosstabs risk estimates, you found that you can increase your response rate to direct mailings by targeting newspaper subscribers. Further, you found some evidence that the risk estimates may not be constant across Income category, so you may be able to increase your response rate even more by targeting lower-income newspaper subscribers.

Related Procedures

The Complex Samples Crosstabs procedure is a useful tool for obtaining descriptive statistics of the crosstabulation of categorical variables for observations obtained via a complex sampling design.
The **Complex Samples Sampling Wizard** is used to specify complex sampling design specifications and obtain a sample. The sampling plan file created by the Sampling Wizard contains a default analysis plan and can be specified in the Plan dialog box when you are analyzing the sample obtained according to that plan.

The **Complex Samples Analysis Preparation Wizard** is used to set analysis specifications for an existing complex sample. The analysis plan file created by the Sampling Wizard can be specified in the Plan dialog box when you are analyzing the sample corresponding to that plan.

The **Complex Samples Frequencies** procedure provides univariate descriptive statistics of categorical variables.
Complex Samples Ratios

The Complex Samples Ratios procedure displays univariate summary statistics for ratios of variables. Optionally, you can request statistics by subgroups, defined by one or more categorical variables.

Using Complex Samples Ratios to Aid Property Value Assessment

A state agency is charged with ensuring that property taxes are fairly assessed from county to county. Taxes are based on the appraised value of the property, so the agency wants to track property values across counties to be sure that each county’s records are equally up-to-date. Since resources for obtaining current appraisals are limited, the agency chose to employ complex sampling methodology to select properties.

The sample of properties selected and their current appraisal information is collected in property_assess_cs_sample.sav. For more information, see Sample Files in Appendix A on p. 309. Use Complex Samples Ratios to assess the change in property values across the five counties since the last appraisal.

Running the Analysis

To run a Complex Samples Ratios analysis, from the menus choose:

Analyze
Complex Samples
Ratios...
Figure 18-1
Complex Samples Plan dialog box

Browse to and select *property_assess.csplan*. For more information, see Sample Files in Appendix A on p. 309.

Click Continue.
Figure 18-2
Ratios dialog box

- Select *Current value* as a numerator variable.
- Select *Value at last appraisal* as the denominator variable.
- Select *County* as a subpopulation variable.
- Click Statistics.
Figure 18-3
Ratios Statistics dialog box

- Select Confidence interval, Unweighted count, and Population size in the Statistics group.
- Select t-test and enter 1.3 as the test value.
- Click Continue.
- Click OK in the Complex Samples Ratios dialog box.

Ratios

<table>
<thead>
<tr>
<th>County</th>
<th>Numerator</th>
<th>Denominator</th>
<th>Ratio Estimate</th>
<th>Standard Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern</td>
<td>Current value</td>
<td>Value at last appraisal</td>
<td>1.381</td>
<td>0.08</td>
<td>1.236 - 1.525</td>
</tr>
<tr>
<td>Central</td>
<td>Current value</td>
<td>Value at last appraisal</td>
<td>1.364</td>
<td>0.04</td>
<td>1.227 - 1.502</td>
</tr>
<tr>
<td>Western</td>
<td>Current value</td>
<td>Value at last appraisal</td>
<td>1.524</td>
<td>0.03</td>
<td>1.416 - 1.633</td>
</tr>
<tr>
<td>Northern</td>
<td>Current value</td>
<td>Value at last appraisal</td>
<td>1.277</td>
<td>0.02</td>
<td>1.206 - 1.345</td>
</tr>
<tr>
<td>Southern</td>
<td>Current value</td>
<td>Value at last appraisal</td>
<td>1.195</td>
<td>0.02</td>
<td>1.134 - 1.255</td>
</tr>
</tbody>
</table>

The default display of the table is very wide, so you will need to pivot it for a better view.

Pivoting the Ratios Table

- Double-click the table to activate it.
From the Viewer menus choose:

Pivot
 Pivoting Trays

Drag \textit{Numerator} and then \textit{Denominator} from the row to the layer.

Drag \textit{County} from the row to the column.

Drag \textit{Statistics} from the column to the row.

Close the pivoting trays window.

\textbf{Pivoted Ratios Table}

\textit{Figure} 18-5
\textit{Pivoted ratios table}

\begin{center}
\begin{tabular}{l|c|c|c|c|c|c}
\hline
\textbf{Ratio Estimate} & Eastern & Central & Western & Northern & Southern \\
\hline
\textbf{Standard Error} & 1.361 & 1.364 & 1.524 & 1.277 & 1.195 \\
\hline
\textbf{95\% Confidence Interval} & 1.236 & 1.227 & 1.410 & 1.208 & 1.134 \\
\hline
\textbf{Hypothesis Test} & 1.525 & 1.502 & 1.688 & 1.346 & 1.255 \\
\hline
\textbf{Test Value} & 1.3 & 1.3 & 1.3 & 1.3 & 1.3 \\
\hline
\textbf{df} & 1.911 & 0.977 & 4.201 & -0.702 & -3.846 \\
\hline
\textbf{Sig.} & 0.01 & 0.001 & 0.003 & 0.007 & 0.002 \\
\hline
\textbf{Unweighted Count} & 166 & 179 & 202 & 205 & 220 \\
\hline
\end{tabular}
\end{center}

The ratios table is now pivoted so that statistics are easier to compare across counties.

- The ratio estimates range from a low of 1.195 in the Southern county to a high of 1.524 in the Western county.
- There is also quite a bit of variability in the standard errors, which range from a low of 0.029 in the Southern county to 0.068 in the Eastern county.
- Some of the confidence intervals do not overlap; thus, you can conclude that the ratios for the Western county are higher than the ratios for the Northern and Southern counties.
Finally, as a more objective measure, note that the significance values of the t tests for the Western and Southern counties are less than 0.05. Thus, you can conclude that the ratio for the Western county is greater than 1.3 and the ratio for the Southern county is less than 1.3.

Summary

Using the Complex Samples Ratios procedure, you have obtained various statistics for the ratios of *Current value* to *Value at last appraisal*. The results suggest that there may be certain inequities in the assessment of property taxes from county to county, namely:

- The ratios for the Western county are high, indicating that their records are not as up-to-date as other counties with respect to the appreciation of property values. Property taxes are probably too low in this county.
- The ratios for the Southern county are low, indicating that their records are more up-to-date than the other counties with respect to the appreciation of property values. Property taxes are probably too high in this county.
- The ratios for the Southern county are lower than those of the Western county but are still within the objective goal of 1.3.

Resources used to track property values in the Southern county will be reassigned to the Western county to bring these counties’ ratios in line with the others and with the goal of 1.3.

Related Procedures

The Complex Samples Ratios procedure is a useful tool for obtaining univariate descriptive statistics of the ratio of scale measures for observations obtained via a complex sampling design.

- The **Complex Samples Sampling Wizard** is used to specify complex sampling design specifications and obtain a sample. The sampling plan file created by the Sampling Wizard contains a default analysis plan and can be specified in the Plan dialog box when you are analyzing the sample obtained according to that plan.
The Complex Samples Analysis Preparation Wizard is used to set analysis specifications for an existing complex sample. The analysis plan file created by the Sampling Wizard can be specified in the Plan dialog box when you are analyzing the sample corresponding to that plan.

The Complex Samples Descriptives procedure provides descriptive statistics for scale variables.
The Complex Samples General Linear Model (CSGLM) procedure performs linear regression analysis, as well as analysis of variance and covariance, for samples drawn by complex sampling methods. Optionally, you can request analyses for a subpopulation.

Using Complex Samples General Linear Model to Fit a Two-Factor ANOVA

A grocery store chain surveyed a set of customers concerning their purchasing habits, according to a complex design. Given the survey results and how much each customer spent in the previous month, the store wants to see if the frequency with which customers shop is related to the amount they spend in a month, controlling for the gender of the customer and incorporating the sampling design.

This information is collected in `grocery_1month_sample.sav`. For more information, see Sample Files in Appendix A on p. 309. Use the Complex Samples General Linear Model procedure to perform a two-factor (or two-way) ANOVA on the amounts spent.

Running the Analysis

- To run a Complex Samples General Linear Model analysis, from the menus choose:
 Analyze
 Complex Samples
 General Linear Model...
Browse to and select `grocery.csplan`. For more information, see Sample Files in Appendix A on p. 309.

Click Continue.
Select Amount spent as the dependent variable.

Select Who shopping for and Use coupons as factors.

Click Model.
Choose to build a Custom model.

Select Main effects as the type of term to build and select shopfor and usecoup as model terms.

Select Interaction as the type of term to build and add the shopfor*usecoup interaction as a model term.

Click Continue.

Click Statistics in the General Linear Model dialog box.
Select Estimate, Standard error, Confidence interval, and Design effect in the Model Parameters group.

Click Continue.

Click Estimated Means in the General Linear Model dialog box.
Choose to display means for shopfor, usecoup, and the shopfor*usecoup interaction.

Select a Simple contrast and 3 Self and family as the reference category for shopfor. Note that, once selected, the category appears as “3” in the dialog box.

Select a Simple contrast and 1 No as the reference category for usecoup.

Click Continue.

Click OK in the General Linear Model dialog box.

Model Summary

Figure 19-6
R-square statistic

<table>
<thead>
<tr>
<th>R Square</th>
<th>60.1</th>
</tr>
</thead>
</table>

\[\text{Model: Amount spent} = (\text{Intercept}) + \text{shopfor} + \text{usecoup} + \text{shopfor} \times \text{usecoup} \]
R-square, the coefficient of determination, is a measure of the strength of the model fit. It shows that about 60% of the variation in Amount spent is explained by the model, which gives you good explanatory ability. You may still want to add other predictors to the model to further improve the fit.

Tests of Model Effects

Figure 19-7

Tests of between-subjects effects

<table>
<thead>
<tr>
<th>Source</th>
<th>df1</th>
<th>df2</th>
<th>Wilk F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Corrected Model)</td>
<td>11.000</td>
<td>3.000</td>
<td>127.231</td>
<td>.001</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>1.000</td>
<td>13.000</td>
<td>621.537</td>
<td>.000</td>
</tr>
<tr>
<td>shop</td>
<td>2.000</td>
<td>12.000</td>
<td>643.593</td>
<td>.000</td>
</tr>
<tr>
<td>usecoup</td>
<td>3.000</td>
<td>11.000</td>
<td>67.463</td>
<td>.000</td>
</tr>
<tr>
<td>shop x usecoup</td>
<td>6.000</td>
<td>8.000</td>
<td>10.688</td>
<td>.002</td>
</tr>
</tbody>
</table>

Model: Amount spent = (Intercept) + shop + usecoup + shop x usecoup

Each term in the model, plus the model as a whole, is tested for whether the value of its effect equals 0. Terms with significance values of less than 0.05 have some discernible effect. Thus, all model terms contribute to the model.
The parameter estimates show the effect of each predictor on Amount spent. The value of 518.249 for the intercept term indicates that the grocery chain can expect a shopper with a family who uses coupons from the newspaper and targeted mailings to spend $518.25, on average. You can tell that the intercept is associated with these factor levels because those are the factor levels whose parameters are redundant.

- The shopfor coefficients suggest that among customers who use both mailed coupons and newspaper coupons, those without family tend to spend less than those with spouses, who in turn spend less than those with dependents at home. Since the tests of model effects showed that this term contributes to the model, these differences are not due to chance.

- The usecoup coefficients suggest that spending among customers with dependents at home decreases with decreased coupon usage. There is a moderate amount of uncertainty in the estimates, but the confidence intervals do not include 0.
The interaction coefficients suggest that customers who do not use coupons or only clip from the newspaper and do not have dependents tend to spend more than you would otherwise expect. If any portion of an interaction parameter is redundant, the interaction parameter is redundant.

The deviation in the values of the design effects from 1 indicate that some of the standard errors computed for these parameter estimates are larger than those you would obtain if you assumed that these observations came from a simple random sample, while others are smaller. It is vitally important to incorporate the sampling design information in your analysis because you might otherwise infer, for example, that the `usecoup=3` coefficient is not different from 0!

The parameter estimates are useful for quantifying the effect of each model term, but the estimated marginal means tables can make it easier to interpret the model results.

Estimated Marginal Means

Estimated marginal means by levels of Who shopping for

<table>
<thead>
<tr>
<th>Who shopping for</th>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self</td>
<td>308.5326</td>
<td>3.94296</td>
<td>300.0145</td>
</tr>
<tr>
<td>Self and spouse</td>
<td>370.3361</td>
<td>4.67900</td>
<td>359.7565</td>
</tr>
<tr>
<td>Self and family</td>
<td>459.4392</td>
<td>7.19769</td>
<td>443.0695</td>
</tr>
</tbody>
</table>

This table displays the model-estimated marginal means and standard errors of *Amount spent* at the factor levels of *Who shopping for*. This table is useful for exploring the differences between the levels of this factor. In this example, a customer who shops for him- or herself is expected to spend about $308.53, while a customer with a spouse is expected to spend $370.34, and a customer with dependents will spend $459.44. To see whether this represents a real difference or is due to chance variation, look at the test results.
The individual tests table displays two simple contrasts in spending.

- The contrast estimate is the difference in spending for the listed levels of *Who shopping for*.
- The hypothesized value of 0.00 represents the belief that there is no difference in spending.
- The Wald F statistic, with the displayed degrees of freedom, is used to test whether the difference between a contrast estimate and hypothesized value is due to chance variation.
- Since the significance values are less than 0.05, you can conclude that there are differences in spending.

The values of the contrast estimates are different from the parameter estimates. This is because there is an interaction term containing the *Who shopping for* effect. As a result, the parameter estimate for $\text{shopfor}=1$ is a simple contrast between the levels *Self* and *Self and Family* at the level *From both* of the variable *Use coupons*. The contrast estimate in this table is averaged over the levels of *Use coupons*.

The overall test table reports the results of a test of all of the contrasts in the individual test table. Its significance value of less than 0.05 confirms that there is a difference in spending among the levels of *Who shopping for*.
Figure 19-12

Estimated marginal means by levels of shopping style

<table>
<thead>
<tr>
<th>Use coupons</th>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>319.8466</td>
<td>6.51429</td>
<td>305.5722 - 333.7188</td>
</tr>
<tr>
<td>From newspaper</td>
<td>395.7469</td>
<td>4.32235</td>
<td>377.4077 - 416.0861</td>
</tr>
<tr>
<td>From mailings</td>
<td>394.5020</td>
<td>5.54210</td>
<td>302.5257 - 406.4763</td>
</tr>
<tr>
<td>From both</td>
<td>413.0406</td>
<td>6.51250</td>
<td>402.7780 - 430.9132</td>
</tr>
</tbody>
</table>

This table displays the model-estimated marginal means and standard errors of Amount spent at the factor levels of Use coupons. This table is useful for exploring the differences between the levels of this factor. In this example, a customer who does not use coupons is expected to spend about $319.65, and those who do use coupons are expected to spend considerably more.

Figure 19-13

Individual test results for estimated marginal means of shopping style

<table>
<thead>
<tr>
<th>Use coupons Simple Contrast</th>
<th>Contrast Estimate</th>
<th>Hypothesized Value</th>
<th>Difference (Estimate - Hypothesized)</th>
<th>Std. Error</th>
<th>df1</th>
<th>df2</th>
<th>Wald F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level From newspaper vs. Level No</td>
<td>67.101</td>
<td>.000</td>
<td>67.101</td>
<td>6.537</td>
<td>1.000</td>
<td>13.000</td>
<td>105.35</td>
<td>.000</td>
</tr>
<tr>
<td>Level From mailings vs. Level No</td>
<td>74.657</td>
<td>.000</td>
<td>74.657</td>
<td>5.875</td>
<td>1.000</td>
<td>13.000</td>
<td>162.33</td>
<td>.000</td>
</tr>
<tr>
<td>Level From both vs. Level No</td>
<td>97.203</td>
<td>.000</td>
<td>97.203</td>
<td>5.603</td>
<td>1.000</td>
<td>13.000</td>
<td>300.52</td>
<td>.000</td>
</tr>
</tbody>
</table>

The individual tests table displays three simple contrasts, comparing the spending of customers who do not use coupons to those who do.

Since the significance values of the tests are less than 0.05, you can conclude that customers who use coupons tend to spend more than those who don’t.

Figure 19-14

Overall test results for estimated marginal means of shopping style

<table>
<thead>
<tr>
<th>df1</th>
<th>df2</th>
<th>Wald F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.000</td>
<td>11.000</td>
<td>87.453</td>
<td>.000</td>
</tr>
</tbody>
</table>

The overall test table reports the results of a test of all the contrasts in the individual test table. Its significance value of less than 0.05 confirms that there is a difference in spending among the levels of Use coupons. Note that the overall tests for Use
coupons and Who shopping for are equivalent to the tests of model effects because the hypothesized contrast values are equal to 0.

Figure 19-15
Estimated marginal means by levels of gender by shopping style

<table>
<thead>
<tr>
<th>Who shopping for</th>
<th>Use coupons</th>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval Lower</th>
<th>95% Confidence Interval Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self</td>
<td>No</td>
<td>234.3471</td>
<td>8.09949</td>
<td>231.3644</td>
<td>237.3298</td>
</tr>
<tr>
<td></td>
<td>From newspaper</td>
<td>324.9708</td>
<td>5.94134</td>
<td>312.1353</td>
<td>337.8063</td>
</tr>
<tr>
<td></td>
<td>From mailings</td>
<td>321.3207</td>
<td>4.11028</td>
<td>312.4410</td>
<td>330.2005</td>
</tr>
<tr>
<td></td>
<td>From both</td>
<td>343.4918</td>
<td>6.57845</td>
<td>329.2757</td>
<td>357.7034</td>
</tr>
<tr>
<td>Self and spouse</td>
<td>No</td>
<td>337.1783</td>
<td>7.12181</td>
<td>321.7925</td>
<td>352.5640</td>
</tr>
<tr>
<td></td>
<td>From newspaper</td>
<td>380.0463</td>
<td>7.91038</td>
<td>362.9574</td>
<td>397.1361</td>
</tr>
<tr>
<td></td>
<td>From mailings</td>
<td>375.3141</td>
<td>6.22468</td>
<td>368.8665</td>
<td>381.7617</td>
</tr>
<tr>
<td></td>
<td>From both</td>
<td>388.8054</td>
<td>7.12101</td>
<td>373.4214</td>
<td>404.1894</td>
</tr>
<tr>
<td>Self and family</td>
<td>No</td>
<td>377.4111</td>
<td>11.56215</td>
<td>352.3894</td>
<td>402.4328</td>
</tr>
<tr>
<td></td>
<td>From newspaper</td>
<td>455.2232</td>
<td>6.14420</td>
<td>441.9494</td>
<td>468.4969</td>
</tr>
<tr>
<td></td>
<td>From mailings</td>
<td>456.8738</td>
<td>10.76529</td>
<td>463.6166</td>
<td>510.1305</td>
</tr>
<tr>
<td></td>
<td>From both</td>
<td>518.2488</td>
<td>11.73120</td>
<td>492.9050</td>
<td>543.5925</td>
</tr>
</tbody>
</table>

This table displays the model-estimated marginal means, standard errors, and confidence intervals of Amount spent at the factor combinations of Who shopping for and Use coupons. This table is useful for exploring the interaction effect between these two factors that was found in the tests of model effects.

Summary

In this example, the estimated marginal means revealed differences in spending between customers at varying levels of Who shopping for and Use coupons. The tests of model effects confirmed this, as well as the fact that there appears to be a Who shopping for*Use coupons interaction effect. The model summary table revealed that the present model explains somewhat more than half of the variation in the data and could likely be improved by adding more predictors.

Related Procedures

The Complex Samples General Linear Model procedure is a useful tool for modeling a scale variable when the cases have been drawn according to a complex sampling scheme.
The Complex Samples Sampling Wizard is used to specify complex sampling design specifications and obtain a sample. The sampling plan file created by the Sampling Wizard contains a default analysis plan and can be specified in the Plan dialog box when you are analyzing the sample obtained according to that plan.

The Complex Samples Analysis Preparation Wizard is used to specify analysis specifications for an existing complex sample. The analysis plan file created by the Sampling Wizard can be specified in the Plan dialog box when you are analyzing the sample corresponding to that plan.

The Complex Samples Logistic Regression procedure allows you to model a categorical response.

The Complex Samples Ordinal Regression procedure allows you to model an ordinal response.
The Complex Samples Logistic Regression procedure performs logistic regression analysis on a binary or multinomial dependent variable for samples drawn by complex sampling methods. Optionally, you can request analyses for a subpopulation.

Using Complex Samples Logistic Regression to Assess Credit Risk

If you are a loan officer at a bank, you want to be able to identify characteristics that are indicative of people who are likely to default on loans and then use those characteristics to identify good and bad credit risks.

Suppose that a loan officer has collected past records of customers given loans at several different branches, according to a complex design. This information is contained in `bankloan_cs.sav`. For more information, see Sample Files in Appendix A on p. 309. The officer wants to see if the probability with which a customer defaults is related to age, employment history, and amount of credit debt, incorporating the sampling design.

Running the Analysis

- To create the logistic regression model, from the menus choose:

 > Analyze
 > Complex Samples
 > Logistic Regression...
Browse to and select bankloan.csaplan. For more information, see Sample Files in Appendix A on p. 309.

Click Continue.
Figure 20-2
Logistic Regression dialog box

- Select *Previously defaulted* as the dependent variable.
- Select *Level of education* as a factor.
- Select *Age in years* through *Other debt in thousands* as covariates.
- Select *Previously defaulted* and click Reference Category.
Select Lowest value as the reference category.

This sets the “did not default” category as the reference category; thus, the odds ratios reported in the output will have the property that increasing odds ratios correspond to increasing probability of default.

Click Continue.

Click Statistics in the Logistic Regression dialog box.
Figure 20-4
Logistic Regression Statistics dialog box

- Select Classification table in the Model Fit group.
- Select Estimate, Exponentiated estimate, Standard error, Confidence interval, and Design effect in the Parameters group.
- Click Continue.
- Click Odds Ratios in the Logistic Regression dialog box.
Figure 20-5
Logistic Regression Odds Ratios dialog box

Choose to create odds ratios for the factor ed and the covariates employ and debtinc.

Click Continue.

Click OK in the Logistic Regression dialog box.

Pseudo R-Squares

Figure 20-6
Pseudo R-square statistics

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox and Snell</td>
<td>.330</td>
</tr>
<tr>
<td>Nagelkerke</td>
<td>.451</td>
</tr>
<tr>
<td>McFadden</td>
<td>.304</td>
</tr>
</tbody>
</table>

Dependent Variable: Previously defaulted (reference category = No)
Model: (Intercept), ed, age, employ, address, income, debtinc, creditdebt, othdebt
In the linear regression model, the coefficient of determination, R^2, summarizes the proportion of variance in the dependent variable associated with the predictor (independent) variables, with larger R^2 values indicating that more of the variation is explained by the model, to a maximum of 1. For regression models with a categorical dependent variable, it is not possible to compute a single R^2 statistic that has all of the characteristics of R^2 in the linear regression model, so these approximations are computed instead. The following methods are used to estimate the coefficient of determination.

- Cox and Snell's R^2 (Cox and Snell, 1989) is based on the log likelihood for the model compared to the log likelihood for a baseline model. However, with categorical outcomes, it has a theoretical maximum value of less than 1, even for a “perfect” model.
- Nagelkerke's R^2 (Nagelkerke, 1991) is an adjusted version of the Cox & Snell R-square that adjusts the scale of the statistic to cover the full range from 0 to 1.
- McFadden’s R^2 (McFadden, 1974) is another version, based on the log-likelihood kernels for the intercept-only model and the full estimated model.

What constitutes a “good” R^2 value varies between different areas of application. While these statistics can be suggestive on their own, they are most useful when comparing competing models for the same data. The model with the largest R^2 statistic is “best” according to this measure.

Classification

Figure 20-7

Classification table

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percent Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>186288.667</td>
<td>31871.257</td>
</tr>
<tr>
<td>Yes</td>
<td>45970.600</td>
<td>77675.133</td>
</tr>
<tr>
<td>Overall</td>
<td>68.5%</td>
<td>31.5%</td>
</tr>
</tbody>
</table>

Dependent Variable: Previously defaulted (reference category = No)
Model: (Intercept), ed, age, employ, address, income, debtinc, credebt, othdebt
The classification table shows the practical results of using the logistic regression model. For each case, the predicted response is *Yes* if that case’s model-predicted logit is greater than 0. Cases are weighted by `finalweight`, so that the classification table reports the expected model performance in the population.

- Cells on the diagonal are correct predictions.
- Cells off the diagonal are incorrect predictions.

Based upon the cases used to create the model, you can expect to correctly classify 85.5% of the nondefaulters in the population using this model. Likewise, you can expect to correctly classify 60.9% of the defaulters. Overall, you can expect to classify 76.5% of the cases correctly; however, because this table was constructed with the cases used to create the model, these estimates are likely to be overly optimistic.

Tests of Model Effects

Figure 20-8

Tests of between-subjects effects

<table>
<thead>
<tr>
<th>Source</th>
<th>df1</th>
<th>df2</th>
<th>Wald F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Corrected Model)</td>
<td>11.000</td>
<td>4.000</td>
<td>14.669</td>
<td>.010</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>1.000</td>
<td>14.000</td>
<td>5.777</td>
<td>.016</td>
</tr>
<tr>
<td>ed</td>
<td>4.000</td>
<td>11.000</td>
<td>1.683</td>
<td>.224</td>
</tr>
<tr>
<td>age</td>
<td>1.000</td>
<td>14.000</td>
<td>5.362</td>
<td>.068</td>
</tr>
<tr>
<td>employ</td>
<td>1.000</td>
<td>14.000</td>
<td>38.244</td>
<td>.000</td>
</tr>
<tr>
<td>address</td>
<td>1.000</td>
<td>14.000</td>
<td>1.123</td>
<td>.307</td>
</tr>
<tr>
<td>income</td>
<td>1.000</td>
<td>14.000</td>
<td>.067</td>
<td>.922</td>
</tr>
<tr>
<td>debtinc</td>
<td>1.000</td>
<td>14.000</td>
<td>27.832</td>
<td>.000</td>
</tr>
<tr>
<td>creddebt</td>
<td>1.000</td>
<td>14.000</td>
<td>33.402</td>
<td>.000</td>
</tr>
<tr>
<td>othdebt</td>
<td>1.000</td>
<td>14.000</td>
<td>.709</td>
<td>.414</td>
</tr>
</tbody>
</table>

Dependent Variable: Previously defaulted (reference category = No)

Model: (Intercept), ed, age, employ, address, income, debtinc, creddebt, othdebt

Each term in the model, plus the model as a whole, is tested for whether its effect equals 0. Terms with significance values less than 0.05 have some discernible effect. Thus, *age, employ, debtinc*, and *creddebt* contribute to the model, while the other main effects do not. In a further analysis of the data, you would probably remove *ed, address, income, and othdebt* from model consideration.
Parameter Estimates

The parameter estimates table summarizes the effect of each predictor. Note that parameter values affect the likelihood of the “did default” category relative to the “did not default” category. Thus, parameters with positive coefficients increase the likelihood of default, while parameters with negative coefficients decrease the likelihood of default.

The meaning of a logistic regression coefficient is not as straightforward as that of a linear regression coefficient. While B is convenient for testing the model effects, $\text{Exp}(B)$ is easier to interpret. $\text{Exp}(B)$ represents the ratio change in the odds of the event of interest attributable to a one-unit increase in the predictor for predictors that are not part of interaction terms. For example, $\text{Exp}(B)$ for employ is equal to 0.798, which means that the odds of default for people who have been with their current employer for two years are 0.798 times the odds of default for those who have been with their current employer for one year, all other things being equal.

The design effects indicate that some of the standard errors computed for these parameter estimates are larger than those you would obtain if you assumed that these observations came from a simple random sample, while others are smaller. It is vitally important to incorporate the sampling design information in your analysis because you might otherwise infer, for example, that the age coefficient is no different from 0!
Odds Ratios

Figure 20-10
Odds ratios for level of education

<table>
<thead>
<tr>
<th>Level of education</th>
<th>Previously defaulted</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did not complete high school vs. Post-undergraduate degree</td>
<td>Yes</td>
<td>2.054</td>
<td>0.990 - 4.259</td>
</tr>
<tr>
<td>High school degree vs. Post-undergraduate degree</td>
<td>Yes</td>
<td>1.803</td>
<td>0.964 - 3.397</td>
</tr>
<tr>
<td>Some college vs. Post-undergraduate degree</td>
<td>Yes</td>
<td>1.679</td>
<td>0.869 - 3.244</td>
</tr>
<tr>
<td>College degree vs. Post-undergraduate degree</td>
<td>Yes</td>
<td>2.202</td>
<td>1.152 - 4.206</td>
</tr>
</tbody>
</table>

Dependent Variable: Previously defaulted (reference category = No)
Model: (Intercept), ed, age, employ, address, income, debtinc, creddebt, othdebt

* Factors and covariates used in the computation are fixed at the following values:
 Level of education=Post-undergraduate degree; Age in years=34.18; Years with current employer=6.99; Years at current address=6.32; Household income in thousands=60.1581; Debt to income ratio (>100)=6.0341; Credit card debt in thousands=1.8764; Other debt in thousands=3.9164

This table displays the odds ratios of Previously defaulted at the factor levels of Level of education. The reported values are the ratios of the odds of default for Did not complete high school through College degree, compared to the odds of default for Post-undergraduate degree. Thus, the odds ratio of 2.054 in the first row of the table means that the odds of default for a person who did not complete high school are 2.054 times the odds of default for a person who has a post-undergraduate degree.

Figure 20-11
Odds ratios for years with current employer

<table>
<thead>
<tr>
<th>Units of Change</th>
<th>Previously defaulted</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years with current employer</td>
<td>Yes</td>
<td>0.796</td>
<td>0.758 - 0.840</td>
</tr>
</tbody>
</table>

Dependent Variable: Previously defaulted (reference category = No)
Model: (Intercept), ed, age, employ, address, income, debtinc, creddebt, othdebt

* Factors and covariates used in the computation are fixed at the following values:
 Level of education=Post-undergraduate degree; Age in years=34.18; Years with current employer=6.99; Years at current address=6.32; Household income in thousands=60.1581; Debt to income ratio (>100)=6.0341; Credit card debt in thousands=1.8764; Other debt in thousands=3.9164

This table displays the odds ratio of Previously defaulted for a unit change in the covariate Years with current employer. The reported value is the ratio of the odds of default for a person with 7.99 years at their current job compared to the odds of default for a person with 6.99 years (the mean).
Figure 20-12
Odds ratios for debt to income ratio

<table>
<thead>
<tr>
<th>Units of Change</th>
<th>Previously defaulted</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debt to income ratio (×100)</td>
<td>Yes</td>
<td>1.100</td>
<td>1.058</td>
</tr>
</tbody>
</table>

Dependent Variable: Previously defaulted (reference category = No)
Model: (intercept), ed, age, employ, address, income, delin, creddebt, chdebt

Factors and covariates used in the computation are fixed at the following values:
Level of education=Post-undergraduate degree; Age in years=34.13; Years with current employer=6.95; Years at current address=6.32; Householder Income in thousands=50.1551; Debt to income ratio (×100)=9.9341; Credit card debt in thousands=1.3764; Other debt in thousands=5.5134

This table displays the odds ratio of Previously defaulted for a unit change in the covariate Debt to income ratio. The reported value is the ratio of the odds of default for a person with a debt/income ratio of 10.9341 compared to the odds of default for a person with 9.9341 (the mean).

Note that because none of these predictors are part of interaction terms, the values of the odds ratios reported in these tables are equal to the values of the exponentiated parameter estimates. When a predictor is part of an interaction term, its odds ratio as reported in these tables will also depend on the values of the other predictors that make up the interaction.

Summary

Using the Complex Samples Logistic Regression Procedure, you have constructed a model for predicting the probability that a given customer will default on a loan.

A critical issue for loan officers is the cost of Type I and Type II errors. That is, what is the cost of classifying a defaulter as a nondefaulter (Type I)? What is the cost of classifying a nondefaulter as a defaulter (Type II)? If bad debt is the primary concern, then you want to lower your Type I error and maximize your sensitivity. If growing your customer base is the priority, then you want to lower your Type II error and maximize your specificity. Usually, both are major concerns, so you have to choose a decision rule for classifying customers that gives the best mix of sensitivity and specificity.
The Complex Samples Logistic Regression procedure is a useful tool for modeling a categorical variable when the cases have been drawn according to a complex sampling scheme.

- The Complex Samples Sampling Wizard is used to specify complex sampling design specifications and obtain a sample. The sampling plan file created by the Sampling Wizard contains a default analysis plan and can be specified in the Plan dialog box when you are analyzing the sample obtained according to that plan.
- The Complex Samples Analysis Preparation Wizard is used to specify analysis specifications for an existing complex sample. The analysis plan file created by the Sampling Wizard can be specified in the Plan dialog box when you are analyzing the sample corresponding to that plan.
- The Complex Samples General Linear Model procedure allows you to model a scale response.
- The Complex Samples Ordinal Regression procedure allows you to model an ordinal response.
Chapter 21

Complex Samples Ordinal Regression

The Complex Samples Ordinal Regression procedure creates a predictive model for an ordinal dependent variable for samples drawn by complex sampling methods. Optionally, you can request analyses for a subpopulation.

Using Complex Samples Ordinal Regression to Analyze Survey Results

Representatives considering a bill before the legislature are interested in whether there is public support for the bill and how support for the bill is related to voter demographics. Pollsters design and conduct interviews according to a complex sampling design.

The survey results are collected in poll_cs_sample.sav. The sampling plan used by the pollsters is contained in poll.csplan; because it makes use of a probability-proportional-to-size (PPS) method, there is also a file containing the joint selection probabilities (poll_jointprob.sav). For more information, see Sample Files in Appendix A on p. 309. Use Complex Samples Ordinal Regression to fit a model for the level of support for the bill based upon voter demographics.

Running the Analysis

To run a Complex Samples Ordinal Regression analysis, from the menus choose:

Analyze
Complex Samples
Ordinal Regression...
Browse to and select `poll.csplan` as the plan file. For more information, see Sample Files in Appendix A on p. 309.

Select `poll_jointprob.sav` as the joint probabilities file.

Click Continue.
Select *The legislature should enact a gas tax* as the dependent variable.

Select *Age category* through *Driving frequency* as factors.

Click Statistics.
Select Classification table in the Model Fit group.

Select Estimate, Exponentiated estimate, Standard error, Confidence interval, and Design effect in the Parameters group.

Select Wald test of equal slopes and Parameter estimates for generalized (unequal slopes) model.

Click Continue.

Click Hypothesis Tests in the Complex Samples Ordinal Regression dialog box.
Even for a moderate number of predictors and response categories, the Wald F test statistic can be inestimable for the test of parallel lines.

- Select Adjusted F in the Test Statistic group.
- Select Sequential Sidak as the adjustment method for multiple comparisons.
- Click Continue.
- Click Odds Ratios in the Complex Samples Ordinal Regression dialog box.
Choose to produce cumulative odds ratios for *Age category* and *Driving frequency*.

Select 10-14,999 miles/year, a more “typical” yearly mileage than the maximum, as the reference category for *Driving frequency*.

Click Continue.

Click OK in the Complex Samples Ordinal Regression dialog box.
Pseudo R-Squares

Figure 21-6

<table>
<thead>
<tr>
<th>Method</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox and Snell</td>
<td>.179</td>
</tr>
<tr>
<td>Nagelkerke</td>
<td>.691</td>
</tr>
<tr>
<td>McFadden</td>
<td>.071</td>
</tr>
</tbody>
</table>

Dependent Variable: The legislature should enact a gas tax (Ascending)
Model: (Threshold), agecat, gender, votelast, drivfreq
Link function: Logit

In the linear regression model, the coefficient of determination, R^2, summarizes the proportion of variance in the dependent variable associated with the predictor (independent) variables, with larger R^2 values indicating that more of the variation is explained by the model, to a maximum of 1. For regression models with a categorical dependent variable, it is not possible to compute a single R^2 statistic that has all of the characteristics of R^2 in the linear regression model, so these approximations are computed instead. The following methods are used to estimate the coefficient of determination.

- **Cox and Snell’s $R^2** (Cox and Snell, 1989) is based on the log likelihood for the model compared to the log likelihood for a baseline model. However, with categorical outcomes, it has a theoretical maximum value of less than 1, even for a “perfect” model.

- **Nagelkerke’s $R^2** (Nagelkerke, 1991) is an adjusted version of the Cox & Snell R-square that adjusts the scale of the statistic to cover the full range from 0 to 1.

- **McFadden’s $R^2** (McFadden, 1974) is another version, based on the log-likelihood kernels for the intercept-only model and the full estimated model.

What constitutes a “good” R^2 value varies between different areas of application. While these statistics can be suggestive on their own, they are most useful when comparing competing models for the same data. The model with the largest R^2 statistic is “best” according to this measure.
Tests of Model Effects

Figure 21-7
Tests of model effects

<table>
<thead>
<tr>
<th>Source</th>
<th>df1</th>
<th>df2</th>
<th>Adjusted V Val</th>
<th>Sig.</th>
<th>Sequential SRKB Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>agecat</td>
<td>2.283</td>
<td>31.906</td>
<td>6.215</td>
<td>.004</td>
<td>.003</td>
</tr>
<tr>
<td>gender</td>
<td>1.000</td>
<td>14.000</td>
<td>.046</td>
<td>.934</td>
<td>.634</td>
</tr>
<tr>
<td>votelast</td>
<td>1.000</td>
<td>14.000</td>
<td>.078</td>
<td>.787</td>
<td>.787</td>
</tr>
<tr>
<td>drivfreq</td>
<td>3.785</td>
<td>52.987</td>
<td>228.015</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

Dependent Variable: The legislature should enact a gas tax (Ascending)
Model: (Threshold), agecat, gender, votelast, drivfreq
Link function: Logit

Each term in the model is tested for whether its effect equals 0. Terms with significance values less than 0.05 have some discernable effect. Thus, agecat and drivfreq contribute to the model, while the other main effects do not. In a further analysis of the data, you would consider removing gender and votelast from the model.

Parameter Estimates

The parameter estimates table summarizes the effect of each predictor. While interpretation of the coefficients in this model is difficult due to the nature of the link function, the signs of the coefficients for covariates and relative values of the coefficients for factor levels can give important insights into the effects of the predictors in the model.

- For covariates, positive (negative) coefficients indicate positive (inverse) relationships between predictors and outcome. An increasing value of a covariate with a positive coefficient corresponds to an increasing probability of being in one of the “higher” cumulative outcome categories.
- For factors, a factor level with a greater coefficient indicates a greater probability of being in one of the “higher” cumulative outcome categories. The sign of a coefficient for a factor level is dependent upon that factor level’s effect relative to the reference category.
You can make the following interpretations based on the parameter estimates:

- Those in lower age categories show greater support for the bill than those in the highest age category.
- Those who drive less frequently show greater support for the bill than those who drive more frequently.
- The coefficients for the variables *gender* and *votelast*, in addition to not being statistically significant, appear to be small compared to other coefficients.

The design effects indicate that some of the standard errors computed for these parameter estimates are larger than those you would obtain if you used a simple random sample, while others are smaller. It is vitally important to incorporate the sampling design information in your analysis because you might otherwise infer, for example, that the coefficient for the third level of *Age category*, \([\text{agecat}=3]\), is significantly different from 0!
Given the observed data, the “null” model (that is, one without predictors) would classify all customers into the modal group, *Agree*. Thus, the null model would be correct 27.3% of the time.
The classification table shows the practical results of using the model. For each case, the predicted response is the response category with the highest model-predicted probability. Cases are weighted by Final Sampling Weight, so that the classification table reports the expected model performance in the population.

- Cells on the diagonal are correct predictions.
- Cells off the diagonal are incorrect predictions.

The model correctly classifies 9.9% more, or 37.2% of the cases. In particular, the model does considerably better at classifying those who Agree or Strongly disagree, and slightly worse with those who Disagree.

Odds Ratios

Cumulative odds are defined as the ratio of the probability that the dependent variable takes a value less than or equal to a given response category to the probability that it takes a value greater than that response category. The **cumulative odds ratio** is the ratio of cumulative odds for different predictor values and is closely related to the exponentiated parameter estimates. Interestingly, the cumulative odds ratio itself does not depend upon the response category.
This table displays cumulative odds ratios for the factor levels of Age category. The reported values are the ratios of the cumulative odds for 18–30 through 46–60, compared to the cumulative odds for >60. Thus, the odds ratio of 1.383 in the first row of the table means that the cumulative odds for a person aged 18–30 are 1.383 times the cumulative odds for a person older than 60. Note that because Age category is not involved in any interaction terms, the odds ratios are merely the ratios of the exponentiated parameter estimates. For example, the cumulative odds ratio for 18–30 vs. >60 is 1.00/0.723 = 1.383.
This table displays the cumulative odds ratios for the factor levels of Driving frequency, using 10–14,999 miles/year as the reference category. Since Driving frequency is not involved in any interaction terms, the odds ratios are merely the ratios of the exponentiated parameter estimates. For example, the cumulative odds ratio for 20–29,999 miles/year vs. 10–14,999 miles/year is $\frac{0.101}{0.444} = 0.227$.

Generalized Cumulative Model

Figure 21-13
Test of parallel lines

<table>
<thead>
<tr>
<th>df1</th>
<th>df2</th>
<th>Adjusted Wald F</th>
<th>Sig.</th>
<th>Sequential Sidak Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.760</td>
<td>122.767</td>
<td>1.804</td>
<td>.061</td>
<td>.392</td>
</tr>
</tbody>
</table>

Dependent Variable: The legislature should enact a gas tax (Ascending)
Model: (Threshold), agecat, gender, votestat, drivefreq
Link function: Logit

The test of parallel lines can help you assess whether the assumption that the parameters are the same for all response categories is reasonable. This test compares the estimated model with one set of coefficients for all categories to a generalized model with a separate set of coefficients for each category.

The Wald F test is an omnibus test of the contrast matrix for the parallel lines assumption that provides asymptotically correct p values; for small to mid-sized samples, the adjusted Wald F statistic performs well. The significance value is near 0.05, suggesting that the generalized model may give an improvement in the model fit; however, the Sequential Sidak adjusted test reports a significance value high enough (0.392) that, overall, there is no clear evidence for rejecting the parallel lines assumption. The Sequential Sidak test starts with individual contrast Wald tests to provide an overall p value, and these results should be comparable to the omnibus Wald test result. The fact that they are so different in this example is somewhat surprising but could be due to the existence of many contrasts in the test and a relatively small design degrees of freedom.
Moreover, the estimated values of the generalized model coefficients don’t appear to differ much from the estimates under the parallel lines assumption.

Dropping Non-Significant Predictors

The tests of model effects showed that the model coefficients for *Gender* and *Voted in last election* are not statistically significantly different from 0.
Chapter 21

- To produce a reduced model, recall the Complex Samples Ordinal Regression dialog box.

- Click Continue in the Plan dialog box.

Figure 21-15
Ordinal Regression dialog box

- Deselect Gender and Voted in last election as factors.

- Click Options.
Select Display iteration history.

The iteration history is useful for diagnosing problems encountered by the estimation algorithm.

Click Continue.

Click OK in the Complex Samples Ordinal Regression dialog box.
Chapter 21

Warnings

Figure 21-17

Warnings for reduced model

The log-likelihood value cannot be increased after the maximum number of steps in the step-halving method.

The CORDINAL procedure continues despite the above warning(s).

Subsequent results shown are based on the last iteration. Validity of the model fit is uncertain.

The following message applies to the generalized cumulative model.

The log-likelihood value cannot be increased after the maximum number of steps in the step-halving method.

The warnings note that estimation of the reduced model ended before the parameter estimates reached convergence because the log-likelihood could not be increased with any change, or “step,” in the current values of the parameter estimates.

Figure 21-18

Warnings for reduced model

<table>
<thead>
<tr>
<th>Iteration Number</th>
<th>N Simulating</th>
<th>Pseudo R² Log Likelihood</th>
<th>[age: at=1]</th>
<th>[age: at=2]</th>
<th>[age: at=3]</th>
<th>[drive freq= 1]</th>
<th>[drive freq= 2]</th>
<th>[drive freq= 3]</th>
<th>[drive freq= 4]</th>
<th>[drive freq= 5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>329846.3</td>
<td>-1.300</td>
<td>-0.050</td>
<td>1.020</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>303357.5</td>
<td>-3.242</td>
<td>-1.001</td>
<td>-0.704</td>
<td>-0.323</td>
<td>-0.137</td>
<td>-0.054</td>
<td>-0.041</td>
<td>-2.970</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>303356.3</td>
<td>-3.327</td>
<td>-1.897</td>
<td>-0.664</td>
<td>-0.325</td>
<td>-0.139</td>
<td>-0.056</td>
<td>-0.374</td>
<td>-2.998</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>303356.9</td>
<td>-3.333</td>
<td>-1.900</td>
<td>-0.664</td>
<td>-0.326</td>
<td>-0.139</td>
<td>-0.056</td>
<td>-0.375</td>
<td>-3.003</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>303355.9</td>
<td>-3.333</td>
<td>-1.900</td>
<td>-0.664</td>
<td>-0.326</td>
<td>-0.139</td>
<td>-0.056</td>
<td>-0.375</td>
<td>-3.003</td>
</tr>
<tr>
<td>...</td>
<td>5</td>
<td>303355.9</td>
<td>-3.333</td>
<td>-1.900</td>
<td>-0.664</td>
<td>-0.326</td>
<td>-0.139</td>
<td>-0.056</td>
<td>-0.375</td>
<td>-3.003</td>
</tr>
</tbody>
</table>

Redundant parameters are not displayed. Their values are always zero in all iterations.

Dependent Variable: The legislature should enact a gas tax (Ascending)

Model: (threshold), age, drive

Link Function: LogL

a. The log-likelihood value cannot be increased after the maximum number of steps in the step-halving method.
b. Newton-Raphson method was used to estimate the parameters.

Looking at the iteration history, the changes in the parameter estimates over the last few iterations are slight enough that you’re not terribly concerned about the warning message.
Comparing Models

Figure 21-19
Pseudo R-Squares for reduced model

<table>
<thead>
<tr>
<th>Method</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox and Snell</td>
<td>.179</td>
</tr>
<tr>
<td>Nagelkerke</td>
<td>.161</td>
</tr>
<tr>
<td>McFadden</td>
<td>.071</td>
</tr>
</tbody>
</table>

Dependent Variable: The legislature should enact a gas tax (Ascending)
Model: (Threshold), agecat, gender, votelast, drivefreq
Link function: Logit

The R^2 values for the reduced model are identical to those for the original model. This is evidence in favor of the reduced model.

Figure 21-20
Classification table for reduced model

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strongly agree</td>
</tr>
<tr>
<td>Strongly agree</td>
<td>7067.587</td>
</tr>
<tr>
<td>Agree</td>
<td>4271.234</td>
</tr>
<tr>
<td>Disagree</td>
<td>2024.815</td>
</tr>
<tr>
<td>Strongly disagree</td>
<td>886.869</td>
</tr>
<tr>
<td>Overall Percent</td>
<td>12.1%</td>
</tr>
</tbody>
</table>

Dependent Variable: The legislature should enact a gas tax (Ascending)
Model: (Threshold), agecat, drivefreq
Link function: Logit

The classification table somewhat complicates matters. The overall classification rate of 37.0% for the reduced model is comparable to the original model, which is evidence in favor of the reduced model. However, the reduced model shifts the predicted response of 3.8% of the voters from Disagree to Agree, more than half of whom were observed to respond Disagree or Strongly disagree. This is a very important distinction that deserves careful consideration before choosing the reduced model.

Summary

Using the Complex Samples Ordinal Regression Procedure, you have constructed competing models for the level of support for the proposed bill based on voter demographics. The test of parallel lines shows that a generalized cumulative model is not necessary. The tests of model effects suggest that Gender and Voted in last election could be dropped from the model, and the reduced model performs well in terms of
pseudo-R^2 and overall classification rate compared to the original model. However, the reduced model misclassifies more voters across the *Agree/Disagree* split, so the legislators prefer to keep the original model for now.

Related Procedures

The Complex Samples Ordinal Regression procedure is a useful tool for modeling an ordinal variable when the cases have been drawn according to a complex sampling scheme.

- The **Complex Samples Sampling Wizard** is used to specify complex sampling design specifications and obtain a sample. The sampling plan file created by the Sampling Wizard contains a default analysis plan and can be specified in the Plan dialog box when you are analyzing the sample obtained according to that plan.

- The **Complex Samples Analysis Preparation Wizard** is used to specify analysis specifications for an existing complex sample. The analysis plan file created by the Sampling Wizard can be specified in the Plan dialog box when you are analyzing the sample corresponding to that plan.

- The **Complex Samples General Linear Model** procedure allows you to model a scale response.

- The **Complex Samples Logistic Regression** procedure allows you to model a categorical response.
The Complex Samples Cox Regression procedure performs survival analysis for samples drawn by complex sampling methods.

Using a Time-Dependent Predictor in Complex Samples Cox Regression

A government law enforcement agency is concerned about recidivism rates in their area of jurisdiction. One of the measures of recidivism is the time until second arrest for offenders. The agency would like to model time to rearrest using Cox Regression on a sample drawn by complex sampling methods, but they are worried the proportional hazards assumption is invalid across age categories.

Persons released from their first arrest during the month of June 2003 were selected from sampled departments, and their case history inspected through the end of June 2006. The sample is collected in `recidivism_cs_sample.sav`. The sampling plan used is contained in `recidivism_cs.csplan`; because it makes use of a probability-proportional-to-size (PPS) method, there is also a file containing the joint selection probabilities (`recidivism_cs_jointprob.sav`). For more information, see Sample Files in Appendix A on p. 309. Use Complex Samples Cox Regression to assess the validity of the proportional hazards assumption and fit a model with time-dependent predictors, if appropriate.

Preparing the Data

The dataset contains the dates of release from first arrest and second arrest; since Cox regression analyzes survival times, you need to compute the amount of time between these dates.
However, \textit{Date of second arrest [date2]} contains cases with the value 10/03/1582, a missing value for date variables. These are people who have not had a second offense, and we definitely want to include them as right-censored cases in the model. The end of the follow-up period was June 30, 2006, so we are going to recode 10/03/1582 to 06/30/2006.

To recode these values, from the menus choose:

\begin{itemize}
\item Transform
\item Compute Variable...
\end{itemize}

\textbf{Figure 22-1}

\textit{Compute Variable dialog box}

\begin{itemize}
\item Type \texttt{date2} as the target variable.
\item Type \texttt{DATE.DMY(30,6,2006)} as the expression.
\end{itemize}
Complex Samples Cox Regression

- Click If.

Figure 22-2
Compute Variable If Cases dialog box

- Select Include if case satisfies condition.
- Type MISSING(date2) as the expression.
- Click Continue.
- Click OK in the Compute Variable dialog box.
- Next, to compute the time between first and second arrest, from the menus choose: Transform Date and Time Wizard...
Figure 22-3
Date and Time Wizard, Welcome step

Select Calculate with dates and times.

Click Next.
Figure 22-4
Date and Time Wizard, Do Calculations on Dates step

- Select Calculate the number of time units between two dates.
- Click Next.
Figure 22-5
Date and Time Wizard, Calculate the number of time units between two dates step

Select *Date of second arrest [date2]* as the first date.

Select *Date of release from first arrest [date1]* as the date to subtract from the first date.

Select *Days* as the unit.

Click Next.
Figure 22-6
Date and Time Wizard, Calculation step

- Type `time_to_event` as the name of the variable representing the time between the two dates.
- Type `Time to second arrest` as the variable label.
- Click Finish.

Running the Analysis

- To run a Complex Samples Cox Regression analysis, from the menus choose:
 Analyze
 Complex Samples
 Cox Regression...
Browse to the sample files directory and select `recidivism_cs.csplan` as the plan file.

Select Custom file in the Joint Probabilities group, browse to the sample files directory, and select `recidivism_cs_jointprob.sav`.

Click Continue.
Figure 22-8
Cox Regression dialog box, Time and Event tab

- Select Time to second arrest [time_to_event] as the variable defining the end of the interval.
- Select Second arrest [arrest2] as the variable defining whether the event has occurred.
- Click Define Event.
Select 1 Yes as the value indicating the event of interest (rearrest) has occurred.

Click Continue.

Click the Predictors tab.
Select *Age in years [age]* as a covariate.

- Click the Statistics tab.
Select Test of proportional hazards and then select Log as the time function in the Model Assumptions group.

Select Parameter estimates for alternative model.

Click OK.
Sample Design Information

Figure 22-12
Sample design information

<table>
<thead>
<tr>
<th>Unweighted Counts</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid Subjects</td>
<td>5667</td>
</tr>
<tr>
<td>Cases</td>
<td>5667</td>
</tr>
<tr>
<td>Invalid Cases</td>
<td>0</td>
</tr>
<tr>
<td>Total Cases</td>
<td>5667</td>
</tr>
<tr>
<td>Population Subject Size</td>
<td>307583.808</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Strata</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Units</td>
<td>20</td>
</tr>
</tbody>
</table>

| Sampling Design Degrees of Freedom | 16 |

This table contains information on the sample design pertinent to the estimation of the model.

- There is one case per subject, and all 5,687 cases are used in the analysis.
- The sample represents less than 2% of the entire estimated population.
- The design requested 4 strata and 5 units per strata for a total of 20 units in the first stage of the design. The sampling design degrees of freedom are estimated by $20 - 4 = 16$.

Tests of Model Effects

Figure 22-13
Tests of model effects

<table>
<thead>
<tr>
<th>Source</th>
<th>df1</th>
<th>df2</th>
<th>Wald F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>1.000</td>
<td>16</td>
<td>504.787</td>
<td>1.580E-13</td>
</tr>
</tbody>
</table>

Survival Time Variable: Time to second arrest
Event Status Variable: Second arrest = 1.0
Model: age

In the proportional hazards model, the significance value for the predictor `age` is less than 0.05 and, therefore, appears to contribute to the model.
Chapter 22

Test of Proportional Hazards

Figure 22-14
Overall test of proportional hazards

<table>
<thead>
<tr>
<th>df1</th>
<th>df2</th>
<th>Wald F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>16.000</td>
<td>20.924</td>
<td>5.13E-6</td>
</tr>
</tbody>
</table>

Survival Time Variable: Time to second arrest
Event Status Variable: Second arrest = 1.0
Model: age, age* TF

Figure 22-15
Parameter estimates for alternative model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>Std. Error</th>
<th>90% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>- 0.02</td>
<td>0.02</td>
<td>-0.04 - 0.00</td>
</tr>
<tr>
<td>age* TF</td>
<td>- 0.12</td>
<td>0.02</td>
<td>-0.16 - 0.08</td>
</tr>
</tbody>
</table>

Survival Time Variable: Time to second arrest
Event Status Variable: Second arrest = 1.0
Model: age, age* TF

* Time function: Log

The significance value for the overall test of proportional hazards is less than 0.05, indicating that the proportional hazards assumption is violated. The log time function is used for the alternative model, so it will be easy to replicate this time-dependent predictor.

Adding a Time-Dependent Predictor

- Recall the Complex Samples Cox Regression dialog box and click the Predictors tab.
- Click New.

Figure 22-16
Cox Regression Define Time-Dependent Predictor dialog box

- Type \(t_{\text{age}} \) as the name of the time-dependent predictor you want to define.

- Type \(\ln(T_{_}) \cdot \text{age} \) as the numeric expression.

- Click Continue.
Figure 22-17
Cox Regression dialog box, Predictors tab

- Select \(t_{age} \) as a covariate.
- Click the Statistics tab.
Figure 22-18
Cox Regression dialog box, Predictors tab

- Select Estimate, Standard error, Confidence interval, and Design effect in the Parameters group.
- Deselect Test of proportional hazards and Parameter estimates for alternative model in the Model Assumptions group.
- Click OK.
Chapter 22

Tests of Model Effects

Figure 22-19
Tests of model effects

<table>
<thead>
<tr>
<th>Source</th>
<th>df1</th>
<th>df2</th>
<th>Wald F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>1.000</td>
<td>15.000</td>
<td>0.015</td>
<td>0.91</td>
</tr>
<tr>
<td>t_age</td>
<td>1.000</td>
<td>15.000</td>
<td>29.924</td>
<td>5.1365-5</td>
</tr>
</tbody>
</table>

Survival Time Variable: Time to second arrest
Event Status Variable: Second arrest = 1
Model: age, t_age

With the addition of the time-dependent predictor, the significance value for age is 0.91, indicating that its contribution to the model is superseded by that of t_age.

Parameter Estimates

Figure 22-20
Parameter estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
<th>Design Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>-0.02</td>
<td>0.01</td>
<td>-0.03 - 0.01</td>
<td>0.702</td>
</tr>
<tr>
<td>t_age</td>
<td>-0.012</td>
<td>0.002</td>
<td>-0.017 - 0.008</td>
<td>0.666</td>
</tr>
</tbody>
</table>

Survival Time Variable: Time to second arrest
Event Status Variable: Second arrest = 1
Model: age, t_age

Looking at the parameter estimates and standard errors, you can see that you have replicated the alternative model from the test of proportional hazards. By explicitly specifying the model, you can request additional parameter statistics and plots. Here we have requested the design effect; the value for t_age of less than 1 indicates that the standard error for t_age is smaller than what you would obtain if you assumed that the dataset was a simple random sample. In this case, the effect of t_age would still be statistically significant, but the confidence intervals would be wider.

Multiple Cases per Subject in Complex Samples Cox Regression

Researchers investigating survival times for patients exiting a rehabilitation program post-ischemic stroke face a number of challenges.
Multiple cases per subject. Variables representing patient medical history should be useful as predictors. Over time, patients may experience major medical events that alter their medical history. In this dataset, the occurrence of myocardial infarction, ischemic stroke, or hemorrhagic stroke is noted and the time of the event recorded. You could create computable time-dependent covariates within the procedure to include this information in the model, but it should be more convenient to use multiple cases per subject. Note that the variables were originally coded so that the patient history is recorded across variables, so you will need to restructure the dataset.

Left-truncation. The onset of risk starts at the time of the ischemic stroke. However, the sample only includes patients who have survived the rehabilitation program, thus the sample is left-truncated in the sense that the observed survival times are “inflated” by the length of rehabilitation. You can account for this by specifying the time at which they exited rehabilitation as the time of entry into the study.

No sampling plan. The dataset was not collected via a complex sampling plan and is considered to be a simple random sample. You will need to create an analysis plan to use Complex Samples Cox Regression.

The dataset is collected in stroke_survival.sav. For more information, see Sample Files in Appendix A on p. 309. Use the Restructure Data Wizard to prepare the data for analysis, then the Analysis Preparation Wizard to create a simple random sampling plan, and finally Complex Samples Cox Regression to build a model for survival times.

Preparing the Data for Analysis

Before restructuring the data, you will need to create two ancillary variables to help with the restructuring.

To compute a new variable, from the menus choose:
Transform
Compute Variable...
Type `start_time2` as the target variable.

Type `time1` as the numeric expression.

Click OK.
Recall the Compute Variable dialog box.

Figure 22-22
Compute Variable dialog box

- Type `start_time3` as the target variable.
- Type `time2` as the numeric expression.
- Click OK.
- To restructure the data from variables to cases, from the menus choose:

 - **Data**
 - **Restructure...**
Make sure **Restructure selected variables into cases** is selected.

Click **Next**
Figure 22-24
Restructure Data Wizard, Variables to Cases Number of Variable Groups step

- Select More than one variable group to restructure.
- Type 6 as the number of groups.
- Click Next.
In the Case Group Identification group, select Use selected variable and select Patient ID [patid] as the subject identifier.

Type event as the first target variable.

Select First event post-attack [event1], Second event post-attack [event2], and Third event post-attack [event3] as variables to be transposed.

Select trans2 from the target variable list.
Type `start_time` as the target variable.

Select `Length of stay for rehabilitation [los_rehab]`, `start_time2`, and `start_time3` as variables to be transposed. `Time to first event post-attack [time1]` and `Time to second event post-attack [time2]` will be used to create the end times, and each variable can only appear in one list of variables to be transposed, thus `start_time2` and `start_time3` were necessary.

Select `trans3` from the target variable list.
Chapter 22

Figure 22-27
Restructure Data Wizard, Variables to Cases Select Variables step

Variables to Cases: Select Variables

For each variable group you have in the current data the restructured file will have one target variable.

In this step, choose how to identify case groups in the restructured data, and choose which variables belong with each target variable.

Optionally, you can also choose variables to copy to the new file as Fixed Variables.

Variables in the Current File:
- Post-event
- Length of stay
- Total treatment... (ListView of variables)
- Case Group Identification
 - Use selected variable
 - Variable: Patient ID [patid]
- Variables to be Transposed
 - Target Variable: time_to_event
 - Time to first event post-attack [time1]
 - Time to second event post-attack [time2]
 - Time to third event post-attack [time3]
- Fixed Variable(s):

- Type `time_to_event` as the target variable.
- Select Time to first event post-attack [time1], Time to second event post-attack [time2], and Time to third event post-attack [time3] as variables to be transposed.
- Select `trans4` from the target variable list.
Type mi as the target variable.

Select *History of myocardial infarction [mi]*, *History of myocardial infarction [mi1]*, and *History of myocardial infarction [mi2]* as variables to be transposed.

Select *trans5* from the target variable list.
Figure 22-29
Restructure Data Wizard, Variables to Cases Select Variables step

- Type is as the target variable.

- Select *History of ischemic stroke [is]*, *History of ischemic stroke [is1]*, and *History of ischemic stroke [is2]* as variables to be transposed.

- Select *trans6* from the target variable list.
Type hs as the target variable.

Select *History of hemorrhagic stroke [hs]*, *History of hemorrhagic stroke [hs1]*, and *History of hemorrhagic stroke [hs2]* as variables to be transposed.

Click Next, then click Next in the Create Index Variables step.
Type event_index as the name of the index variable and type Event index as the variable label.

Click Next.
Make sure Keep and treat as fixed variable(s) is selected.

Click Finish.
The restructured data contains three cases for every patient; however, many patients experienced fewer than three events, so there are many cases with negative (missing) values for \textit{event}. You can simply filter these from the dataset.

- To filter these cases, from the menus choose:

 \begin{itemize}
 \item Data
 \item Select Cases...
 \end{itemize}
Figure 22-34
Select Cases dialog box

- Select If condition is satisfied.
- Click If.
Figure 22-35
Select Cases If dialog box

- Type `event >= 0` as the conditional expression.
- Click Continue.
Select Delete unselected cases.

Click OK.

Creating a Simple Random Sampling Analysis Plan

Now you are ready to create the simple random sampling analysis plan.

First, you need to create a sampling weight variable. From the menus choose: Transform
Compute Variable...
Type sampleweight as the target variable.

Type 1 as the numeric expression.

Click OK.

You are now ready to create the analysis plan.

Note: There is an existing plan file, srs.csaplan, in the sample files directory that you can use if you want to skip the following instructions and proceed to analysis of the data.
To create the analysis plan, from the menus choose:

Analyze
Complex Samples
Prepare for Analysis...

Figure 22-38
Analysis Preparation Wizard, Welcome step

- Select Create a plan file and type srs.csaplan as the name of the file. Alternatively, browse to the location you want to save it.

- Click Next.
Select `sampleweight` as the sample weight variable.

Click Next.
Complex Samples Cox Regression

Figure 22-40
Analysis Preparation Wizard, Estimation Method

<table>
<thead>
<tr>
<th>Analysis Preparation Wizard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1: Estimation Method</td>
</tr>
<tr>
<td>In this panel you select a method for estimating standard errors.</td>
</tr>
<tr>
<td>The estimation method depends on assumptions about how the sample was drawn.</td>
</tr>
<tr>
<td>Which of the following sample designs should be assumed for estimation?</td>
</tr>
<tr>
<td>- WOR (sampling with replacement)</td>
</tr>
<tr>
<td>If you choose this option you will not be able to add additional stages. Any sample stages after the current stage will be ignored when the data are analyzed.</td>
</tr>
<tr>
<td>- Use finite population correction (FPC) when estimating variance under simple random sampling assumption</td>
</tr>
<tr>
<td>- Equal WOR (equal probability sampling without replacement)</td>
</tr>
<tr>
<td>The next panel will ask you to specify inclusion probabilities or population sizes.</td>
</tr>
<tr>
<td>- Unequal WOR (unequal probability sampling without replacement)</td>
</tr>
<tr>
<td>Joint probabilities will be required to analyze sample data. This option is available in stage 1 only.</td>
</tr>
</tbody>
</table>

- Deselect Use finite population correction.
- Click Finish.

You are now ready to run the analysis.

Running the Analysis

- To run a Complex Samples Cox Regression analysis, from the menus choose:
 Analyze
 Complex Samples
 Cox Regression...
Chapter 22

Figure 22-41
Plan for Cox Regression dialog box

- Browse to where you saved the simple random sampling analysis plan, or to the sample files directory, and select \textit{hrs.csaplan}.

- Click Continue.
Select Varies by subject and select *Length of stay for rehabilitation [los_rehab]* as the start variable. Note that the restructured variable has taken the variable label from the first variable used to construct it, though the label is not necessarily appropriate for the constructed variable.

Select *Time to first event post-attack [time_to_event]* as the end variable.

Select *First event post-attack [event]* as the status variable.

Click Define Event.
Select 4 Death as the value indicating the terminal event has occurred.

Click Continue.
Select Patient ID [patid] as the subject identifier.

Click the Predictors tab.
Select History of myocardial infarction [mi] through History of hemorrhagic stroke [hs] as factors.

Click the Statistics tab.
Figure 22-46
Cox Regression dialog box, Statistics tab

- Select Estimate, Exponentiated estimate, Standard error, and Confidence interval in the Parameters group.

- Click the Plots tab.
Select Log-minus-log of survival function.

Check Separate Lines for History of myocardial infarction.

Select 1.0 as the level for History of ischemic stroke.

Select 0.0 as the level for History of hemorrhagic stroke.

Click the Options tab.
Select Breslow as the tie-breaking method in the Estimation group.

Click OK.
Sample Design Information

This table contains information on the sample design pertinent to the estimation of the model.

- There are multiple cases for some subjects, and all 3,310 cases are used in the analysis.
- The design has a single stratum and 2,421 units (one for each subject). The sampling design degrees of freedom are estimated by $2421 - 1 = 2420$.

Tests of Model Effects

The significance value for each effect is near 0, suggesting that they all contribute to the model.
Parameter Estimates

Figure 22-51
Parameter estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Exp(B)</th>
<th>95% Confidence Interval</th>
<th>95% Confidence Interval for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mi=0)</td>
<td>-6.381</td>
<td>-6.955 -5.827</td>
<td>.002 .001 .003</td>
</tr>
<tr>
<td>(mi=1)</td>
<td>-5.593</td>
<td>-6.147 -5.032</td>
<td>.004 .002 .007</td>
</tr>
<tr>
<td>(mi=2)</td>
<td>-2.110</td>
<td>-2.704 -1.446</td>
<td>.120 .061 .236</td>
</tr>
<tr>
<td>(mi=3)</td>
<td>.000</td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>(is=1)</td>
<td>-6.421</td>
<td>-6.817 -6.024</td>
<td>.002 .001 .002</td>
</tr>
<tr>
<td>(is=2)</td>
<td>-2.803</td>
<td>-3.230 -2.366</td>
<td>.061 .039 .064</td>
</tr>
<tr>
<td>(is=3)</td>
<td>.000</td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>(hs=1)</td>
<td>-6.148</td>
<td>-6.844 -5.453</td>
<td>0 .001 .004</td>
</tr>
<tr>
<td>(hs=2)</td>
<td>-2.232</td>
<td>-2.963 -1.502</td>
<td>.107 .052 .223</td>
</tr>
<tr>
<td>(hs=3)</td>
<td>.000</td>
<td></td>
<td>1.000</td>
</tr>
</tbody>
</table>

Survival Time Variable: Length of stay for rehabilitation, Time to first event post-attack
Event Status Variable: First event post-attack = 4
Subject ID Variable: Patient ID
Model: mi, is, hs

a. Set to zero because this parameter is redundant.
b. Tie breaking method: Breslow

The procedure uses the last category of each factor as the reference category; the effect of other categories is relative to the reference category. Note that while the estimate is useful for statistical testing, the exponentiated estimate, \(\text{Exp}(B)\), is more easily interpreted as the predicted change in the hazard relative to the reference category.

- The value of \(\text{Exp}(B)\) for \(mi=0\) means that the hazard of death for a patient with no prior myocardial infarctions (mi) is 0.002 times that of a patient with three prior mi’s.
- The confidence intervals for \(mi=1\) and \(mi=0\) overlap, indicating that the hazard for a patient with a single prior mi is not statistically distinguishable from that of a patient with no prior mi’s.
- The confidence intervals for \(mi=0\) and \(mi=1\) do not overlap with the interval for \(mi=2\), and none of them include 0. Therefore, it appears that the hazard for patients with one or no prior mi’s is distinguishable from the hazard for patients with two prior mi’s, which in turn is distinguishable from the hazard for patients with three prior mi’s.

Similar relationships hold for the levels of is and hs, where increasing the number of prior incidents increases the hazard of death.
The pattern values table lists the values that define each predictor pattern. In addition to the predictors in the model, the start and end times for the survival interval are displayed. For analyses run from the dialogs, the start and end times will always be 0 and unbounded, respectively; through syntax you can specify piecewise constant predictor paths.

- The reference pattern is set at the reference category for each factor and the mean value of each covariate (there are no covariates in this model). For this dataset, the combination of factors shown for the reference model cannot occur, so we will ignore the log-minus-log plot for the reference pattern.

- Patterns 1.1 through 1.4 differ only on the value of History of myocardial infarction. A separate pattern (and separate line in the requested plot) is created for each value of History of myocardial infarction while the other variables are held constant.
Log-Minus-Log Plot

Figure 22-53
Log-minus-log plot

This plot displays the log-minus-log of the survival function, ln(−ln(survival)), versus the survival time. This particular plot displays a separate curve for each category of *History of myocardial infarction*, with *History of ischemic stroke* fixed at *One* and *History of hemorrhagic stroke* fixed at *None*, and is a useful visualization of the effect of *History of myocardial infarction* on the survival function. As seen in the parameter estimates table, it appears that the survival for patients with one or no prior mi’s is distinguishable from the survival for patients with two prior mi’s, which in turn is distinguishable from the survival for patients with three prior mi’s.
Summary

You have fit a Cox regression model for post-stroke survival that estimates the effects of the changing post-stroke patient history. This is just a beginning, as researchers would undoubtedly want to include other potential predictors in the model. Moreover, in further analysis of this dataset you might consider more significant changes to the model structure. For example, the current model assumes that the effect of a patient history-altering event can be quantified by a multiplier to the baseline hazard. Instead, it may be reasonable to assume that the shape of the baseline hazard is altered by the occurrence of a nondeath event. To accomplish this, you could stratify the analysis based on Event index.
Sample Files

The sample files installed with the product can be found in the Samples subdirectory of the installation directory. There is a separate folder within the Samples subdirectory for each of the following languages: English, French, German, Italian, Japanese, Korean, Polish, Russian, Simplified Chinese, Spanish, and Traditional Chinese.

Not all sample files are available in all languages. If a sample file is not available in a language, that language folder contains an English version of the sample file.

Descriptions

Following are brief descriptions of the sample files used in various examples throughout the documentation.

- **accidents.sav.** This is a hypothetical data file that concerns an insurance company that is studying age and gender risk factors for automobile accidents in a given region. Each case corresponds to a cross-classification of age category and gender.

- **adl.sav.** This is a hypothetical data file that concerns efforts to determine the benefits of a proposed type of therapy for stroke patients. Physicians randomly assigned female stroke patients to one of two groups. The first received the standard physical therapy, and the second received an additional emotional therapy. Three months following the treatments, each patient’s abilities to perform common activities of daily life were scored as ordinal variables.

- **advert.sav.** This is a hypothetical data file that concerns a retailer’s efforts to examine the relationship between money spent on advertising and the resulting sales. To this end, they have collected past sales figures and the associated advertising costs.
- **aflatoxin.sav.** This is a hypothetical data file that concerns the testing of corn crops for aflatoxin, a poison whose concentration varies widely between and within crop yields. A grain processor has received 16 samples from each of 8 crop yields and measured the aflatoxin levels in parts per billion (PPB).

- **aflatoxin20.sav.** This data file contains the aflatoxin measurements from each of the 16 samples from yields 4 and 8 from the *aflatoxin.sav* data file.

- **anorectic.sav.** While working toward a standardized symptomatology of anorectic/bulimic behavior, researchers (Van der Ham, Meulman, Van Strien, and Van Engeland, 1997) made a study of 55 adolescents with known eating disorders. Each patient was seen four times over four years, for a total of 220 observations. At each observation, the patients were scored for each of 16 symptoms. Symptom scores are missing for patient 71 at time 2, patient 76 at time 2, and patient 47 at time 3, leaving 217 valid observations.

- **autoaccidents.sav.** This is a hypothetical data file that concerns the efforts of an insurance analyst to model the number of automobile accidents per driver while also accounting for driver age and gender. Each case represents a separate driver and records the driver’s gender, age in years, and number of automobile accidents in the last five years.

- **band.sav.** This data file contains hypothetical weekly sales figures of music CDs for a band. Data for three possible predictor variables are also included.

- **bankloan.sav.** This is a hypothetical data file that concerns a bank’s efforts to reduce the rate of loan defaults. The file contains financial and demographic information on 850 past and prospective customers. The first 700 cases are customers who were previously given loans. The last 150 cases are prospective customers that the bank needs to classify as good or bad credit risks.

- **bankloan_binning.sav.** This is a hypothetical data file containing financial and demographic information on 5,000 past customers.

- **behavior.sav.** In a classic example (Price and Bouffard, 1974), 52 students were asked to rate the combinations of 15 situations and 15 behaviors on a 10-point scale ranging from 0=“extremely appropriate” to 9=“extremely inappropriate.” Averaged over individuals, the values are taken as dissimilarities.

- **behavior_ini.sav.** This data file contains an initial configuration for a two-dimensional solution for *behavior.sav*.
- **brakes.sav.** This is a hypothetical data file that concerns quality control at a factory that produces disc brakes for high-performance automobiles. The data file contains diameter measurements of 16 discs from each of 8 production machines. The target diameter for the brakes is 322 millimeters.

- **breakfast.sav.** In a classic study (Green and Rao, 1972), 21 Wharton School MBA students and their spouses were asked to rank 15 breakfast items in order of preference with 1 = “most preferred” to 15 = “least preferred.” Their preferences were recorded under six different scenarios, from “Overall preference” to “Snack, with beverage only.”

- **breakfast-overall.sav.** This data file contains the breakfast item preferences for the first scenario, “Overall preference,” only.

- **broadband_1.sav.** This is a hypothetical data file containing the number of subscribers, by region, to a national broadband service. The data file contains monthly subscriber numbers for 85 regions over a four-year period.

- **broadband_2.sav.** This data file is identical to broadband_1.sav but contains data for three additional months.

- **car_insurance_claims.sav.** A dataset presented and analyzed elsewhere (McCullagh and Nelder, 1989) concerns damage claims for cars. The average claim amount can be modeled as having a gamma distribution, using an inverse link function to relate the mean of the dependent variable to a linear combination of the policyholder age, vehicle type, and vehicle age. The number of claims filed can be used as a scaling weight.

- **car_sales.sav.** This data file contains hypothetical sales estimates, list prices, and physical specifications for various makes and models of vehicles. The list prices and physical specifications were obtained alternately from edmunds.com and manufacturer sites.

- **carpet.sav.** In a popular example (Green and Wind, 1973), a company interested in marketing a new carpet cleaner wants to examine the influence of five factors on consumer preference—package design, brand name, price, a Good Housekeeping seal, and a money-back guarantee. There are three factor levels for package design, each one differing in the location of the applicator brush; three brand names (K2R, Glory, and Bissell); three price levels; and two levels (either no or yes) for each of the last two factors. Ten consumers rank 22 profiles defined by these factors. The variable Preference contains the rank of the average rankings for each profile. Low rankings correspond to high preference. This variable reflects an overall measure of preference for each profile.
- **carpet_prefs.sav.** This data file is based on the same example as described for \textit{carpet.sav}, but it contains the actual rankings collected from each of the 10 consumers. The consumers were asked to rank the 22 product profiles from the most to the least preferred. The variables \textit{PREF1} through \textit{PREF22} contain the identifiers of the associated profiles, as defined in \textit{carpet_plan.sav}.

- **catalog.sav.** This data file contains hypothetical monthly sales figures for three products sold by a catalog company. Data for five possible predictor variables are also included.

- **catalog_seasfac.sav.** This data file is the same as \textit{catalog.sav} except for the addition of a set of seasonal factors calculated from the Seasonal Decomposition procedure along with the accompanying date variables.

- **cellular.sav.** This is a hypothetical data file that concerns a cellular phone company’s efforts to reduce churn. Churn propensity scores are applied to accounts, ranging from 0 to 100. Accounts scoring 50 or above may be looking to change providers.

- **ceramics.sav.** This is a hypothetical data file that concerns a manufacturer’s efforts to determine whether a new premium alloy has a greater heat resistance than a standard alloy. Each case represents a separate test of one of the alloys; the heat at which the bearing failed is recorded.

- **cereal.sav.** This is a hypothetical data file that concerns a poll of 880 people about their breakfast preferences, also noting their age, gender, marital status, and whether or not they have an active lifestyle (based on whether they exercise at least twice a week). Each case represents a separate respondent.

- **clothing_defects.sav.** This is a hypothetical data file that concerns the quality control process at a clothing factory. From each lot produced at the factory, the inspectors take a sample of clothes and count the number of clothes that are unacceptable.

- **coffee.sav.** This data file pertains to perceived images of six iced-coffee brands (Kennedy, Riquier, and Sharp, 1996). For each of 23 iced-coffee image attributes, people selected all brands that were described by the attribute. The six brands are denoted AA, BB, CC, DD, EE, and FF to preserve confidentiality.

- **contacts.sav.** This is a hypothetical data file that concerns the contact lists for a group of corporate computer sales representatives. Each contact is categorized by the department of the company in which they work and their company ranks. Also recorded are the amount of the last sale made, the time since the last sale, and the size of the contact’s company.
- **creditpromo.sav.** This is a hypothetical data file that concerns a department store’s efforts to evaluate the effectiveness of a recent credit card promotion. To this end, 500 cardholders were randomly selected. Half received an ad promoting a reduced interest rate on purchases made over the next three months. Half received a standard seasonal ad.

- **customer_dbase.sav.** This is a hypothetical data file that concerns a company’s efforts to use the information in its data warehouse to make special offers to customers who are most likely to reply. A subset of the customer base was selected at random and given the special offers, and their responses were recorded.

- **customer_information.sav.** A hypothetical data file containing customer mailing information, such as name and address.

- **customers_model.sav.** This file contains hypothetical data on individuals targeted by a marketing campaign. These data include demographic information, a summary of purchasing history, and whether or not each individual responded to the campaign. Each case represents a separate individual.

- **customers_new.sav.** This file contains hypothetical data on individuals who are potential candidates for a marketing campaign. These data include demographic information and a summary of purchasing history for each individual. Each case represents a separate individual.

- **debate.sav.** This is a hypothetical data file that concerns paired responses to a survey from attendees of a political debate before and after the debate. Each case corresponds to a separate respondent.

- **debate_aggregate.sav.** This is a hypothetical data file that aggregates the responses in `debate.sav`. Each case corresponds to a cross-classification of preference before and after the debate.

- **demo.sav.** This is a hypothetical data file that concerns a purchased customer database, for the purpose of mailing monthly offers. Whether or not the customer responded to the offer is recorded, along with various demographic information.

- **demo_cs_1.sav.** This is a hypothetical data file that concerns the first step of a company’s efforts to compile a database of survey information. Each case corresponds to a different city, and the region, province, district, and city identification are recorded.

- **demo_cs_2.sav.** This is a hypothetical data file that concerns the second step of a company’s efforts to compile a database of survey information. Each case corresponds to a different household unit from cities selected in the first step, and
Appendix A

the region, province, district, city, subdivision, and unit identification are recorded. The sampling information from the first two stages of the design is also included.

- **demo_cs.sav.** This is a hypothetical data file that contains survey information collected using a complex sampling design. Each case corresponds to a different household unit, and various demographic and sampling information is recorded.

- **dietstudy.sav.** This hypothetical data file contains the results of a study of the “Stillman diet” (Rickman, Mitchell, Dingman, and Dalen, 1974). Each case corresponds to a separate subject and records his or her pre- and post-diet weights in pounds and triglyceride levels in mg/100 ml.

- **dischargedata.sav.** This is a data file concerning *Seasonal Patterns of Winnipeg Hospital Use,* (Menec, Roos, Nowicki, MacWilliam, Finlayson, and Black, 1999) from the Manitoba Centre for Health Policy.

- **dvdplayer.sav.** This is a hypothetical data file that concerns the development of a new DVD player. Using a prototype, the marketing team has collected focus group data. Each case corresponds to a separate surveyed user and records some demographic information about them and their responses to questions about the prototype.

- **flying.sav.** This data file contains the flying mileages between 10 American cities.

- **german_credit.sav.** This data file is taken from the “German credit” dataset in the Repository of Machine Learning Databases (Blake and Merz, 1998) at the University of California, Irvine.

- **grocery_1month.sav.** This hypothetical data file is the *grocery_coupons.sav* data file with the weekly purchases “rolled-up” so that each case corresponds to a separate customer. Some of the variables that changed weekly disappear as a result, and the amount spent recorded is now the sum of the amounts spent during the four weeks of the study.

- **grocery_coupons.sav.** This is a hypothetical data file that contains survey data collected by a grocery store chain interested in the purchasing habits of their customers. Each customer is followed for four weeks, and each case corresponds to a separate customer-week and records information about where and how the customer shops, including how much was spent on groceries during that week.

- **guttman.sav.** Bell (Bell, 1961) presented a table to illustrate possible social groups. Guttman (Guttman, 1968) used a portion of this table, in which five variables describing such things as social interaction, feelings of belonging to a group, physical proximity of members, and formality of the relationship were crossed with seven theoretical social groups, including crowds (for example, people at a
football game), audiences (for example, people at a theater or classroom lecture),
public (for example, newspaper or television audiences), mobs (like a crowd but
with much more intense interaction), primary groups (intimate), secondary groups
(voluntary), and the modern community (loose confederation resulting from close
physical proximity and a need for specialized services).

- **healthplans.sav.** This is a hypothetical data file that concerns an insurance group’s
efforts to evaluate four different health care plans for small employers. Twelve
employers are recruited to rank the plans by how much they would prefer to
offer them to their employees. Each case corresponds to a separate employer
and records the reactions to each plan.

- **health_funding.sav.** This is a hypothetical data file that contains data on health care
funding (amount per 100 population), disease rates (rate per 10,000 population),
and visits to health care providers (rate per 10,000 population). Each case
represents a different city.

- **hivassay.sav.** This is a hypothetical data file that concerns the efforts of a
pharmaceutical lab to develop a rapid assay for detecting HIV infection. The
results of the assay are eight deepening shades of red, with deeper shades indicating
greater likelihood of infection. A laboratory trial was conducted on 2,000 blood
samples, half of which were infected with HIV and half of which were clean.

- **hourlywagedata.sav.** This is a hypothetical data file that concerns the hourly wages
of nurses from office and hospital positions and with varying levels of experience.

- **insure.sav.** This is a hypothetical data file that concerns an insurance company that
is studying the risk factors that indicate whether a client will have to make a claim
on a 10-year term life insurance contract. Each case in the data file represents a
pair of contracts, one of which recorded a claim and the other didn’t, matched
on age and gender.

- **judges.sav.** This is a hypothetical data file that concerns the scores given by trained
judges (plus one enthusiast) to 300 gymnastics performances. Each row represents
a separate performance; the judges viewed the same performances.

- **kinship_dat.sav.** Rosenberg and Kim (Rosenberg and Kim, 1975) set out to
analyze 15 kinship terms (aunt, brother, cousin, daughter, father, granddaughter,
grandfather, grandmother, grandson, mother, nephew, niece, sister, son, uncle).
They asked four groups of college students (two female, two male) to sort these
terms on the basis of similarities. Two groups (one female, one male) were asked
to sort twice, with the second sorting based on a different criterion from the first
sort. Thus, a total of six “sources” were obtained. Each source corresponds to a
A 15 × 15 proximity matrix, whose cells are equal to the number of people in a source minus the number of times the objects were partitioned together in that source.

- **kinship_ini.sav.** This data file contains an initial configuration for a three-dimensional solution for *kinship_dat.sav*.

- **kinship_var.sav.** This data file contains independent variables *gender*, *generation*, and *degree* (of separation) that can be used to interpret the dimensions of a solution for *kinship_dat.sav*. Specifically, they can be used to restrict the space of the solution to a linear combination of these variables.

- **mailresponse.sav.** This is a hypothetical data file that concerns the efforts of a clothing manufacturer to determine whether using first class postage for direct mailings results in faster responses than bulk mail. Order-takers record how many weeks after the mailing each order is taken.

- **marketvalues.sav.** This data file concerns home sales in a new housing development in Algonquin, Ill., during the years from 1999–2000. These sales are a matter of public record.

- **mutualfund.sav.** This data file concerns stock market information for various tech stocks listed on the S&P 500. Each case corresponds to a separate company.

- **ozone.sav.** The data include 330 observations on six meteorological variables for predicting ozone concentration from the remaining variables. Previous researchers (Breiman and Friedman, 1985), (Hastie and Tibshirani, 1990), among others found nonlinearities among these variables, which hinder standard regression approaches.

- **pain_medication.sav.** This hypothetical data file contains the results of a clinical trial for anti-inflammatory medication for treating chronic arthritic pain. Of particular interest is the time it takes for the drug to take effect and how it compares to an existing medication.
- **patient_los.sav.** This hypothetical data file contains the treatment records of patients who were admitted to the hospital for suspected myocardial infarction (MI, or “heart attack”). Each case corresponds to a separate patient and records many variables related to their hospital stay.

- **patlos_sample.sav.** This hypothetical data file contains the treatment records of a sample of patients who received thrombolytics during treatment for myocardial infarction (MI, or “heart attack”). Each case corresponds to a separate patient and records many variables related to their hospital stay.

- **polishing.sav.** This is the “Nameware Polishing Times” data file from the Data and Story Library. It concerns the efforts of a metal tableware manufacturer (Nambe Mills, Santa Fe, N. M.) to plan its production schedule. Each case represents a different item in the product line. The diameter, polishing time, price, and product type are recorded for each item.

- **poll_cs.sav.** This is a hypothetical data file that concerns pollsters’ efforts to determine the level of public support for a bill before the legislature. The cases correspond to registered voters. Each case records the county, township, and neighborhood in which the voter lives.

- **poll_cs_sample.sav.** This hypothetical data file contains a sample of the voters listed in **poll_cs.sav.** The sample was taken according to the design specified in the **poll.csplan** plan file, and this data file records the inclusion probabilities and sample weights. Note, however, that because the sampling plan makes use of a probability-proportional-to-size (PPS) method, there is also a file containing the joint selection probabilities (**poll_jointprob.sav**). The additional variables corresponding to voter demographics and their opinion on the proposed bill were collected and added the data file after the sample as taken.

- **property_assess.sav.** This is a hypothetical data file that concerns a county assessor’s efforts to keep property value assessments up to date on limited resources. The cases correspond to properties sold in the county in the past year. Each case in the data file records the township in which the property lies, the assessor who last visited the property, the time since that assessment, the valuation made at that time, and the sale value of the property.

- **property_assess_cs.sav.** This is a hypothetical data file that concerns a state assessor’s efforts to keep property value assessments up to date on limited resources. The cases correspond to properties in the state. Each case in the data file records the county, township, and neighborhood in which the property lies, the time since the last assessment, and the valuation made at that time.
Appendix A

- **property_assess_cs_sample.sav.** This hypothetical data file contains a sample of the properties listed in `property_assess_cs.sav`. The sample was taken according to the design specified in the `property_assess.csplan` plan file, and this data file records the inclusion probabilities and sample weights. The additional variable `Current value` was collected and added to the data file after the sample was taken.

- **recidivism.sav.** This is a hypothetical data file that concerns a government law enforcement agency’s efforts to understand recidivism rates in their area of jurisdiction. Each case corresponds to a previous offender and records their demographic information, some details of their first crime, and then the time until their second arrest, if it occurred within two years of the first arrest.

- **recidivism_cs_sample.sav.** This is a hypothetical data file that concerns a government law enforcement agency’s efforts to understand recidivism rates in their area of jurisdiction. Each case corresponds to a previous offender, released from their first arrest during the month of June, 2003, and records their demographic information, some details of their first crime, and the data of their second arrest, if it occurred by the end of June, 2006. Offenders were selected from sampled departments according to the sampling plan specified in `recidivism_cs.csplan`; because it makes use of a probability-proportional-to-size (PPS) method, there is also a file containing the joint selection probabilities (`recidivism_cs_jointprob.sav`).

- **rfm_transactions.sav.** A hypothetical data file containing purchase transaction data, including date of purchase, item(s) purchased, and monetary amount of each transaction.

- **salesperformance.sav.** This is a hypothetical data file that concerns the evaluation of two new sales training courses. Sixty employees, divided into three groups, all receive standard training. In addition, group 2 gets technical training; group 3, a hands-on tutorial. Each employee was tested at the end of the training course and their score recorded. Each case in the data file represents a separate trainee and records the group to which they were assigned and the score they received on the exam.

- **satisf.sav.** This is a hypothetical data file that concerns a satisfaction survey conducted by a retail company at 4 store locations. 582 customers were surveyed in all, and each case represents the responses from a single customer.

- **screws.sav.** This data file contains information on the characteristics of screws, bolts, nuts, and tacks (Hartigan, 1975).
- **shampoo_ph.sav.** This is a hypothetical data file that concerns the quality control at a factory for hair products. At regular time intervals, six separate output batches are measured and their pH recorded. The target range is 4.5–5.5.

- **ships.sav.** A dataset presented and analyzed elsewhere (McCullagh et al., 1989) that concerns damage to cargo ships caused by waves. The incident counts can be modeled as occurring at a Poisson rate given the ship type, construction period, and service period. The aggregate months of service for each cell of the table formed by the cross-classification of factors provides values for the exposure to risk.

- **site.sav.** This is a hypothetical data file that concerns a company’s efforts to choose new sites for their expanding business. They have hired two consultants to separately evaluate the sites, who, in addition to an extended report, summarized each site as a “good,” “fair,” or “poor” prospect.

- **siteratings.sav.** This is a hypothetical data file that concerns the beta testing of an e-commerce firm’s new Web site. Each case represents a separate beta tester, who scored the usability of the site on a scale from 0–20.

- **smokers.sav.** This data file is abstracted from the 1998 National Household Survey of Drug Abuse and is a probability sample of American households. Thus, the first step in an analysis of this data file should be to weight the data to reflect population trends.

- **smoking.sav.** This is a hypothetical table introduced by Greenacre (Greenacre, 1984). The table of interest is formed by the crosstabulation of smoking behavior by job category. The variable *Staff Group* contains the job categories *Sr Managers, Jr Managers, Sr Employees, Jr Employees*, and *Secretaries*, plus the category *National Average*, which can be used as supplementary to an analysis. The variable *Smoking* contains the behaviors *None, Light, Medium*, and *Heavy*, plus the categories *No Alcohol* and *Alcohol*, which can be used as supplementary to an analysis.

- **storebrand.sav.** This is a hypothetical data file that concerns a grocery store manager’s efforts to increase sales of the store brand detergent relative to other brands. She puts together an in-store promotion and talks with customers at check-out. Each case represents a separate customer.

- **stores.sav.** This data file contains hypothetical monthly market share data for two competing grocery stores. Each case represents the market share data for a given month.

- **stroke_clean.sav.** This hypothetical data file contains the state of a medical database after it has been cleaned using procedures in the Data Preparation option.
Appendix A

- **stroke_invalid.sav.** This hypothetical data file contains the initial state of a medical database and contains several data entry errors.

- **stroke_survival.** This hypothetical data file concerns survival times for patients exiting a rehabilitation program post-ischemic stroke face a number of challenges. Post-stroke, the occurrence of myocardial infarction, ischemic stroke, or hemorrhagic stroke is noted and the time of the event recorded. The sample is left-truncated because it only includes patients who survived through the end of the rehabilitation program administered post-stroke.

- **stroke_valid.sav.** This hypothetical data file contains the state of a medical database after the values have been checked using the Validate Data procedure. It still contains potentially anomalous cases.

- **survey_sample.sav.** This hypothetical data file contains survey data, including demographic data and various attitude measures.

- **tastetest.sav.** This is a hypothetical data file that concerns the effect of mulch color on the taste of crops. Strawberries grown in red, blue, and black mulch were rated by taste-testers on an ordinal scale of 1 to 5 (far below to far above average). Each case represents a separate taste-tester.

- **telco.sav.** This is a hypothetical data file that concerns a telecommunications company’s efforts to reduce churn in their customer base. Each case corresponds to a separate customer and records various demographic and service usage information.

- **telco_extra.sav.** This data file is similar to the telco.sav data file, but the “tenure” and log-transformed customer spending variables have been removed and replaced by standardized log-transformed customer spending variables.

- **telco_missing.sav.** This data file is a subset of the telco.sav data file, but some of the demographic data values have been replaced with missing values.

- **testmarket.sav.** This hypothetical data file concerns a fast food chain’s plans to add a new item to its menu. There are three possible campaigns for promoting the new product, so the new item is introduced at locations in several randomly selected markets. A different promotion is used at each location, and the weekly sales of the new item are recorded for the first four weeks. Each case corresponds to a separate location-week.

- **testmarket_1month.sav.** This hypothetical data file is the testmarket.sav data file with the weekly sales “rolled-up” so that each case corresponds to a separate location. Some of the variables that changed weekly disappear as a result, and the sales recorded is now the sum of the sales during the four weeks of the study.
- **tree_car.sav.** This is a hypothetical data file containing demographic and vehicle purchase price data.
- **tree_credit.sav.** This is a hypothetical data file containing demographic and bank loan history data.
- **tree_missing_data.sav** This is a hypothetical data file containing demographic and bank loan history data with a large number of missing values.
- **tree_score_car.sav.** This is a hypothetical data file containing demographic and vehicle purchase price data.
- **tree_textdata.sav.** A simple data file with only two variables intended primarily to show the default state of variables prior to assignment of measurement level and value labels.
- **tv-survey.sav.** This is a hypothetical data file that concerns a survey conducted by a TV studio that is considering whether to extend the run of a successful program. 906 respondents were asked whether they would watch the program under various conditions. Each row represents a separate respondent; each column is a separate condition.
- **ulcer_recurrence.sav.** This file contains partial information from a study designed to compare the efficacy of two therapies for preventing the recurrence of ulcers. It provides a good example of interval-censored data and has been presented and analyzed elsewhere (Collett, 2003).
- **ulcer_recurrence_recoded.sav.** This file reorganizes the information in *ulcer_recurrence.sav* to allow you to model the event probability for each interval of the study rather than simply the end-of-study event probability. It has been presented and analyzed elsewhere (Collett et al., 2003).
- **verd1985.sav.** This data file concerns a survey (Verdegaal, 1985). The responses of 15 subjects to 8 variables were recorded. The variables of interest are divided into three sets. Set 1 includes *age* and *marital*, set 2 includes *pet* and *news*, and set 3 includes *music* and *live*. *Pet* is scaled as multiple nominal and *age* is scaled as ordinal; all of the other variables are scaled as single nominal.
- **virus.sav.** This is a hypothetical data file that concerns the efforts of an Internet service provider (ISP) to determine the effects of a virus on its networks. They have tracked the (approximate) percentage of infected e-mail traffic on its networks over time, from the moment of discovery until the threat was contained.
- **waittimes.sav.** This is a hypothetical data file that concerns customer waiting times for service at three different branches of a local bank. Each case corresponds to a separate customer and records the time spent waiting and the branch at which they were conducting their business.

- **webusability.sav.** This is a hypothetical data file that concerns usability testing of a new e-store. Each case corresponds to one of five usability testers and records whether or not the tester succeeded at each of six separate tasks.

- **wheeze_steubenville.sav.** This is a subset from a longitudinal study of the health effects of air pollution on children (Ware, Dockery, Spiro III, Speizer, and Ferris Jr., 1984). The data contain repeated binary measures of the wheezing status for children from Steubenville, Ohio, at ages 7, 8, 9 and 10 years, along with a fixed recording of whether or not the mother was a smoker during the first year of the study.

- **workprog.sav.** This is a hypothetical data file that concerns a government works program that tries to place disadvantaged people into better jobs. A sample of potential program participants were followed, some of whom were randomly selected for enrollment in the program, while others were not. Each case represents a separate program participant.

adjusted chi-square
- in Complex Samples, 60, 74, 87
- in Complex Samples Cox Regression, 109
adjusted F statistic
- in Complex Samples, 60, 74, 87
- in Complex Samples Cox Regression, 109
adjusted residuals
- in Complex Samples Crosstabs, 46
aggregated residuals
- in Complex Samples Cox Regression, 111
analysis plan, 21

baseline strata
- in Complex Samples Cox Regression, 103
Bonferroni
- in Complex Samples, 60, 74, 87
- in Complex Samples Cox Regression, 109
Breslow estimation method
- in Complex Samples Cox Regression, 117
Brewer’s sampling method
- in Sampling Wizard, 8

chi-square
- in Complex Samples, 60, 74, 87
- in Complex Samples Cox Regression, 109
classification tables
- in Complex Samples Logistic Regression, 72, 232
- in Complex Samples Ordinal Regression, 85, 247
clusters
- in Analysis Preparation Wizard, 23
- in Sampling Wizard, 6
coefficient of variation (COV)
- in Complex Samples Crosstabs, 46
- in Complex Samples Descriptives, 41
- in Complex Samples Frequencies, 36
- in Complex Samples Ratios, 52
column percentages
- in Complex Samples Crosstabs, 46
Complex Samples
- hypothesis tests, 60, 74, 87
missing values, 37, 48
options, 38, 43, 49, 54
Complex Samples Analysis Preparation Wizard, 171
public data, 171
related procedures, 185
sampling weights not available, 174
summary, 174, 185
Complex Samples Cox Regression, 257
date and time variables, 95
define event, 99
hypothesis tests, 109
Kaplan-Meier analysis, 95
log-minus-log plot, 307
model, 104
model export, 114
options, 117
parameter estimates, 274, 305
pattern values, 306
piecewise-constant, time-dependent predictors, 274
plots, 108
predictors, 100
sample design information, 269, 304
save variables, 111
statistics, 106
subgroups, 103
test of proportional hazards, 270
tests of model effects, 269, 274, 304
time-dependent predictor, 101, 257
Complex Samples Crosstabs, 44, 198
crosstabulation table, 202
related procedures, 204
relative risk, 198, 202, 204
statistics, 46
Complex Samples Descriptives, 39, 192
missing values, 42
public data, 192
related procedures, 197
statistics, 41, 195
statistics by subpopulation, 196
Index

Complex Samples Frequencies, 34, 186
 frequency table, 189
 frequency table by subpopulation, 190
 related procedures, 191
 statistics, 36
Complex Samples General Linear Model, 55, 213
 command additional features, 65
 estimated means, 62
 marginal means, 221
 model, 57
 model summary, 218
 options, 65
 parameter estimates, 220
 related procedures, 224
 save variables, 63
 statistics, 59
 tests of model effects, 219
Complex Samples Logistic Regression, 67, 226
 classification tables, 232
 command additional features, 79
 model, 70
 odds ratios, 75, 235
 options, 78
 parameter estimates, 234
 pseudo R^2 statistics, 231
 reference category, 69
 related procedures, 237
 save variables, 76
 statistics, 72
 tests of model effects, 233
Complex Samples Ordinal Regression, 80, 238
 classification tables, 247
 generalized cumulative model, 250
 model, 83
 odds ratios, 88, 248
 options, 92
 parameter estimates, 245
 pseudo R^2 statistics, 244, 255
 related procedures, 256
 response probabilities, 82
 save variables, 90
 statistics, 85
 tests of model effects, 245
 warnings, 254
Complex Samples Ratios, 50, 206
 missing values, 53
 ratios, 209
 related procedures, 211
 statistics, 52
Complex Samples Sampling Wizard, 121
 PPS sampling, 153
 related procedures, 170
 sampling frame, full, 121
 sampling frame, partial, 133
 summary, 131–132, 165
complex sampling
 analysis plan, 21
 sample plan, 4
confidence intervals
 in Complex Samples Crosstabs, 46
 in Complex Samples Descriptives, 41, 195–196
 in Complex Samples Frequencies, 36, 189–190
 in Complex Samples General Linear Model, 59, 65
 in Complex Samples Logistic Regression, 72
 in Complex Samples Ordinal Regression, 85
 in Complex Samples Ratios, 52
confidence level
 in Complex Samples Logistic Regression, 78
 in Complex Samples Ordinal Regression, 92
contrasts
 in Complex Samples General Linear Model, 62
correlations of parameter estimates
 in Complex Samples General Linear Model, 59
 in Complex Samples Logistic Regression, 72
 in Complex Samples Ordinal Regression, 85
covariances of parameter estimates
 in Complex Samples General Linear Model, 59
 in Complex Samples Logistic Regression, 72
 in Complex Samples Ordinal Regression, 85
Cox-Snell residuals
 in Complex Samples Cox Regression, 111
crosstabulation table
 in Complex Samples Crosstabs, 202
cumulative probabilities
 in Complex Samples Ordinal Regression, 90
cumulative values
 in Complex Samples Frequencies, 36
degrees of freedom
 in Complex Samples, 60, 74, 87
 in Complex Samples Cox Regression, 109
Index

design effect
 in Complex Samples Cox Regression, 106
 in Complex Samples Crosstabs, 46
 in Complex Samples Frequencies, 36
 in Complex Samples General Linear Model, 59
 in Complex Samples Logistic Regression, 72
 in Complex Samples Ordinal Regression, 85
 in Complex Samples Ratios, 52
deviance residuals
 in Complex Samples Cox Regression, 111
deviation contrasts
 in Complex Samples General Linear Model, 62
difference contrasts
 in Complex Samples General Linear Model, 62

Efron estimation method
 in Complex Samples Cox Regression, 117
estimated marginal means
 in Complex Samples General Linear Model, 62
expected values
 in Complex Samples Crosstabs, 46

F statistic
 in Complex Samples, 60, 74, 87
 in Complex Samples Cox Regression, 109
Fisher scoring
 in Complex Samples Ordinal Regression, 92

generalized cumulative model
 in Complex Samples Ordinal Regression, 250

Helmert contrasts
 in Complex Samples General Linear Model, 62

inclusion probabilities
 in Sampling Wizard, 12
input sample weights
 in Sampling Wizard, 6
iteration history
 in Complex Samples Logistic Regression, 78
 in Complex Samples Ordinal Regression, 92
iterations
 in Complex Samples Logistic Regression, 78

in Complex Samples Ordinal Regression, 92

least significant difference
 in Complex Samples, 60, 74, 87
 in Complex Samples Cox Regression, 109
likelihood convergence
 in Complex Samples Logistic Regression, 78
 in Complex Samples Ordinal Regression, 92
log-minus-log plot
 in Complex Samples Cox Regression, 307

marginal means
 in GLM Univariate, 221
martingale residuals
 in Complex Samples Cox Regression, 111
mean
 in Complex Samples Descriptives, 41, 195–196
measure of size
 in Sampling Wizard, 8
missing values
 in Complex Samples, 37, 48
 in Complex Samples Descriptives, 42
 in Complex Samples General Linear Model, 65
 in Complex Samples Logistic Regression, 78
 in Complex Samples Ordinal Regression, 92
 in Complex Samples Ratios, 53

Murthy’s sampling method
 in Sampling Wizard, 8

Newton-Raphson method
 in Complex Samples Ordinal Regression, 92

odds ratios
 in Complex Samples Crosstabs, 46, 198
 in Complex Samples Logistic Regression, 75, 235
 in Complex Samples Ordinal Regression, 88, 248

parameter convergence
 in Complex Samples Logistic Regression, 78
 in Complex Samples Ordinal Regression, 92
parameter estimates
 in Complex Samples Cox Regression, 106
 in Complex Samples General Linear Model, 59, 220
Index

in Complex Samples Logistic Regression, 72, 234
in Complex Samples Ordinal Regression, 85, 245
piecewise-constant, time-dependent predictors
in Complex Samples Cox Regression, 274
plan file, 3
polynomial contrasts
in Complex Samples General Linear Model, 62
population size
in Complex Samples Crosstabs, 46
in Complex Samples Descriptives, 41
in Complex Samples Frequencies, 36, 189–190
in Complex Samples Ratios, 52
in Sampling Wizard, 12
PPS sampling
in Sampling Wizard, 8
predicted categories
in Complex Samples Logistic Regression, 76
in Complex Samples Ordinal Regression, 90
predicted probability
in Complex Samples Logistic Regression, 76
in Complex Samples Ordinal Regression, 90
predicted values
in Complex Samples General Linear Model, 63
predictor patterns
in Complex Samples Cox Regression, 306
proportional hazards test
in Complex Samples Cox Regression, 270
pseudo R^2 statistics
in Complex Samples Logistic Regression, 72, 231
in Complex Samples Ordinal Regression, 85, 244, 255
public data
in Analysis Preparation Wizard, 171
in Complex Samples Descriptives, 192

R^2 statistic
in Complex Samples General Linear Model, 59, 218
ratios
in Complex Samples Ratios, 209
reference category
in Complex Samples General Linear Model, 62
in Complex Samples Logistic Regression, 69
relative risk
in Complex Samples Crosstabs, 46, 198, 202, 204
repeated contrasts
in Complex Samples General Linear Model, 62
residuals
in Complex Samples Crosstabs, 46
in Complex Samples General Linear Model, 63
response probabilities
in Complex Samples Ordinal Regression, 82
risk difference
in Complex Samples Crosstabs, 46
row percentages
in Complex Samples Crosstabs, 46
Sampford’s sampling method
in Sampling Wizard, 8
sample design information
in Complex Samples Cox Regression, 106, 269, 304
sample files
location, 309
sample plan, 4
sample proportion
in Sampling Wizard, 12
sample size
in Sampling Wizard, 10, 12
sample weights
in Analysis Preparation Wizard, 23
in Sampling Wizard, 12
sampling
complex design, 4
sampling estimation
in Analysis Preparation Wizard, 25
sampling frame, full
in Sampling Wizard, 121
sampling frame, partial
in Sampling Wizard, 133
sampling method
in Sampling Wizard, 8
Schoenfeld’s partial residuals
in Complex Samples Cox Regression, 111
score residuals
in Complex Samples Cox Regression, 111
separation
in Complex Samples Logistic Regression, 78
in Complex Samples Ordinal Regression, 92
sequential Bonferroni correction
in Complex Samples, 60, 74, 87
Index

in Complex Samples Cox Regression, 109
sequential sampling
 in Sampling Wizard, 8
sequential Sidak correction
 in Complex Samples, 60, 74, 87
 in Complex Samples Cox Regression, 109
Sidak correction
 in Complex Samples, 60, 74, 87
 in Complex Samples Cox Regression, 109
simple contrasts
 in Complex Samples General Linear Model, 62
simple random sampling
 in Sampling Wizard, 8
square root of design effect
 in Complex Samples Cox Regression, 106
 in Complex Samples Crosstabs, 46
 in Complex Samples Descriptives, 41
 in Complex Samples Frequencies, 36
 in Complex Samples General Linear Model, 59
 in Complex Samples Logistic Regression, 72
 in Complex Samples Ordinal Regression, 85
 in Complex Samples Ratios, 52
standard error
 in Complex Samples Crosstabs, 46
 in Complex Samples Descriptives, 41, 195–196
 in Complex Samples Frequencies, 36
 in Complex Samples General Linear Model, 59
 in Complex Samples Logistic Regression, 72
 in Complex Samples Ordinal Regression, 85
 in Complex Samples Ratios, 52
step-halving
 in Complex Samples Logistic Regression, 78
 in Complex Samples Ordinal Regression, 92
stratification
 in Analysis Preparation Wizard, 23
 in Sampling Wizard, 6
subpopulation
 in Complex Samples Cox Regression, 103
sum
 in Complex Samples Descriptives, 41
summary
 in Analysis Preparation Wizard, 174, 185
 in Sampling Wizard, 131–132, 165
systematic sampling
 in Sampling Wizard, 8
t test
 in Complex Samples General Linear Model, 59
 in Complex Samples Logistic Regression, 72
 in Complex Samples Ordinal Regression, 85
table percentages
 in Complex Samples Crosstabs, 46
 in Complex Samples Frequencies, 36, 189–190
test of parallel lines
 in Complex Samples Ordinal Regression, 85, 250
test of proportional hazards
 in Complex Samples Cox Regression, 106
tests of model effects
 in Complex Samples Cox Regression, 304
 in Complex Samples General Linear Model, 219
 in Complex Samples Logistic Regression, 233
 in Complex Samples Ordinal Regression, 245
time-dependent predictor
 in Complex Samples Cox Regression, 101, 257
unweighted count
 in Complex Samples Crosstabs, 46
 in Complex Samples Descriptives, 41
 in Complex Samples Frequencies, 36
 in Complex Samples Ratios, 52
warnings
 in Complex Samples Ordinal Regression, 254