
Parsing Mildly Non-projective Dependency
Structures∗
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Abstract

We present novel parsing algorithms for several sets of mildly non-projective de-
pendency structures.

First, we define a parser for well-nested structures of gap degree at most 1, with
the same complexity as the best existing parsers for constituency formalisms of
equivalent generative power. We then extend this algorithm to handle all well-nested
structures with gap degree bounded by any constant k.

Finally, we define a parsing algorithm for a new class of structures with gap degree
up to k that includes some ill-nested structures. This set of structures, which we call
mildly ill-nested, includes all the gap degree k structures in a number of dependency
treebanks.

1 Introduction

Dependency parsers analyse a sentence in terms of a set of directed links (dependencies)
expressing the head-modifier and head-complement relationships which form the basis
∗This report is an extended version of the homonymous paper to be published in the proceedings of

EACL-2009, including the proofs that could not be included in the paper due to space limitations.
†Partially supported by Ministerio de Educación y Ciencia and FEDER (HUM2007- 66607-C04) and

Xunta de Galicia (PGIDIT07SIN005206PR, INCITE08E1R104022ES, INCITE08ENA305025ES, IN-
CITE08PXIB302179PR and Rede Galega de Procesamento da Linguaxe e Recuperación de Infor-
mación)
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of predicate argument structure. We take dependency structures to be directed trees,
where each node corresponds to a word and the root of the tree marks the syntactic head
of the sentence. For reasons of efficiency, many practical implementations of dependency
parsing are restricted to projective structures, in which the subtree rooted at each word
covers a contiguous substring of the sentence. However, while free word order languages
such as Czech do not satisfy this constraint, parsing without the projectivity constraint
is computationally complex. Although it is possible to parse non-projective structures
in quadratic time under a model in which each dependency decision is independent of
all the others (McDonald et al., 2005), the problem is intractable in the absence of this
assumption (McDonald and Satta, 2007).

Nivre and Nillson (2005) observe that most non-projective dependency structures ap-
pearing in practice are “close” to being projective, since they contain only a small propor-
tion of non-projective arcs. This has led to the study of classes of dependency structures
that lie between projective and unrestricted non-projective structures (Kuhlmann and
Nivre, 2006; Havelka, 2007). Kuhlmann (2007) investigates several such classes, based
on well-nestedness and gap degree constraints (Bodirsky et al., 2005), relating them to
lexicalised constituency grammar formalisms. Specifically, he shows that: linear context-
free rewriting systems (LCFRS) with fan-out k (Vijay-Shanker et al., 1987; Satta, 1992)
induce the set of dependency structures with gap degree at most k− 1; coupled context-
free grammars in which the maximal rank of a nonterminal is k (Hotz and Pitsch, 1996)
induce the set of well-nested dependency structures with gap degree at most k − 1; and
LTAGs (Joshi and Schabes, 1997) induce the set of well-nested dependency structures
with gap degree at most 1.

These results establish that there must be polynomial-time dependency parsing al-
gorithms for well-nested structures with bounded gap degree, since such parsers exist
for their corresponding lexicalised constituency-based formalisms. However, since most
of the non-projective structures in treebanks are well-nested and have a small gap de-
gree (Kuhlmann and Nivre, 2006), developing efficient dependency parsing strategies
for these sets of structures has considerable practical interest, since we would be able
to parse directly with dependencies in a data-driven manner, rather than indirectly
by constructing intermediate constituency grammars and extracting dependencies from
constituency parses.

We address this problem with the following contributions:

• We define a parsing algorithm for well-nested dependency structures of gap degree
1, and prove its correctness. The parser runs in time O(n7), the same complexity
as the best existing algorithms for LTAG (Eisner and Satta, 2000), and can be
optimised to O(n6) in the non-lexicalised case.

• We generalise the previous algorithm to any well-nested dependency structure with
gap degree at most k in time O(n5+2k).

• We generalise the previous parsers to be able to analyse not only well-nested struc-
tures, but also ill-nested structures with gap degree at most k satisfying certain
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constraints1, in time O(n4+3k).

• We characterise the set of structures covered by this parser, which we call mildly
ill-nested structures, and show that it includes all the trees present in a number of
dependency treebanks.

2 Preliminaries

A dependency graph for a string w1 . . . wn is a graph G = (V,E), where V = {w1, . . . , wn}
and E ⊆ V × V . We write the edge (wi, wj) as wi → wj , meaning that the word wi is
a syntactic dependent (or a child) of wj or, conversely, that wj is the governor (parent)
of wi. We write wi →? wj to denote that there exists a (possibly empty) path from
wi to wj . The projection of a node wi, denoted bwic, is the set of reflexive-transitive
dependents of wi, that is: bwic = {wj ∈ V | wj →? wi}. In contexts where we refer
to different graphs that may share nodes, we will use the notation bwicG to denote the
projection of a node wi in the graph G. An interval (with endpoints i and j) is a set of
the form [i, j] = {wk | i ≤ k ≤ j}. We will denote the cardinality of a set S as #(S).

A dependency graph is said to be a tree if it is:

1. acyclic: wj ∈ bwic implies wi → wj 6∈ E; and

2. each node has exactly one parent, except for one node which we call the root or
head.

A graph verifying these conditions and having a vertex set V ⊆ {w1, . . . , wn} is a partial
dependency tree. Given a dependency tree T = (V,E) and a node u ∈ V , the subtree
induced by the node u is the graph Tu = (buc, Eu) where Eu = {wi → wj ∈ E | wj ∈
buc}.

2.1 Properties of dependency trees

We now define the concepts of gap degree and well-nestedness (Kuhlmann and Nivre,
2006).

Let T be a (possibly partial) dependency tree for w1 . . . wn: We say that T is pro-
jective if bwic is an interval for every word wi. Thus every node in the dependency
structure must dominate a contiguous substring in the sentence.

The gap degree of a particular node wk in T is the minimum g ∈ N such that bwkc
can be written as the union of g + 1 intervals; that is, the number of discontinuities in
bwkc. The gap degree of the dependency tree T is the maximum among the gap degrees
of its nodes. Note that T has gap degree 0 if and only if T is projective.

The subtrees induced by nodes wp and wq are interleaved if bwpc ∩ bwqc = ∅ and
there are nodes wi, wj ∈ bwpc and wk, wl ∈ bwqc such that i < k < j < l. A dependency
tree T is well-nested if it does not contain two interleaved subtrees. A tree that is not

1Parsing unrestricted ill-nested structures, even when the gap degree is bounded, is NP-complete: these
structures are equivalent to LCFRS for which the recognition problem is NP-complete (Satta, 1992)
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well-nested is said to be ill-nested. Note that projective trees are always well-nested,
but well-nested trees are not always projective.

2.2 Dependency parsing schemata

The framework of parsing schemata (Sikkel, 1997) provides a uniform way to describe,
analyse and compare parsing algorithms. Parsing schemata were initially defined for
constituency-based grammatical formalisms, but Gómez-Rodŕıguez et al. (2008) define
a variant of the framework for dependency-based parsers. We use these dependency
parsing schemata to define parsers and prove their correctness. We will now provide
brief outlines of the main concepts behind dependency parsing schemata.

The parsing schema approach considers parsing as deduction, generating intermediate
results called items. An initial set of items is obtained from the input sentence, and the
parsing process involves deduction steps which produce new items from existing ones.
Each item contains information about the sentence’s structure, and a successful parsing
process produces at least one final item providing a full dependency analysis for the
sentence or guaranteeing its existence.

In a dependency parsing schema, items are defined as sets of partial dependency trees2.
To define a parser by means of a schema, we must define an item set and provide a set
of deduction steps that operate on it. Given an item set I, the set of final items for
strings of length n is the set of items in I that contain a full dependency tree for some
arbitrary string of length n. A final item containing a dependency tree for a particular
string w1 . . . wn is said to be a correct final item for that string. These concepts can
be used to prove the correctness of a parser: for each input string, a parsing schema’s
deduction steps allow us to infer a set of items, called valid items for that string. A
schema is said to be sound if all valid final items it produces for any arbitrary string
are correct for that string. A schema is said to be complete if all correct final items are
valid. A correct parsing schema is one which is both sound and complete.

In constituency-based parsing schemata, deduction steps usually have grammar rules
as side conditions. In the case of dependency parsers it is also possible to use grammars
(Eisner and Satta, 1999), but many algorithms use a data-driven approach instead,
making individual decisions about which dependencies to create by using probabilistic
models (Eisner, 1996) or classifiers (Yamada and Matsumoto, 2003). To represent these
algorithms as deduction systems, we use the notion of D-rules (Covington, 1990). D-
rules take the form a→ b, which says that word b can have a as a dependent. Deduction
steps in non-grammar-based parsers can be tied to the D-rules associated with the links
they create. In this way, we obtain a representation of the underlying logic of the parser
while abstracting away from control structures (the particular model used to create the
decisions associated with D-rules). Furthermore, the choice points in the parsing process
and the information we can use to make decisions are made explicit in the steps linked
to D-rules.

2The formalism allows items to contain forests, and the dependency structures inside items are defined
in a notation with terminal and preterminal nodes, but these are not needed here.
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3 The WG1 parser

3.1 Parsing schema for WG1

We define WG1, a parser for well-nested dependency structures of gap degree ≤ 1, as
follows:

The item set is IWG1 = I1 ∪ I2, with

I1 = {[i, j, h, �, �] | i, j, h ∈ N, 1 ≤ h ≤ n, 1 ≤ i ≤ j ≤ n, h 6= j, h 6= i− 1},

where each item of the form [i, j, h, �, �] represents the set of all well-nested partial
dependency trees3 with gap degree at most 1, rooted at wh, and such that bwhc =
{wh} ∪ [i, j], and

I2 = {[i, j, h, l, r] | i, j, h, l, r ∈ N, 1 ≤ h ≤ n, 1 ≤ i < l ≤ r < j ≤ n,
h 6= j, h 6= i− 1, h 6= l − 1, h 6= r}

where each item of the form [i, j, h, l, r] represents the set of all well-nested partial depen-
dency trees rooted at wh such that bwhc = {wh}∪([i, j]\ [l, r]), and all the nodes (except
possibly h) have gap degree at most 1. We call items of this form gapped items, and the in-
terval [l, r] the gap of the item. Note that the constraints h 6= j, h 6= i+1, h 6= l−1, h 6= r
are added to items to avoid redundancy in the item set. Since the result of the expres-
sion {wh} ∪ ([i, j] \ [l, r]) for a given head can be the same for different sets of values
of i, j, l, r, we restrict these values so that we cannot get two different items represent-
ing the same dependency structures. Items ι violating these constraints always have
an alternative representation that does not violate them, that we can express with a
normalising function nm(ι) as follows:
nm([i, j, j, l, r]) = [i, j − 1, j, l, r] (if r ≤ j − 1 or r = �),

or [i, l − 1, j, �, �] (if r = j − 1).
nm([i, j, l − 1, l, r]) = [i, j, l − 1, l − 1, r](if l > i+ 1),

or [r + 1, j, l − 1, �, �] (if l = i+ 1).
nm([i, j, i− 1, l, r]) = [i− 1, j, i− 1, l, r].
nm([i, j, r, l, r]) = [i, j, r, l, r − 1] (if l < r),

or [i, j, r, �, �] (if l = r).
nm([i, j, h, l, r]) = [i, j, h, l, r] for all other items.

When defining the deduction steps for this and other parsers, we assume that they
always produce normalised items. For clarity, we do not explicitly write this in the
deduction steps, writing ι instead of nm(ι) as antecedents and consequents of steps.

The set of initial items is defined as the set

H = {[h, h, h, �, �] | h ∈ N, 1 ≤ h ≤ n},

where each item [h, h, h, �, �] represents the set containing the trivial partial dependency
tree consisting of a single node wh and no links. This same set of hypotheses can be

3In this and subsequent schemata, we use D-rules to express parsing decisions, so partial dependency
trees are assumed to be taken from the set of trees licensed by a set of D-rules.
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used for all the parsers, so we do not make it explicit for subsequent schemata. Note
that initial items are separate from the item set IWG1 and not subject to its constraints,
so they do not require normalisation.

The set of final items for strings of length n in WG1 is defined as the set

F = {[1, n, h, �, �] | h ∈ N, 1 ≤ h ≤ n},

which is the set of the items in IWG1 containing dependency trees for the complete input
string (from position 1 to n), with their head at any word wh.

Finally, the deduction steps of the WG1 parser are the following:

Link Ungapped :
[h1, h1, h1, �, �]
[i2, j2, h2, �, �]
[i2, j2, h1, �, �]

wh2 → wh1

such that wh2 ∈ [i2, j2] ∧ wh1 /∈ [i2, j2],

Link Gapped :
[h1, h1, h1, �, �]
[i2, j2, h2, l2, r2]
[i2, j2, h1, l2, r2]

wh2 → wh1

such that wh2 ∈ [i2, j2] \ [l2, r2] ∧ wh1 /∈
[i2, j2] \ [l2, r2],

Combine Ungapped :
[i, j, h, �, �] [j + 1, k, h, �, �]

[i, k, h, �, �]

Combine Opening Gap:
[i, j, h, �, �] [k, l, h, �, �]

[i, l, h, j + 1, k − 1]
such that j < k − 1,

Combine Keeping Gap Left :
[i, j, h, l, r] [j + 1, k, h, �, �]

[i, k, h, l, r]

Combine Keeping Gap Right :
[i, j, h, �, �] [j + 1, k, h, l, r]

[i, k, h, l, r]

Combine Closing Gap:
[i, j, h, l, r] [l, r, h, �, �]

[i, j, h, �, �]

Combine Shrinking Gap Centre:
[i, j, h, l, r] [l, r, h, l2, r2]

[i, j, h, l2, r2]

Combine Shrinking Gap Left :
[i, j, h, l, r] [l, k, h, �, �]

[i, j, h, k + 1, r]

Combine Shrinking Gap Right :
[i, j, h, l, r] [k, r, h, �, �]

[i, j, h, l, k − 1]

The WG1 parser proceeds bottom-up, by building dependency subtrees and joining
them to form larger subtrees, until it finds a complete dependency tree for the input
sentence. The logic of the parser can be understood by considering how it infers the
item corresponding to the subtree induced by a particular node, given the items for the
subtrees induced by the direct dependents of that node. Suppose that, in a complete
dependency analysis for a sentence w1 . . . wn, the word wh has wd1 . . . wdp as direct
dependents (i.e. we have dependency links wd1 → wh, . . . , wdp → wh). Then, the item
corresponding to the subtree induced by wh is obtained from the ones corresponding to
the subtrees induced by wd1 . . . wdp by: (1) applying the Link Ungapped or Link Gapped
step to each of the items corresponding to the subtrees induced by the direct dependents,
and to the hypothesis [h, h, h, �, �]. This allows us to infer p items representing the result
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of linking each of the dependent subtrees to the new head wh; (2) applying the various
Combine steps to join all of the items obtained in the previous step into a single item.
The Combine steps perform a union operation between subtrees. Therefore, the result
is a dependency tree containing all the dependent subtrees, and with all of them linked
to h: this is the subtree induced by wh. This process is applied repeatedly to build
larger subtrees, until, if the parsing process is successful, a final item is found containing
a dependency tree for the complete sentence.

3.2 Proof of correctness for WG1

The parsing schemata formalism can be used to prove the correctness of a parser. To
prove that a schema is correct, we need to prove its soundness (all valid final items are
correct) and completeness (all correct final items are valid). This is usually done by
defining a set of correct items for the schema, in such a way that final items in this set
are correct final items by the general definition given in Section 2.2; and then proving
the stronger claims that all valid items are correct and all correct items are valid. All
the correctness proofs in this report follow this general method.

To define the set of correct items for WG1, we will first provide a definition of the trees
that these items must contain: let T be a well-nested partial dependency tree headed at
a node wh. We will call such a tree a valid tree for the algorithm WG1 if it satisfies the
following conditions:

• (1) bwhc is either of the form {wh} ∪ [i, j] or {wh} ∪ ([i, j] \ [l, r]).

• (2) All the nodes in T have gap degree at most 1 except for wh, which can have
gap degree up to 2.

Given an input string w1 . . . wn and a set of D-rules G, we say that an item of the
form [i, j, h, �, �] ∈ IWG1 is correct if it contains a valid tree T rooted at wh, such that
bwhc = {wh} ∪ [i, j], and all the edges in T are licensed by G.

We say that an item of the form [i, j, h, l, r] ∈ IWG1 is correct if it contains a valid
tree T headed at wh, such that bwhc = {wh} ∪ ([i, j] \ [l, r]), and all the edges in T are
licensed by G.

Throughout the proof we will suppose that all items are normalised, that is, [i, j, h, l, r]
should always be read as nm([i, j, h, l, r]), although we will omit the nm function most
of the time for clarity.

Since a final item in WG1 has the form [1, n, h, �, �], a correct final item for this
algorithm will contain at least one valid tree rooted at a head wh and with bwhc = [1, n].
This tree must be well-nested because it is valid, and must have gap degree ≤ 1 because
the definition of a valid tree implies that every node except for wh has gap degree ≤ 1,
and the fact that bwhc = [1, n] implies that wh has gap degree 0. Therefore, a correct
final item for an input string contains at least one well-nested parse of gap degree ≤ 1
for that string.

Proving the correctness of the WG1 parser amounts to proving its soundness and
completeness.
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3.2.1 Soundness

Proving the soundness of the WG1 parser is showing that all valid final items (that is,
items that can be obtained from the hypotheses by applying some sequence of deduction
steps) are correct.

We will do this by proving the stronger claim that all valid items are correct. Since
all valid items are either hypotheses or obtained by applying a deduction step to other
valid items, it suffices to show that (i) hypotheses are correct, and (ii) if the antecedents
of a deduction step in WG1 are correct, then the consequent is also correct.

(i) is trivial, since any hypothesis [h, h, h, �, �] contains the valid dependency tree
consisting of a single node (wh) and no links.

In order to prove (ii), given a set of D-rules G, we must prove that if the antecedents
of a deduction step are items containing a valid tree for WG1 licensed by the D-rules
in G, then the consequent must also contain a valid tree for WG1 licensed by G. In
order for a tree to be valid, it must be well-nested, with bwhc of the form {wh} ∪ [i, j]
or {wh} ∪ ([i, j] \ [l, r]), and with all the nodes having gap degree at most 1 except for
the head, which may have gap degree up to 2.

By definition of items in WG1, all trees contained in items must verify the conditions
of a valid tree. Therefore, proving soundness in this case amounts to proving that if the
antecedents of a step are nonempty, then the consequent is nonempty.

This can be seen step by step: in the case of a Link Gapped step creating a dependency
wh2 → wh1, a tree Tc for the consequent item can be obtained from a tree Ta taken from
the second antecedent ([i2,j2,h2,l2,r2]) by linking its head (which is wh2 by construction
of the antecedent) to wh1. Condition (1) of a valid tree is satisfied by construction, since
the projection of the head of Tc is the result of adding wh1 to the projection of wh2 in Ta,
and this projection is of the form [i2, j2] \ [l2, r2] by construction of the antecedent and
by the constraint imposed by the step on wh2. Besides, since by this same constraint
we know that Ta must have gap degree 1, the tree Tc that we obtain for the consequent
satisfies the condition that all of its nodes have gap degree 1 (since their projections
are the same as in the antecedent tree) except for its head, that may have gap degree
2 (since its projection is that of the head node of Ta, plus a new node wh1 that can
increase the gap degree at most by one). The new link appearing in the consequent item
must be licensed by our set of D-rules G, by the side condition of the step. Finally, the
well-nestedness constraint is also preserved, since the subtrees induced by nodes in Tc

are the same as those in Ta except for the one induced by wh1, which cannot interleave
with any other as it contains them all. Therefore, if the antecedents of a Link Gapped
step are nonempty, we conclude that the consequent is also nonempty, since it contains
the valid tree Tc. The same reasoning can be applied to the Link Ungapped step.

In the case of Combiner steps, a tree Tc for the consequent item can be obtained from
the union of two trees Ta and Tb, each taken from one of the antecedent items, and
having a common head wh. In this case, no new links are created, so the consequent
tree is obviously permitted by the D-rules G if the antecedent trees are. Condition (1)
of a valid tree is satisfied by construction, since the required projection of the head for
a valid tree in the consequent of a Combiner is the union of those for the antecedents,
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and by checking the steps one by one we can see that their constraints guarantee that
this union satisfies the condition. The gap degree of the head in Tc is guaranteed to
be at most 2 by this condition (1), and the gap degree of the rest of the nodes in Tc is
guaranteed to be ≤ 1 because their induced subtrees are the same as in the antecedent
tree Ta or Tb in which they appeared (note that, by construction of the antecedents of
Combiner steps, the only node that appears both in Ta and Tb is wh, so the rest of
the nodes in Tc can only come from one of the antecedent trees). Therefore, (2) also
holds. Regarding well-nestedness, we note that the subtree induced by the head of the
consequent tree cannot interleave with any other, and the rest of the subtrees are the
same as in the antecedent trees. Thus, since the subtrees in each antecedent tree did
not interleave among themselves (Ta and Tb are well-nested), the only way in which the
consequent tree could be ill-nested would be having a subtree of one antecedent tree
interleaving with a subtree of the other antecedent tree. This can be checked step by
step, and in every single Combiner step we can see that two subtrees coming from each
of the antecedent trees cannot interleave. As an example, in a Combine Closing Gap
step:

[i, j, h, l, r] [l, r, h, �, �]
[i, j, h, �, �]

In order for a subtree in the second antecedent to be able to interleave with a subtree
in the first antecedent, it would need to have nodes in the interval [l, r] and nodes in the
set [1, i− 1] ∪ [j + 1, n], but this is impossible by construction, since the projection of a
tree in the second antecedent is of the form {wh} ∪ [l, r].

Analogous reasoning can be applied for the rest of the Combiner steps, concluding
that all of them preserve well-nestedness. With this we have proven (ii), and therefore
the soundness of WG1.

3.2.2 Order annotations

In the completeness proof forWG1, we will use the concept of order annotations (Kuhlmann,
2007; Kuhlmann and Möhl, 2007). Here we will outline the concept and some properties
relevant to the proof, a more detailed discussion can be found in (Kuhlmann, 2007).

Order annotations are strings that encode the precedence relation between the nodes
of a dependency tree: if we take a dependency tree with its words unordered and decorate
each node with an order annotation, we will obtain a particular ordering for the words.
Order annotations are related to projectivity, gap degree and well-nestedness: there
exists a set of order annotations that, when applied to nodes in any structure, will result
in an ordering of the nodes that satisfies projectivity, and the same can be said about
the properties of well-nestedness and having gap degree bounded by a constant k. In
addition to this, order annotations are closely related to the way in which the parsers
defined in this report construct subtrees with their Combine steps, and this will make
them useful for proving their correctness.

Let T be a dependency structure for a string w1 . . . wn, and wk a node in T . Let
wd1 . . . wdp be the direct dependents of wk in T , ordered by the position of the leftmost

9



element in their projection, i.e. min{i ∈ N | wi ∈ bwduc} < min{j ∈ N | wj ∈ bwdvc} if
and only if u < v.

The order annotation for a node wk is a string over the alphabet {0, 1, . . . , p} ∪ {“,”}
obtained from the following process:

• Build a string a(T,wk) = a1a2 . . . an, where ak = 0, ai = u if i ∈ bwduc, and
ai =“,” (comma) otherwise (i.e. if i /∈ bwkc).

• The order annotation for wk, o(T,wk), is the string obtained by collapsing all
adjacent occurences of the same symbol in a(T,wk) into a single occurence, and
removing all leading and trailing commas.4

By construction, order annotations have the following property:

Property 1. If the order annotation for a node wk is a string o(T,wk) = o1 . . . oq, then
there exist unique natural numbers i1 < i2, . . . < iq+1 such that:

• If the symbol 0 appears in position v in o(T,wk), then iv = k and iv+1 = k + 1.

• If a symbol s ∈ (N \ {0}) appears in positions v1, . . . , vr in o(T,wk), then the
projection of the sth dependent of wk in T is {[iv1 , iv1+1 − 1]} ∪ {[iv2 , iv2+1 − 1]} ∪
. . . ∪ {[ivr , ivr+1 − 1]}.

In particular, it can be checked that i1 is always the index associated to the leftmost
node in bwkc, iq+1 the index associated to the rightmost node in bwkc plus 1, and for
each iv such that 1 < v ≤ q, the differences dv = (iv − i1) correspond to the positions in
the intermediate string a(T,wk) such that the dvth symbol in a(T,wk) differs from the
(dv + 1)th.

By using this property to reason about the projections of a dependency tree’s nodes,
we can show the following, more particular properties:

Property 2.

A node wk has gap degree g in a dependency structure T if, and only if, the comma
symbol (,) appears g times in o(T,wk).

(Corollary 1) The gap degree of a dependency structure T is the maximum value among
the number of commas in the order annotations of each of its nodes.

(Corollary 2) A dependency structure is projective if, and only if, none of the order
annotations associated to its nodes contain a comma.

Property 3. If a number s ∈ (N \ {0}) appears g + 1 times in an order annotation
o(T,wk), then the sth direct child of wk (in the ordering mentioned earlier) has gap
degree g, and therefore the dependency structure T has gap degree at least g.

4Note that we use a slightly different notation from (Kuhlmann, 2007): for simplicity in the proofs, we
say that each node has a single annotation of the form α1, α2, . . . , αn instead of saying that it has a
list of annotations α1, α2, . . . αn. Of course, the difference is merely notational.
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Property 4. A dependency structure T is ill-nested if, and only if, it contains at least
one order annotation of the form . . . a . . . b . . . a . . . b . . ., for some a, b ∈ (N \ {0}). Oth-
erwise, T is well-nested.

These properties allow us to define the sets of structures verifying well-nestedness
and/or bounded gap degree only in terms of their order annotations. Sets that can be
characterized in this way are said to be algebraically transparent (Kuhlmann, 2007).

3.2.3 Completeness

Proving completeness of the WG1 parser is proving that all correct final items are valid.
We will show this by proving the following, stronger claim:

Lemma 1. Let T be a valid partial dependency tree headed at a node wh. Then:

• (a) If bwhc = {wh} ∪ [i, j], then the item [i, j, h, �, �] containing T is valid under
this parser.

• (b) If bwhc = {wh} ∪ ([i, j] \ [l, r]), then the item [i, j, h, l, r] containing T is valid
under this parser.

It is clear that this lemma implies the completeness of the parser: a final item
[1, n, h, �, �] is correct only if it contains a tree rooted at wh with gap degree ≤ 1 and
projection [1, n]. Such a tree is in case (a) of Lemma 1, implying that the correct final
item [1, n, h, �, �] is valid. Therefore, this lemma implies that all correct final items are
valid, and therefore that that WG1 is complete.

3.2.4 Proof of Lemma 1

We will prove Lemma 1 by induction on #(bwhc). In order to do this, we will show that
Lemma 1 holds for valid trees T rooted at wh such that #(bwhc) = 1, and then we will
prove that if Lemma 1 holds for every valid tree T ′ such that #(bwhc) < N , then it also
holds for all trees T such that #(bwhc) = N .

Base case Let T be a valid tree rooted at a node wh, such that #(bwhc) = 1. Since T
has only one node, it must be the trivial dependency tree consisting of the single node
wh. In this case, Lemma 1 trivially holds because the initial item [h, h, h, �, �] contains
this tree, and initial items are valid by definition.

Induction step Let T be a valid partial dependency tree rooted at a node wh, such
that #(bwhc) = N (for some N > 1).

We will prove that, if Lemma 1 holds for every valid partial dependency tree T ′ rooted
at w′h such that #(bw′hc) < N , then it also holds for T .

Let wd1 . . . wdp be the direct children of wh in T , ordered by the index of their leftmost
transitive dependent, i.e., for every i and j such that 1 ≤ i < j ≤ p, then min{k | wk ∈
bwdi
c} < min{k | wk ∈ bwdj

c}.
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We know that p ≥ 1 because if #(bwhc) > 1, then wh must have at least one dependent.
We now consider two cases: p = 1 and p > 1. In the case where p = 1, consider the
subtree of T induced by wd1 . Since #(bwd1c) = N −1, we know by induction hypothesis
that the item corresponding to this tree is valid. This item is:

• [i, j, d1, �, �], if bwd1c is of the form {wd1} ∪ [i, j], with d1 ∈ [i, j]5. In this case,
applying a Link step to this item and the initial item [h, h, h, �, �] (which is valid
by definition), with the D-rule wd1 → wh (which must exist in order for T to be
valid); we obtain [i, j, h, �, �], which is the item corresponding to wh by Lemma 1.

• [i, j, d1, h, h], if bwd1c is of the form {wd1} ∪ ([i, j] \ {wh}). In this case, applying a
Link step to this item and the initial item [h, h, h, �, �] (which is valid by definition),
with the D-rule wd1 → wh (which must exist, as in the previous case); we obtain
[i, j, h, �, �]6, which is the item corresponding to wh by Lemma 1.

• [i, j, d1, l, r], if bwd1c is of the form {wd1}∪([i, j]\[l, r]). In this case, applying a Link
step to this item and the initial item [h, h, h, �, �] (which is valid by definition),
with the D-rule wd1 → wh; we obtain [i, j, h, l, r]; which is the item corresponding
to wh by Lemma 1.

With this, we have proven the induction step for the case where p = 1 (the head node
of our partial dependency tree has a single direct child). It now remains to prove it for
p ≥ 1 (the head node has more than one direct dependent).

In order to show this, let o(T,wh) be the order annotation associated to the head node
wh in tree T . By construction, O(T,wh) must be a string of symbols in the alphabet
{0}∪{1}∪. . .∪{p}∪{, }; containing a single appearance of the symbol 0. Additionally, by
the definition of a valid tree and Property 3 of order annotations, O(T,wh) must contain
either 1 or 2 appearances of each symbol 1 through p (since more than 2 appearances of
a symbol q could only occur if wdq had gap degree ≥ 2). And, from the possible forms of
bwhc in a valid tree, we know that o(T,wh) must have one of the following forms, where
α and β are (possibly empty) strings that only contain symbols in {1} ∪ . . . ∪ {p} (not
zeros or commas):

• (i) α0β

• (ii) α, β0γ

• (iii) α0β, γ

• (iv) 0, α, β

• (v) α, β, 0

5Note that the situation where the projection is of this form but with d1 /∈ [i, j] is covered by the third
case in this list if d1 < i−1 or d1 > j+1; or by this same case if d1 = i−1 or d1 = j+1, by rewriting
the projection in the equivalent form {wd1} ∪ [i− 1, j] or {wd1} ∪ [i, j + 1], respectively.

6Note that this item is the normalisation of [i, j, h, h, h].
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• (vi) α, 0, β

Note that, by Property 2 of order annotations, the first case corresponds to a tree
where the head has gap degree 0, in the next two cases the head has gap degree 1, and
the last three are the cases where the gap degree of the head is 2: in these three latter
cases, the constraint that bwhc must be of the form {wh} ∪ ([i, j] \ [l, r]) for the tree T
to be valid implies that the symbol 0 representing the head in the annotation must be
surrounded by commas: if we have a gap degree 2 annotation of any other form (for
example α0, β, γ, for nonempty α); the projection of wh does not meet this constraint.
This can be seen by using Property 1 of order annotations to obtain this projection.

Taking these considerations into account, we will now divide the proof in different
cases and subcases based on o(T,wh), starting with its first symbol:

1. If o(T,wh) begins with the symbol 1:

a) If there are no more appearances of the symbol 1 in o(T,wh):

Then we consider the following trees:

• T1: The tree obtained by taking the subtree induced by wd1 (which by
Property 1 must have a yield of the form [i, j], as the symbol 1 appears
only once in o(T,wh)), and adding the node wh and dependency wd1 → wh

to it.

• T2: The tree obtained by taking the union of subtrees induced by wd2 . . . wdp ,
and adding the node wh and dependencies wd2 → wh, . . . , wdp → wh to
it.

And we divide this case into three further cases:

i. If o(T,wh) does not contain any comma: Then, by Property 17, the
projection of wh in T2 will be of the form [j + 1, k] ∪ {wh}. By applying
the induction hypothesis to T1 and T2, we know that the items [i, j, h, �, �]
and [j+1, k, h, �, �] are valid. Therefore, the item [i, k, h, �, �] is also valid
because it can be obtained from these two items by applying a Combine
Ungapped step. As in this case the projection of wh in T is [i, k] ∪ [h],
this item [i, k, h, �, �] is the item containing the tree T , and its validity
proves Lemma 1 in this particular subcase.

ii. If o(T,wh) contains at least one comma, and the second symbol in o(T,wh)
is a comma: Then o(T,wh) must be of the form (ii), (v) or (vi); and the
projection of wh in T2 will be of the form [i2, k] ∪ {wh}, for i2 > j + 1.
Therefore, we know by the induction hypothesis that the items [i, j, h, �, �]
(for T1) and [i2, k, h, �, �] (for T2) are valid, and by applying Combine
Opening Gap to these items, we obtain [i, k, h, j + 1, i2 − 1], which is the
item containing the tree T .

7In the remainder of the proof, we will always use Property 1 of order annotations to relate them to
projections; so we will not mention it explicitly in subsequent cases.
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iii. If o(T,wh) contains at least one comma, but the second symbol in o(T,wh)
is not a comma:

A. First, in the case that o(T,wh) contains exactly one comma, then
it is of the form 1β1, β2, where either β1 or β2 contains the symbol
0 and neither of them is empty. In this case, we can see that the
projection of wh in T2 is of the form {wh}∪ [j+ 1, l−1]∪ [r+ 1, k], so
by induction hypothesis the item [j + 1, k, h, l, r] is valid. We apply
Combine Keeping Gap Right to [i, j, h, �, �] (which is valid by T1 as
in the previous cases) and [j+1, k, h, l, r] to obtain [i, k, h, l, r], which
is the item containing T .

B. Second, in the case where o(T,wh) contains two commas, then it is
of the form 1β1, 0, β2 or 1β1, β2, 0. Then the projection of wh in T2

will again be of the form {wh} ∪ [j + 1, l − 1] ∪ [r + 1, k], so we can
follow the same reasoning as in the previous case to show that the
item [i, k, h, l, r] containing T is valid.

b) If there is a second appearance of symbol 1 in o(T,wh): Then o(T,wh) is of
the form 1β11β2. Due to the well-nestedness constraint, we know that there
is no symbol s ∈ {1}∪{2}∪ . . .∪{p} that appears both in β1 and in β2. This
allows us to consider the following trees:

• T1: The tree obtained by taking the subtree induced by wd1 (which must
have a yield of the form [i, l−1]∪ [r+1, j], as the symbol 1 appears twice
in o(T,wh)), and adding the node wh and dependency wd1 → wh to it.

• T2: The tree obtained by taking the union of subtrees induced by wdb1
. . . wdbq

,
where b1 . . . bq are the non-comma, non-zero symbols appearing in β1, and
adding the node wh and dependencies wdb1

→ wh, . . . , wdbq
→ wh to it.

• T3: The tree obtained by taking the union of subtrees induced by wdc1
. . . wdcq

,
where c1 . . . cq are the non-comma, non-zero symbols appearing in β2, and
adding the node wh and dependencies wdc1

→ wh, . . . , wdcq
→ wh to it.

Note that T2 or T3 may be empty trees, since it is possible that the string
β1 or β2 do not contain any symbol except for zeros and commas. However,
both trees cannot be empty at the same time, since in that case we would
have p = 1.

With this, we divide this case into further cases:

i. If β1 does not contain any comma: Then, by construction and by the
well-nestedness constraint, we know that the projection of wh in T2 is
of the form {wh} ∪ [l, r]. Applying the induction hypothesis to T1, we
know that the item [i, j, h, l, r] is valid, and applying it to T2, we know
that [l, r, h, �, �] is also valid. By applying a Combine Closing Gap step
to these items, we obtain that ι = [i, j, h, �, �] is valid. Now, we divide
into further cases according to the form of β2:
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A. If T3 is empty (β2 is empty except for a possible 0 symbol), then we
are done, as [i, j, h, �, �] is already the item containing the tree T .

B. If β2 does not contain a comma, then the projection of wh in T3 is
of the form {wh} ∪ [j + 1, k], so by induction hypothesis the item
[j+ 1, k, h, �, �] is valid. By applying Combine Ungapped to this item
and ι, we obtain [i, k, h, �, �], the item containing the tree T .

C. If β2 contains one or two commas, then the projection of wh in T3

is of the form {wh} ∪ [j + 1, l′ − 1] ∪ [r′ + 1,m], and by induction
hypothesis, [j + 1, k, h, l′, r′] is valid. By applying Combine Keeping
Gap Right to this item and ι, we get that [i, k, h, l′, r′] is valid, and
this is the item containing the tree T in this case.

ii. If β1 contains a single symbol, and it is a comma: In this case, T2 is empty,
but we know that T3 must be nonempty (since p > 1) and it must either
have no commas, or be of the form β3, 0, corresponding to the expression
(v). In any of these cases, we know that the projection of wh in T3 will be
of the form {wh}∪ [j+1, k]. Therefore, applying the induction hypothesis
to T1 we know that the item [i, j, h, l, r] is valid, and with T3 we know
that [j+ 1, k, h, �, �] is also valid. By applying the Combine Keeping Gap
Left step to these two items, we obtain [i, k, h, l, r], the item containing
the tree T .

iii. If β1 is of the form “, β3”, where β3 is not empty and does not contain
commas: then, by construction and by the well-nestedness constraint, we
know that the projection of wh in T2 is of the form {wh} ∪ [l′, r], with
l < l′ ≤ r; so the items [i, j, h, l, r] (for T1) and [l′, r, h, �, �] (for T2) are
valid. By applying Combine Shrinking Gap Right to these two items, we
obtain that ι = [i, j, h, l, l′−1] is a valid item. Now, if β2 is empty, we are
done: ι is the item containing the tree T . And if β2 is nonempty, then it
must either contain no commas, or be of the form β4, 0 (corresponding to
the expression (v)). In any of these cases, we know that the projection of
wh in T3 will be of the form {wh}∪ [j+1, k]. So, by induction hypothesis,
the item [j + 1, k, h, �, �] is valid; and by applying Combine Keeping Gap
Left to ι and this item we obtain that [i, k, h, l, l′ − 1] is valid: this is the
item containing the tree T in this case.

iv. If β1 is of the form “β3,”, where β3 is not empty and does not contain
commas, this case is symmetric with respect to the last one: in this case,
the projection of wh in T2 is of the form {wh}∪ [l, r′], with l ≤ r′ < r; and
the step Combine Shrinking Gap Left is applied to the item [l, r′, h, �, �]
(for T2) and the item [i, j, h, l, r] (for T1), obtaining ι = [i, j, h, r′ + 1, r].
As in the previous case, if β2 is empty we do not need to do anything
else, and if it is nonempty we apply Combine Keeping Gap Left to obtain
[i, k, h, r′ + 1, r], the item containing T .

v. If β1 is of the form “β3, β4”, where β3 and β4 are not empty and do not
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contain commas: in this case, by construction and by the well-nestedness
constraint, we know that the projection of wh in T2 is of the form {wh}∪
[l, l′−1]∪ [r′+1, r], with l < l′ ≤ r′ < r. With this, this case is analogous
to the previous two cases: from T1 we know that the item [i, j, h, l, r] is
valid, and we combine it with the item [l, r, h, l′, r′] (from T2), in this case
using Combine Shrinking Gap Centre. With this, we obtain that the item
ι = [i, j, h, l′, r′] is valid. If β2 is empty, this is the item containing the
tree T . If not, we make the same reasoning as in the two previous cases
to conclude that the item [j+1, k, h, �, �] is valid, and we combine it with
ι by the Combine Keeping Gap Left step to obtain [i, k, h, l′, r′], the item
containing T .

vi. If β1 contains two commas: in this case, by construction of the valid tree
T , β1 must be of the form β3, 0, β4, where β3 and β4 may or may not be
empty. So we divide into subcases:

A. If β3 and β4 are both empty, we apply the same reasoning as in case
1-b-ii, except that in this case we know that β2 cannot contain any
commas.

B. If β3 is empty and β4 is nonempty, we apply the same reasoning as in
case 1-b-iii, except that in this case we know that β2 cannot contain
any commas.

C. If β3 is nonempty and β4 is empty, we apply the same reasoning as in
case 1-b-iv, except that in this case we know that β2 cannot contain
any commas.

D. If neither β3 nor β4 are empty, we apply the same reasoning as in
case 1-b-v, except that in this case we know that β2 cannot contain
any commas.

2. If o(T,wh) begins with the symbol 0:

a) If o(T,wh) begins with 01, we can apply the same reasonings as in case 1,
because the expressions for the projections do not change.

b) If o(T,wh) begins with 0 followed immediately by a comma, then we have an
annotation of the form (iv): 0, α, β. In this case, we can apply symmetric
reasoning considering the last symbol of o(T,wh) instead of the first (note
that the case α, β, 0 has already been proven as part of case 1, and all the
steps in the schema are symmetric).

As this covers all the possible cases of the order annotation o(T,wh), we have com-
pleted the proof of the induction step for Lemma 1, and this concludes the proof of
completeness for the WG1 parsing schema.
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3.3 Computational complexity

The time complexity of WG1 is O(n7), as the step Combine Shrinking Gap Centre works
with 7 free string positions. This complexity with respect to the length of the input is as
expected for this set of structures, since Kuhlmann (2007) shows that they are equivalent
to LTAG, and the best existing parsers for this formalism also perform in O(n7) (Eisner
and Satta, 2000). Note that the Combine step which is the bottleneck only uses the 7
indexes, and not any other entities like D-rules, so its O(n7) complexity does not have
any additional factors due to grammar size or other variables. The space complexity of
the parser is O(n5), due to the 5 indexes in items.

It is possible to build a variant of this parser with time complexity O(n6), as with
parsers for unlexicalised TAG, if we work with unlexicalised D-rules specifying the pos-
sibility of dependencies between pairs of categories instead of pairs of words. In order to
do this, we expand the item set with unlexicalised items of the form [i, j, C, l, r], where
C is a category, apart from the existing items [i, j, h, l, r]. Steps in the parser are dupli-
cated, to work both with lexicalised and unlexicalised items, except for the Link steps,
which always work with a lexicalised item and an unlexicalised hypothesis to produce
an unlexicalised item, and the Combine Shrinking Gap steps, which can work only with
unlexicalised items. Steps are added to obtain lexicalised items from their unlexicalised
equivalents by binding the head to particular string positions. Finally, we need certain
variants of the Combine Shrinking Gap steps that take 2 unlexicalised antecedents and
produce a lexicalised consequent; an example is the following:

Combine Shrinking Gap Centre L:
[i, j, C, l, r] [l + 1, r, C, l2, r2]

[i, j, l, l2, r2]
such that cat(wl)=C

Although this version of the algorithm reduces time complexity with respect to the
length of the input to O(n6), it also adds a factor related to the number of categories,
as well as constant factors due to using more kinds of items and steps than the original
WG1 algorithm. This, together with the advantages of lexicalised dependency parsing,
may mean that the original WG1 algorithm is more practical than this version.

4 The WGk parser

The WG1 parsing schema can be generalised to obtain a parser for all well-nested depen-
dency structures with gap degree bounded by a constant k(k ≥ 1), which we call WGk

parser. In order to do this, we extend the item set so that it can contain items with up
to k gaps, and modify the deduction steps to work with these multi-gapped items.

4.1 Parsing schema for WGk

The item set IWGk is the set of all [i, j, h, [(l1, r1), . . . , (lg, rg)]] where i, j, h, g ∈ N ,
0 ≤ g ≤ k, 1 ≤ h ≤ n, 1 ≤ i ≤ j ≤ n , h 6= j, h 6= i− 1; and for each p ∈ {1, 2, . . . , g}:
lp, rp ∈ N, i < lp ≤ rp < j, rp < lp+1 − 1, h 6= lp − 1, h 6= rp.
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An item [i, j, h, [(l1, r1), . . . , (lg, rg)]] represents the set of all well-nested partial de-
pendency trees rooted at wh such that bwhc = {wh} ∪ ([i, j] \

⋃g
p=1[lp, rp]), where each

interval [lp, rp] is called a gap. The constraints h 6= j, h 6= i + 1, h 6= lp − 1, h 6= rp are
added to avoid redundancy, and normalisation is defined as in WG1. The set of final
items is defined as the set F = {[1, n, h, []] | h ∈ N, 1 ≤ h ≤ n}. Note that this set is
the same as in WG1, as these are the items that we denoted [1, n, h, �, �] in the previous
parser.

The parser has the following deduction steps:

Link:
[h1, h1, h1, []] [i2, j2, h2, [(l1, r1), . . . , (lg, rg)]]

[i2, j2, h1, [(l1, r1), . . . , (lg, rg)]]
wh2 → wh1

such that wh2 ∈ [i2, j2] \
⋃g

p=1[lp, rp]
∧wh1 /∈ [i2, j2] \

⋃g
p=1[lp, rp].

Combine Shrinking Gap Right :
[i, j, h, [(l1, r1), . . . , (lq−1, rq−1), (lq, r′), (ls, rs), . . . , (lg, rg)]]

[rq + 1, r′, h, [(lq+1, rq+1), . . . , (ls−1, rs−1)]]
[i, j, h, [(l1, r1), . . . , (lg, rg)]]

such that g ≤ k

Combine Opening Gap:
[i, lq − 1, h, [(l1, r1), . . . , (lq−1, rq−1)]] [rq + 1,m, h, [(lq+1, rq+1), . . . , (lg, rg)]]

[i,m, h, [(l1, r1), . . . , (lg, rg)]]
such that g ≤ k and lq ≤ rq,

Combine Shrinking Gap Left :
[i, j, h, [(l1, r1), . . . , (lq, rq), (l′, rs), (ls+1, rs+1), . . . , (lg, rg)]]

[l′, ls − 1, h, [(lq+1, rq+1), . . . , (ls−1, rs−1)]]
[i, j, h, [(l1, r1), . . . , (lg, rg)]]

such that g ≤ k

Combine Keeping Gaps:
[i, j, h, [(l1, r1), . . . , (lq, rq)]] [j + 1,m, h, [(lq+1, rq+1), . . . , (lg, rg)]]

[i,m, h, [(l1, r1), . . . , (lg, rg)]]
such that g ≤ k,

Combine Shrinking Gap Centre:
[i, j, h, [(l1, r1), . . . , (lq, rq), (l′, r′), (ls, rs), . . . , (lg, rg)]]

[l′, r′, h, [(lq+1, rq+1), . . . , (ls−1, rs−1)]]
[i, j, h, [(l1, r1), . . . , (lg, rg)]]

such that g ≤ k
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As expected, the WG1 parser corresponds to WGk when we make k = 1. WGk works
in the same way as WG1, except for the fact that Combine steps can create items with
more than one gap.

4.2 Proof of correctness for WGk

The proof of correctness for WGk is analogous to that of WG1, but generalising the
definition of valid trees to a higher gap degree. A valid tree in WGk can be defined as
a partial dependency tree T , headed at wh, such that

• (1) bwhc is of the form {wh} ∪ ([i, j] \
⋃g

p=1[lp, rp]), with 0 ≤ g ≤ k,

• (2) All the nodes in T have gap degree at most k except for wh, which can have
gap degree up to k + 1.

With this, we can define correct items and correct final items analogously to their
definition in WG1.

Soundness is proven as in WG1: changing the constraints for nodes so that any node
can have gap degree up to k and the head of a correct tree can have gap degree k + 1,
the same reasonings can be applied to this case.

Completeness is proven by induction on #(bwhc), just as in WG1. The base case is
the same as in WG1, and for the induction step, we also consider the direct children
wd1 . . . wdp in wh. The case where p = 1 is proven by using Linker steps just as in WG1.
In the case for p ≥ 1, we also base our proof in the order annotation o(T,wh), but we
have to take into account that the set of possible annotations is larger when we allow
the gap degree to be greater than 1, so we must take into account more cases in this
part of the proof.

In particular, an order annotation o(T,wh) for a valid tree for WGk can contain up
to k + 1 commas and up to k + 1 appearances of each symbol in {1} ∪ . . . ∪ {p}; since
the head of such a tree can have gap degree at most k + 1 and the rest of its nodes
are limited to gap degree k. If the head has gap degree exactly k + 1 (i.e., if o(T,wh)
contains k + 1 commas); then the constraint on the form of bwhc in valid trees implies
that the symbol 0 cannot be contiguous to any non-comma symbol in o(T,wh).

With this, the cases 1a) of the completeness proof for WG1 can be directly used for
WGk, only taking into account that o(T,wh) can contain up to k + 1 commas. As a
consequence of this, instead of Combine Keeping Gap Right we use a general Combine
Keeping Gaps step with more than one gap allowed in its rightmost antecedent item. In
the cases 1b), we need to take into account that the symbol 1 can appear up to k + 1
times in o(T,wh). We write o(T,wh) as 1β11β2 . . . 1βg(g ≤ k) and do with each βi (for
i < g) the same case analysis as we do with β1 in the WG1 case, and with βg the same
case analysis as with β2 in the WG1 case. Each of these cases is proven as in WG1, with
the difference that each string βi can contain more than one comma, so that instead of
the Combine Shrinking Gap steps in WG1 we need to use the general Combine Shrinking
Gap steps in WGk, which allow their inner items to have more than one gap. In the
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same way, the cases in which we used Combine Keeping Gap steps in the proof for WG1

are solved by using the general Combine Keeping Gap step in WGk.

4.3 Computational complexity

The WGk parser runs in time O(n5+2k): as in the case of WG1, the deduction step with
most free variables is Combine Shrinking Gap Centre, and in this case it has 5 + 2k
free indexes. Again, this complexity result is in line with what could be expected from
previous research in constituency parsing: Kuhlmann (2007) shows that the set of well-
nested dependency structures with gap degree at most k is closely related to coupled
context-free grammars in which the maximal rank of a nonterminal is k + 1; and the
constituency parser defined by Hotz and Pitsch (1996) for these grammars also adds an
n2 factor for each unit increment of k. Note that a small value of k should be enough
to cover the vast majority of the non-projective sentences found in natural language
treebanks. For example, the Prague Dependency Treebank contains no structures with
gap degree greater than 4. Therefore, a WG4 parser would be able to analyse all the
well-nested structures in this treebank, which represent 99.89% of the total. Increasing
k beyond 4 would not produce further improvements in coverage.

5 Parsing ill-nested structures

The WGk parser analyses dependency structures with bounded gap degree as long as they
are well-nested. This covers the vast majority of the structures that occur in natural-
language treebanks (Kuhlmann and Nivre, 2006), but there is still a significant minority
of sentences that contain ill-nested structures. Unfortunately, the general problem of
parsing ill-nested structures is NP-complete, even when the gap degree is bounded: this
set of structures is closely related to LCFRS with bounded fan-out and unbounded pro-
duction length, and parsing in this formalism has been proven to be NP-complete (Satta,
1992). The reason for this high complexity is the problem of unrestricted crossing config-
urations, appearing when dependency subtrees are allowed to interleave in every possible
way. However, just as it has been noted that most non-projective structures appearing
in practice are only “slightly” non-projective (Nivre and Nilsson, 2005), we characterise
a sense in which the structures appearing in treebanks can be viewed as being only
“slightly” ill-nested. In this section, we generalise the algorithms WG1 and WGk to
parse a proper superset of the set of well-nested structures in polynomial time; and
give a characterisation of this new set of structures, which includes all the structures in
several dependency treebanks.

5.1 The MG1 and MGk parsers

The WGk parser for well-nested structures presented previously is based on a bottom-up
process, where Link steps are used to link completed subtrees to a head, and Combine
steps are used to join subtrees governed by a common head to obtain a larger structure.
As WGk is a parser for well-nested structures of gap degree up to k, its Combiner steps
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correspond to all the ways in which we can join two sets of sibling subtrees meeting these
constraints, and having a common head, into another. Therefore, this parser does not
use Combiner steps that produce interleaved subtrees, since these would generate items
corresponding to ill-nested structures.

We obtain a polynomial parser for a wider set of structures of gap degree at most
k, including some ill-nested ones, by having Combiner steps representing every way in
which two sets of sibling subtrees of gap degree at most k with a common head can be
joined into another, including those producing interleaved subtrees, like the steps for
gap degree 1 shown in Figure 1. Note that this does not mean that we can build every
possible ill-nested structure: some structures with complex crossed configurations have
gap degree k, but cannot be built by combining two structures of that gap degree. More
specifically, our algorithm will be able to parse a dependency structure (well-nested or
not) if there exists a binarisation of that structure that has gap degree at most k. The
parser implicitly works by finding such a binarisation, since Combine steps are always
applied to two items and no intermediate item generated by them can exceed gap degree
k (not counting the position of the head in the projection).

More formally, let w1 . . . wn be a string, and T a partial dependency tree headed at a
node wh. A binarisation of T is a tree B in which each node has at most two children,
and such that:

• (a) Each node in B can be either unlabelled, or labelled with a word wi. Note that
several nodes may have the same label (in the definition of a dependency graph,
the set of nodes was the set of words, so a word cannot appear twice in the graph).

• (b) A node labelled wi is a descendant of wj in B if and only if wi →? wj in T .

The projection of a node in a binarisation is the set of reflexive-transitive children of
that node. With this, we can define the gap degree of a binarisation in the same way
as that of a dependency structure. If we denote by bncT the projection of a node n in
a tree T , the condition (b) of a binarisation can be rewritten as follows: wi ∈ bwjcB ⇔
wi ∈ bwjcT .

A dependency structure is mildly ill-nested for gap degree k if it has at least one
binarisation of gap degree ≤ k. Otherwise, we say that it is strongly ill-nested for gap
degree k. It is easy to prove that the set of mildly ill-nested structures for gap degree k
includes all well-nested structures with gap degree up to k.

We define MG1, a parser for mildly ill-nested structures for gap degree 1, as follows:

• the item set is the same as that of WG1, except that items can now contain any
mildly ill-nested structures for gap degree 1, instead of being restricted to well-
nested structures; and

• deduction steps are the same as in WG1, plus the additional steps shown in Figure
1. These extra Combiner steps allow the parser to combine interleaved subtrees
with simple crossing configurations. The MG1 parser still runs in O(n7), as these
new steps do not use more than 7 string positions.
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Combine Interleaving:

[i, j, h, l, r]
[l, k, h, r + 1, j]

[i, k, h, �, �]
Combine Interleaving Gap C:

[i, j, h, l, r]
[l, k, h,m, j]
[i, k, h,m, r]

such that m < r + 1,

Combine Interleaving Gap L:

[i, j, h, l, r]
[l, k, h, r + 1, u]
[i, k, h, j + 1, u]

such that u > j,

Combine Interleaving Gap R:

[i, j, h, l, r]
[k,m, h, r + 1, j]
[i,m, h, l, k − 1]

such that k > l.

Figure 1: Additional steps to turn WG1 into MG1.

[ia1 , iap+1 − 1, h, [(ia1+1, ia2 − 1), . . . , (iap−1+1, iap − 1)]]
[ib1 , ibq+1 − 1, h, [(ib1+1, ib2 − 1), . . . , (ibq−1+1, ibq − 1)]]

[imin(a1,b1), imax(ap+1,bq+1) − 1, h, [(ig1 , ig1+1 − 1), . . . , (igr , igr+1 − 1)]]

for each string of length n with a’s located at positions a1 . . . ap(1 ≤ a1 < . . . < ap ≤ n),
b’s at positions b1 . . . bq(1 ≤ b1 < . . . < bq ≤ n), and g’s at positions g1 . . . gr(2 ≤ g1 <
. . . < gr ≤ n− 1), such that 1 ≤ p ≤ k, 1 ≤ q ≤ k, 0 ≤ r ≤ k− 1, p+ q + r = n, and the
string does not contain more than one consecutive appearance of the same symbol.

Figure 2: General form of the MGk Combiner step.

22



In order to generalise this algorithm to mildly ill-nested structures for gap degree k,
we need to add a Combine step for every possible way of joining two structures of gap
degree at most k into another. This can be done in a systematic way by considering a set
of strings over an alphabet of three symbols: a and b to represent intervals of words in
the projection of each of the structures, and g to represent intervals that are not in the
projection of either of the structures, and will correspond to gaps in the joined structure.
The legal combinations of structures for gap degree k will correspond to strings where
symbols a and b each appear at most k + 1 times, g appears at most k times and is not
the first or last symbol, and there is no more than one consecutive appearance of any
symbol. Given a string of this form, the corresponding Combiner step is given by the
expression in Figure 2. As a particular example, the Combine Interleaving Gap C step
in Figure 1 can be obtained from the string abgab.

Therefore, we define the parsing schema for MGk, a parser for mildly ill-nested struc-
tures for gap degree k, as the schema where

• the item set is the same as that of WGk, except that items can now contain any
mildly ill-nested structures for gap degree k, instead of being restricted to well-
nested structures; and

• the set of deduction steps consists of a Link step as the one in WGk, plus a set of
Combiner steps obtained as expressed in Figure 2.

5.2 Complexity

As the string used to generate a Combiner step can have length at most 3k+ 2, and the
resulting step contains an index for each symbol of the string plus two extra indexes,
it is easy to see that the MGk parser has complexity O(n3k+4). Note that the item
and deduction step sets of an MGk parser are always supersets of those of WGk. In
particular, the steps for WGk are those obtained from strings that do not contain abab
or baba as a scattered substring.

5.3 Proof of correctness for MGk

In order to prove the correctness of the MGk parser, we will first introduce some prop-
erties of binarisations that arise as corollaries of their definition in Section 5.1. If a tree
B is a binarisation of a (partial) dependency tree T headed at wh, then we have that:

• (i) A node wi appears in T if and only if a node labelled wi appears in B,

• (ii) bwicB = bwicT ,

• (iii) If the root of B is labelled, then its label is wh.

Properties (i) and (ii) are direct consequences of condition (b) of the definition of
a binarisation. Property (iii) is obtained from (b) and property (i): the label of the
root node of B cannot be a wd 6= wh because this would require wh to be a transitive
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dependent of wd in T . These properties of binarisations will be used throughout the
proof.

As for the previous algorithms, we will start the proof by defining the sets of valid
trees and correct items for this algorithm, which we will use to prove soundness and
completeness.

Let T be a partial dependency tree headed at a node wh. We will call such a tree a
valid tree for the algorithm WGk if it satisfies the following:

• (1) bwhc is of the form {wh} ∪ ([i, j] \
⋃g

p=1[lp, rp]), with 0 ≤ g ≤ k,

• (2) There exists a binarisation of T such that all the nodes in it have gap degree
at most k except for its root node, which can have gap degree up to k + 1.

Note that, since by property (ii) a binarisation cannot decrease the gap degree of a
tree, condition (2) implies that all the nodes in T must have gap degree at most k except
for wh, which can have gap degree at most k + 1.

That is, the definition of a valid tree in this case is as in WGk, but changing the well-
nestedness constraint to the weaker requirement of having a binarisation of gap degree
k (except for the particular case of the root node, which can have gap degree k+ 1). As
in WG1 and WGk, we will say that an item is correct if it contains some valid tree T
licensed by a set of D-rules G, and throughout the proof we will suppose that all items
are normalised.

Given an input string w1 . . . wn, a correct final item for MGk will have the form
[1, n, h, []], and contain at least one valid tree T rooted at a head wh and with bwhc =
[1, n], which is a complete parse for the input. Since in a tree contained in an item of
this form the projection of the head cannot have any gaps and thus the head has gap
degree 0, we have that there exists a binarisation of T such that every one of its nodes,
including the head, has gap degree at most k. Therefore, T is mildly ill-nested for gap
degree k and, more generally, final items in MGk only contain mildly ill-nested trees for
gap degree k, as expected.

To prove correctness of the MGk parser, we need to prove its soundness and com-
pleteness.

5.3.1 Soundness

As in the proofs for the previous algorithms, we prove soundness of the MGk parser by
showing that (i) hypotheses are correct, and (ii) if the antecedents of a deduction step in
WG1 are correct, then the consequent is also correct. (i) is trivial, since each hypothesis
in the MGk parser contains a tree consisting of a single node wh, which is trivially a
valid tree.

To show (ii), given a set of D-rules G, we must prove that if the antecedents of a
deduction step are items containing a valid tree for MGk licensed by the D-rules in G,
then the consequent must also contain a valid tree for MGk licensed by G. In order to
do this, we obtain a valid tree for the consequent item of each step from a valid tree for
each of its antecedents exactly in the same way as in WGk: by adding a new head node
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and linking the head of the antecedent tree to it, for Link steps, and by considering the
union of the trees corresponding to the antecedents, for Combine steps.

We can show that the resulting tree is licensed by G and that it satisfies the condition
(1) of a valid tree in the same way as we did in WG1 and WGk. So, to prove soundness,
it only remains to show that the resulting tree has a binarisation verifying the gap degree
constraint (2).

To prove this, we show that a binarisation satisfying (2) of the tree corresponding
to the consequent item can be constructed from the corresponding binarisations of the
antecedent items. We will prove the stronger claim that such a binarisation can be
constructed, with the additional constraints that: (3) its root node must be labelled
(therefore, by one of the properties of binarisations, its label corresponds to the head
node of the original tree) and can have at most one direct child, and that (4) the
binarisation can only contain more than one node labelled wh if the item is of the form
[i, j, h, [(l1, r1) . . . (lg, rg)]] such that wh ∈ ([i, j] \

⋃g
p=1[lp, rp]).

In the case of each Link step adding a link wd → wh, such a binarisation can be
constructed by taking the binarisation Ba corresponding to the non-initial antecedent
item, and linking its head to a new node labelled wh. The resulting tree is a binarisation
of the consequent tree, and it satisfies (2) because the head can have gap degree at most
k+1 (by construction of the antecedents of Link steps, the antecedent item must have a
binarisation whose head does not have gap degree greater than k, and linking it to a new
head adds at most one gap); and the rest of the nodes have gap degree at most k because
their projections do not change with respect to the binarisation of the antecedent tree.
This binarisation trivially verifies (3), because its root node is labelled wh and has the
head of the Ba as its only child, and (4) because it can only contain one node labelled
wh, which is the root, as wh cannot appear in Ba.

In the case of Combiner steps, if B1 and B2 are the binarisations corresponding to the
antecedent items, we can construct a binarisation for the consequent Bc from B1 and
B2 as follows:

• If the consequent item is of the form [i, j, h, [(l1, r1) . . . (lg, rg)]] such that wh /∈
([i, j] \

⋃g
p=1[lp, rp]), then we take the binarisations B1 and B2, we remove their

head nodes labelled wh from them, we link the direct children of that head in each
of the two binarisations (which must be two, d1 and d2, since B1 and B2 verify
condition (3)) to a fresh unlabelled node, and finally we link this unlabelled node
to wh. This tree Bc is a binarisation for the tree in the consequent item obtained
by performing the union of two trees in the antecedent items. It can be shown
that the projection of wh in Bc satisfies condition (1) by construction, following
the same reasoning as in the proof for WG1. And we can see that Bc also meets
the constraints of (2) because:

– The projection of wh in Bc is the union of the projections of wh in B1 and
B2, which by construction of the consequent of Combiner steps, and property
(ii) of binarisations, must be of the form bwhcBc = {wh}∪ ([i, j]\

⋃g
p=1[lp, rp])

with g ≤ k. Since the gap degree of
⋃g

p=1[lp, rp]) cannot exceed k, the gap
degree of bwhcBc cannot exceed k + 1.
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– The fresh unlabelled node that we have added does not dominate any node
labelled wh. We know this because no antecedent item cannot be of the form
described in (4), since if one of the antecedent items were of that form, then
the consequent item would be of that form too, by construction of consequent
items. Therefore, for the binarisations corresponding to antecedent items, we
know that they contain a single node labelled wh, and thus our unlabelled
node does not dominate any node labelled wh. Therefore, the projection of
this node must be bwhcBc \{wh}, which in this case equals ([i, j]\

⋃g
p=1[lp, rp])

with g ≤ k, and therefore the node has gap degree ≤ k.

– The rest of the nodes in Bc have the same projection as they had in B1 or
B2, so they have gap degree ≤ k.

It can be seen that this binarisation also satisfies (3) and (4) because, by construc-
tion, it has a single node labelled wh which is its root, and this node has a single
child.

• If the consequent item is of the form [i, j, h, [(l1, r1) . . . (lg, rg)]] such that wh ∈
([i, j] \

⋃g
p=1[lp, rp]), then we take the binarisations B1 and B2, we remove their

head nodes labelled wh from them, we link the direct children of that head in each
of the two binarisations (which must be two nodes, d1 and d2, as B1 and B2 satisfy
(3)) to a fresh node labelled wh, and finally we link this node to another node
also labelled wh. The obtained tree Bc is a binarisation for the valid tree in the
consequent item obtained by performing the union of two trees in the antecedent
items. It satisfies condition (1) by construction, as in the previous case, and meets
the constraints of (2) because:

– By construction, the projection of both fresh nodes labelled wh in this case
is bwhcB1 ∪ bwhcB2 , and by the hypothesis of this case we know that that
projection is of the form bwhcBc = ([i, j] \

⋃g
p=1[lp, rp]), and therefore has gap

degree at most k.

– The rest of the nodes in Bc have the same projection as they had in B1 or
B2, so they have gap degree ≤ k.

This binarisation trivially verifies (3), and it also meets (4) because the item as-
sociated to the consequent is of the form that allows several nodes to be labelled
wh.

With this, we have proven that if an MGk step is applied to correct antecedents, it
produces correct consequents, and we conclude the soundness proof for MGk.

5.3.2 Completeness

Proving completeness for the MGk parser consists of proving that all correct final items
are valid. We will show this by proving the following, stronger claim:
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Proposition 1. Let T be a partial dependency tree headed at node wh, and valid for
MGk. Then, if bwhc = {wh}∪([i, j]\

⋃g
p=1[lp, rp]), for p ≤ k, the item [i, j, h, (l1, r1), . . . , (lg, rg)]

containing T is valid under this parser.

It is clear that this proposition implies the completeness of the parser: a final item
[1, n, h, []] is correct only if it contains a tree rooted at wh, valid for MGk and with
projection bwhc = [1, n]. By Proposition 1, having such a tree implies that the correct
final item [1, n, h, []] is valid. Therefore, this lemma implies that all correct final items
are valid, and thus that MGk is complete.

Since valid trees for the MGk parser must be mildly ill-nested for gap degree k, every
valid tree must have at least one binarisation where every node has gap degree ≤ k
except possibly the head, that can have gap degree k + 1. We will call a binarisation
satisfying this property a well-formed binarisation for MGk.

Using this, we can prove Proposition 1 if we prove the following lemma:

Lemma 2. Let B be a well-formed binarisation of a partial dependency tree T , headed
at node wh and valid for MGk. If the projection of wh in T is bwhcT = bwhcB =
{wh} ∪ ([i, j] \

⋃g
p=1[lp, rp]), for p ≤ k, the item [i, j, h, (l1, r1), . . . , (lg, rg)] containing T

is valid under this parser.

5.3.3 Proof of Lemma 2

We will prove this lemma by induction on the number of nodes of B (denoted #B).
In order to do this, we will show that Lemma 2 holds for well-formed binarisations B
of trees T rooted at wh such that #B = 1, and then we will prove that if Lemma 2
holds for every well-formed binarisation B′ such that #B′ < N , then it also holds for
binarisations B such that #B = N .

Base case Let B be a well-formed binarisation of a partial dependency tree T , rooted
at a node wh and valid for MGk, and such that #B = 1. In this case, since B has only
one node, it must be a binarisation of the trivial dependency tree consisting of the single
node wh. Thus, Lemma 2 trivially holds because the initial item [h, h, h, []] contains this
tree, and initial items are valid by definition.

Induction step Let B be a well-formed binarisation of some partial dependency tree T ,
headed at node wh and valid for MGk, such that bwhcT = {wh} ∪ ([i, j] \

⋃g
p=1[lp, rp])),

and #B = N ; and suppose that Lemma 2 holds for every well-formed binarisation B′

of a tree T ′ such that #B′ < N . We will prove that Lemma 2 holds for B.
In order to do this, we consider different cases depending on the number and type of

children of the head node labelled wh in B:

• If wh has a single child in B, and it is a node labelled wd (wd 6= wh): then,
the subtree B′ induced by wd in B is a binarisation of some tree T ′, such that
bwdcT ′ = bwhcT \{wh} (note that no nodes labelled wh can appear in B′, since wh

cannot be a dependent of wd). As #B′ < N and B′ is well-formed because all its
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nodes are non-head nodes of B; by applying the induction hypothesis, we obtain
that the item ι = [i, j, d, (l1, r1), . . . , (lg, rg)] (which contains T ′ by construction)
is valid. The item [i, j, h, (l1, r1), . . . , (lg, rg)] containing T can be obtained from ι
and the initial item [h, h, h, ()] by a Link step, and therefore it is valid, so we have
proven Lemma 2 in this case.

• If wh has a single child in B, and it is an unlabelled node: call this unlabelled
node n. Then, the subtree B′ obtained from removing n from B and linking its
children directly to wh is a binarisation of the same tree as B. We know that B′

is well-formed because its non-head nodes have the same projections as in B and
therefore must have gap degree ≤ k and, as B is well-formed, n has gap degree
≤ k, so the subtree created by linking the children of n to wh can have gap degree
at most k+ 1, and it only will have degree k+ 1 if bwhcB′ \ {wh} has k gaps. As B
and B′ are well-formed binarisations of the same tree, if Lemma 2 holds for B′, it
also must hold for B. As we know that #B′ < N (since it contains one less node
than B), Lemma 2 holds for B′ by the induction hypothesis, so this case is proven.

• If wh has a single child in B, and it is a node labelled wh: then, the subtree B′

induced by this single child node is a binarisation of the same tree as B. We know
that B′ is well-formed because its nodes have the same projections as they had in
B, and therefore they must all have gap degree ≤ k by the well-formedness of B.
Reasoning as in the previous case, since B and B′ are binarisations of the same
tree and we know that Lemma 2 holds for B′ for the induction hypothesis, this
implies that it holds for B as well.

• If wh has two children in B: in this case, regardless of whether the direct children
of wh are labelled or unlabelled nodes, we call them c1 and c2 and consider two
partial dependency trees B′1 and B′2:

– B′1 is the tree obtained by taking the subtree induced by c1 and linking its
head c1 to wh,

– B′2 is the tree obtained by taking the subtree induced by c2 and linking its
head c2 to wh.

We know that all the nodes in B′1 and B′2, except for the head, must have gap
degree ≤ k because their projection in B′1 and B′2 is the same as their projection
in B, which is a well-formed binarisation. We know that wh must have degree
≤ k+ 1 in B′1 and B′2 because, by construction, bwhcB′1 = bc1cB ∪{wh}, and bc1cB
has gap degree ≤ k; and a similar reasoning can be made in B′2. Thus, we have
that B′1 and B′2 are well-formed binarisations.

By applying the induction hypothesis to B′1 and B′2, we obtain that the items
containing their associated dependency trees T ′1 and T ′2 are valid. By construction,
since c1 has gap degree ≤ k in B′1 and c2 has gap degree ≤ k in B′2, the projection
of wh in the trees T ′1 and T ′2 obtained by unbinarising B′1 and B′2 by removing the
unlabelled and redundant nodes will be the union of g1 and g2 intervals respectively,
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Language

Structures

Total
Nonprojective

Total
By gap degree By nestedness

Gap
deg. 1

Gap
deg. 2

Gap
deg. 3

Gap
d. > 3

Well-
Nested

Mildly
Ill-Nest.

Strongly
Ill-Nest.

Arabic 2995 205 189 13 2 1 204 1 0
Czech 87889 20353 19989 359 4 1 20257 96 0

Danish 5430 864 854 10 0 0 856 8 0
Dutch 13349 4865 4425 427 13 0 4850 15 0
Latin 3473 1743 1543 188 10 2 1552 191 0

Portuguese 9071 1718 1302 351 51 14 1711 7 0
Slovene 1998 555 443 81 21 10 550 5 0
Swedish 11042 1079 1048 19 7 5 1008 71 0
Turkish 5583 685 656 29 0 0 665 20 0

Table 1: Counts of dependency trees classified by gap degree, and mild and strong ill-nestedness
(for their gap degree); appearing in treebanks for Arabic (Hajič et al., 2004), Czech
(Hajič et al., 2006), Danish (Kromann, 2003), Dutch (van der Beek et al., 2002), Latin
(Bamman and Crane, 2006), Portuguese (Afonso et al., 2002), Slovene (Džeroski et al.,
2006), Swedish (Nilsson et al., 2005) and Turkish (Oflazer et al., 2003; Atalay et al.,
2003).

for g1, g2 ≤ k+ 1. We also know that the union of the projections of wh in T ′1 and
T ′2 is the union of gc ≤ k + 1 intervals, and is the same as the projection of wh

in T . Therefore, as the indexes of the Combiner steps in MGk correspond to all
the ways in which two unions of up to k + 1 intervals each can be combined into
another by performing their union, we know that the item that contains T can be
obtained from the items containing T ′1 and T ′2 by a Combiner step, and thus this
item is valid, concluding the completeness proof.

5.4 Mildly ill-nested dependency structures

The MGk algorithm defined in the previous section allows us to parse any mildly ill-
nested structure for a given gap degree k in polynomial time. We have characterised the
set of mildly ill-nested structures for gap degree k as those that have a binarisation of
gap degree ≤ k. Since a binarisation of a dependency structure cannot have lower gap
degree than the original structure, the set of mildly ill-nested structures for gap degree
k only contains structures with gap degree at most k. Furthermore, the set of mildly
ill-nested structures for gap degree k contains all the well-nested structures with gap
degree up to k.

Figure 3 shows an example of a structure that has gap degree 1, but is strongly
ill-nested for gap degree 1. This is one of the smallest possible such structures: by
generating all the possible trees up to 10 nodes (without counting a dummy root node
located at position 0), it can be shown that all the structures of any gap degree k with
length smaller than 10 are well-nested or only mildly ill-nested for that gap degree k.
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Figure 3: One of the smallest strongly ill-nested structures. This dependency structure has gap
degree 1, but is only mildly ill-nested for gap degree ≥ 2.

Even if a structure T is strongly ill-nested for a given gap degree, there is always some
m ∈ N such that T is mildly ill-nested for m (since every dependency structure can
be binarised, and binarisations have finite gap degree). For example, the structure in
Figure 3 is mildly ill-nested for gap degree 2. Therefore, MGk parsers have the property
of being able to parse any possible dependency structure as long as we make k large
enough.

In practice, structures like the one in Figure 3 do not seem to appear in dependency
treebanks. We have analysed treebanks for nine different languages, obtaining the data
presented in Table 1. None of these treebanks contain structures that are strongly ill-
nested for their gap degree. Therefore, in any of these treebanks, the MGk parser can
parse every sentence with gap degree at most k.

6 Conclusions and future work

We have defined a parsing algorithm for well-nested dependency structures with bounded
gap degree. In terms of computational complexity, this algorithm is comparable to the
best parsers for related constituency-based formalisms: when the gap degree is at most
1, it runs in O(n7), like the fastest known parsers for LTAG, and can be made O(n6)
if we use unlexicalised dependencies. When the gap degree is greater than 1, the time
complexity goes up by a factor of n2 for each extra unit of gap degree, as in parsers
for coupled context-free grammars. Most of the non-projective sentences appearing
in treebanks are well-nested and have a small gap degree, so this algorithm directly
parses the vast majority of the non-projective constructions present in natural languages,
without requiring the construction of a constituency grammar as an intermediate step.

Additionally, we have defined a set of structures for any gap degree k which we call
mildly ill-nested. This set includes ill-nested structures verifying certain conditions, and
can be parsed in O(n3k+4) with a variant of the parser for well-nested structures. The
practical interest of mildly ill-nested structures can be seen in the data obtained from
several dependency treebanks, showing that all of the ill-nested structures in them are
mildly ill-nested for their corresponding gap degree. Therefore, our O(n3k+4) parser can
analyse all the gap degree k structures in these treebanks.

The set of mildly ill-nested structures for gap degree k are defined as the set of struc-
tures that have a binarisation of gap degree at most k. This definition is directly related
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to the way the MGk parser works, since it implicitly finds such a binarisation. An inter-
esting line of future work would be to find an equivalent characterisation of the set of
mildly ill-nested structures which is more grammar-oriented and would provide a more
linguistic insight into these structures.
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